RubyPort.cc (9206:f6483789d23a) RubyPort.cc (9208:2451e60d4555)
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "sim/system.hh"
50
51RubyPort::RubyPort(const Params *p)
52 : MemObject(p), m_version(p->version), m_controller(NULL),
53 m_mandatory_q_ptr(NULL),
54 pio_port(csprintf("%s-pio-port", name()), this),
55 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
56 drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
57 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
58{
59 assert(m_version != -1);
60
61 // create the slave ports based on the number of connected ports
62 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
63 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
64 this, ruby_system, access_phys_mem));
65 }
66
67 // create the master ports based on the number of connected ports
68 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
69 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
70 this));
71 }
72}
73
74void
75RubyPort::init()
76{
77 assert(m_controller != NULL);
78 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
79}
80
81MasterPort &
82RubyPort::getMasterPort(const std::string &if_name, int idx)
83{
84 if (if_name == "pio_port") {
85 return pio_port;
86 }
87
88 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
89 // port
90 if (if_name != "master") {
91 // pass it along to our super class
92 return MemObject::getMasterPort(if_name, idx);
93 } else {
94 if (idx >= static_cast<int>(master_ports.size())) {
95 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
96 }
97
98 return *master_ports[idx];
99 }
100}
101
102SlavePort &
103RubyPort::getSlavePort(const std::string &if_name, int idx)
104{
105 // used by the CPUs to connect the caches to the interconnect, and
106 // for the x86 case also the interrupt master
107 if (if_name != "slave") {
108 // pass it along to our super class
109 return MemObject::getSlavePort(if_name, idx);
110 } else {
111 if (idx >= static_cast<int>(slave_ports.size())) {
112 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
113 }
114
115 return *slave_ports[idx];
116 }
117}
118
119RubyPort::PioPort::PioPort(const std::string &_name,
120 RubyPort *_port)
121 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
122 ruby_port(_port)
123{
124 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
125}
126
127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
128 RubySystem *_system, bool _access_phys_mem)
129 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
130 ruby_port(_port), ruby_system(_system),
131 _onRetryList(false), access_phys_mem(_access_phys_mem)
132{
133 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
134}
135
136Tick
137RubyPort::M5Port::recvAtomic(PacketPtr pkt)
138{
139 panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
140 return 0;
141}
142
143
144bool
145RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
146{
147 // In FS mode, ruby memory will receive pio responses from devices
148 // and it must forward these responses back to the particular CPU.
149 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
150
151 // First we must retrieve the request port from the sender State
152 RubyPort::SenderState *senderState =
153 safe_cast<RubyPort::SenderState *>(pkt->senderState);
154 M5Port *port = senderState->port;
155 assert(port != NULL);
156
157 // pop the sender state from the packet
158 pkt->senderState = senderState->saved;
159 delete senderState;
160
161 port->sendTimingResp(pkt);
162
163 return true;
164}
165
166bool
167RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
168{
169 DPRINTF(RubyPort,
170 "Timing access caught for address %#x\n", pkt->getAddr());
171
172 //dsm: based on SimpleTimingPort::recvTimingReq(pkt);
173
174 // The received packets should only be M5 requests, which should never
175 // get nacked. There used to be code to hanldle nacks here, but
176 // I'm pretty sure it didn't work correctly with the drain code,
177 // so that would need to be fixed if we ever added it back.
178
179 if (pkt->memInhibitAsserted()) {
180 warn("memInhibitAsserted???");
181 // snooper will supply based on copy of packet
182 // still target's responsibility to delete packet
183 delete pkt;
184 return true;
185 }
186
187 // Save the port in the sender state object to be used later to
188 // route the response
189 pkt->senderState = new SenderState(this, pkt->senderState);
190
191 // Check for pio requests and directly send them to the dedicated
192 // pio port.
193 if (!isPhysMemAddress(pkt->getAddr())) {
194 assert(ruby_port->pio_port.isConnected());
195 DPRINTF(RubyPort,
196 "Request for address 0x%#x is assumed to be a pio request\n",
197 pkt->getAddr());
198
199 // send next cycle
200 ruby_port->pio_port.schedTimingReq(pkt,
201 curTick() + g_system_ptr->clockPeriod());
202 return true;
203 }
204
205 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
206 RubySystem::getBlockSizeBytes());
207
208 // Submit the ruby request
209 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
210
211 // If the request successfully issued then we should return true.
212 // Otherwise, we need to delete the senderStatus we just created and return
213 // false.
214 if (requestStatus == RequestStatus_Issued) {
215 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
216 return true;
217 }
218
219 //
220 // Unless one is using the ruby tester, record the stalled M5 port for
221 // later retry when the sequencer becomes free.
222 //
223 if (!ruby_port->m_usingRubyTester) {
224 ruby_port->addToRetryList(this);
225 }
226
227 DPRINTF(RubyPort,
228 "Request for address %#x did not issue because %s\n",
229 pkt->getAddr(), RequestStatus_to_string(requestStatus));
230
231 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
232 pkt->senderState = senderState->saved;
233 delete senderState;
234 return false;
235}
236
237bool
238RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
239{
240 Address address(pkt->getAddr());
241 Address line_address(address);
242 line_address.makeLineAddress();
243
244 AccessPermission access_perm = AccessPermission_NotPresent;
245 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
246
247 DPRINTF(RubyPort, "Functional Read request for %s\n",address);
248
249 unsigned int num_ro = 0;
250 unsigned int num_rw = 0;
251 unsigned int num_busy = 0;
252 unsigned int num_backing_store = 0;
253 unsigned int num_invalid = 0;
254
255 // In this loop we count the number of controllers that have the given
256 // address in read only, read write and busy states.
257 for (int i = 0; i < num_controllers; ++i) {
258 access_perm = ruby_system->m_abs_cntrl_vec[i]->
259 getAccessPermission(line_address);
260 if (access_perm == AccessPermission_Read_Only)
261 num_ro++;
262 else if (access_perm == AccessPermission_Read_Write)
263 num_rw++;
264 else if (access_perm == AccessPermission_Busy)
265 num_busy++;
266 else if (access_perm == AccessPermission_Backing_Store)
267 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
268 // to represent blocks in memory *for Broadcast/Snooping protocols*,
269 // where memory has no idea whether it has an exclusive copy of data
270 // or not.
271 num_backing_store++;
272 else if (access_perm == AccessPermission_Invalid ||
273 access_perm == AccessPermission_NotPresent)
274 num_invalid++;
275 }
276 assert(num_rw <= 1);
277
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "sim/system.hh"
50
51RubyPort::RubyPort(const Params *p)
52 : MemObject(p), m_version(p->version), m_controller(NULL),
53 m_mandatory_q_ptr(NULL),
54 pio_port(csprintf("%s-pio-port", name()), this),
55 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
56 drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
57 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
58{
59 assert(m_version != -1);
60
61 // create the slave ports based on the number of connected ports
62 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
63 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
64 this, ruby_system, access_phys_mem));
65 }
66
67 // create the master ports based on the number of connected ports
68 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
69 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
70 this));
71 }
72}
73
74void
75RubyPort::init()
76{
77 assert(m_controller != NULL);
78 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
79}
80
81MasterPort &
82RubyPort::getMasterPort(const std::string &if_name, int idx)
83{
84 if (if_name == "pio_port") {
85 return pio_port;
86 }
87
88 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
89 // port
90 if (if_name != "master") {
91 // pass it along to our super class
92 return MemObject::getMasterPort(if_name, idx);
93 } else {
94 if (idx >= static_cast<int>(master_ports.size())) {
95 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
96 }
97
98 return *master_ports[idx];
99 }
100}
101
102SlavePort &
103RubyPort::getSlavePort(const std::string &if_name, int idx)
104{
105 // used by the CPUs to connect the caches to the interconnect, and
106 // for the x86 case also the interrupt master
107 if (if_name != "slave") {
108 // pass it along to our super class
109 return MemObject::getSlavePort(if_name, idx);
110 } else {
111 if (idx >= static_cast<int>(slave_ports.size())) {
112 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
113 }
114
115 return *slave_ports[idx];
116 }
117}
118
119RubyPort::PioPort::PioPort(const std::string &_name,
120 RubyPort *_port)
121 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
122 ruby_port(_port)
123{
124 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
125}
126
127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
128 RubySystem *_system, bool _access_phys_mem)
129 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
130 ruby_port(_port), ruby_system(_system),
131 _onRetryList(false), access_phys_mem(_access_phys_mem)
132{
133 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
134}
135
136Tick
137RubyPort::M5Port::recvAtomic(PacketPtr pkt)
138{
139 panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
140 return 0;
141}
142
143
144bool
145RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
146{
147 // In FS mode, ruby memory will receive pio responses from devices
148 // and it must forward these responses back to the particular CPU.
149 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
150
151 // First we must retrieve the request port from the sender State
152 RubyPort::SenderState *senderState =
153 safe_cast<RubyPort::SenderState *>(pkt->senderState);
154 M5Port *port = senderState->port;
155 assert(port != NULL);
156
157 // pop the sender state from the packet
158 pkt->senderState = senderState->saved;
159 delete senderState;
160
161 port->sendTimingResp(pkt);
162
163 return true;
164}
165
166bool
167RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
168{
169 DPRINTF(RubyPort,
170 "Timing access caught for address %#x\n", pkt->getAddr());
171
172 //dsm: based on SimpleTimingPort::recvTimingReq(pkt);
173
174 // The received packets should only be M5 requests, which should never
175 // get nacked. There used to be code to hanldle nacks here, but
176 // I'm pretty sure it didn't work correctly with the drain code,
177 // so that would need to be fixed if we ever added it back.
178
179 if (pkt->memInhibitAsserted()) {
180 warn("memInhibitAsserted???");
181 // snooper will supply based on copy of packet
182 // still target's responsibility to delete packet
183 delete pkt;
184 return true;
185 }
186
187 // Save the port in the sender state object to be used later to
188 // route the response
189 pkt->senderState = new SenderState(this, pkt->senderState);
190
191 // Check for pio requests and directly send them to the dedicated
192 // pio port.
193 if (!isPhysMemAddress(pkt->getAddr())) {
194 assert(ruby_port->pio_port.isConnected());
195 DPRINTF(RubyPort,
196 "Request for address 0x%#x is assumed to be a pio request\n",
197 pkt->getAddr());
198
199 // send next cycle
200 ruby_port->pio_port.schedTimingReq(pkt,
201 curTick() + g_system_ptr->clockPeriod());
202 return true;
203 }
204
205 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
206 RubySystem::getBlockSizeBytes());
207
208 // Submit the ruby request
209 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
210
211 // If the request successfully issued then we should return true.
212 // Otherwise, we need to delete the senderStatus we just created and return
213 // false.
214 if (requestStatus == RequestStatus_Issued) {
215 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
216 return true;
217 }
218
219 //
220 // Unless one is using the ruby tester, record the stalled M5 port for
221 // later retry when the sequencer becomes free.
222 //
223 if (!ruby_port->m_usingRubyTester) {
224 ruby_port->addToRetryList(this);
225 }
226
227 DPRINTF(RubyPort,
228 "Request for address %#x did not issue because %s\n",
229 pkt->getAddr(), RequestStatus_to_string(requestStatus));
230
231 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
232 pkt->senderState = senderState->saved;
233 delete senderState;
234 return false;
235}
236
237bool
238RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
239{
240 Address address(pkt->getAddr());
241 Address line_address(address);
242 line_address.makeLineAddress();
243
244 AccessPermission access_perm = AccessPermission_NotPresent;
245 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
246
247 DPRINTF(RubyPort, "Functional Read request for %s\n",address);
248
249 unsigned int num_ro = 0;
250 unsigned int num_rw = 0;
251 unsigned int num_busy = 0;
252 unsigned int num_backing_store = 0;
253 unsigned int num_invalid = 0;
254
255 // In this loop we count the number of controllers that have the given
256 // address in read only, read write and busy states.
257 for (int i = 0; i < num_controllers; ++i) {
258 access_perm = ruby_system->m_abs_cntrl_vec[i]->
259 getAccessPermission(line_address);
260 if (access_perm == AccessPermission_Read_Only)
261 num_ro++;
262 else if (access_perm == AccessPermission_Read_Write)
263 num_rw++;
264 else if (access_perm == AccessPermission_Busy)
265 num_busy++;
266 else if (access_perm == AccessPermission_Backing_Store)
267 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
268 // to represent blocks in memory *for Broadcast/Snooping protocols*,
269 // where memory has no idea whether it has an exclusive copy of data
270 // or not.
271 num_backing_store++;
272 else if (access_perm == AccessPermission_Invalid ||
273 access_perm == AccessPermission_NotPresent)
274 num_invalid++;
275 }
276 assert(num_rw <= 1);
277
278 uint8* data = pkt->getPtr<uint8_t>(true);
278 uint8_t *data = pkt->getPtr<uint8_t>(true);
279 unsigned int size_in_bytes = pkt->getSize();
280 unsigned startByte = address.getAddress() - line_address.getAddress();
281
282 // This if case is meant to capture what happens in a Broadcast/Snoop
283 // protocol where the block does not exist in the cache hierarchy. You
284 // only want to read from the Backing_Store memory if there is no copy in
285 // the cache hierarchy, otherwise you want to try to read the RO or RW
286 // copies existing in the cache hierarchy (covered by the else statement).
287 // The reason is because the Backing_Store memory could easily be stale, if
288 // there are copies floating around the cache hierarchy, so you want to read
289 // it only if it's not in the cache hierarchy at all.
290 if (num_invalid == (num_controllers - 1) &&
291 num_backing_store == 1)
292 {
293 DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
294 for (int i = 0; i < num_controllers; ++i) {
295 access_perm = ruby_system->m_abs_cntrl_vec[i]
296 ->getAccessPermission(line_address);
297 if (access_perm == AccessPermission_Backing_Store) {
298 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
299 ->getDataBlock(line_address);
300
301 DPRINTF(RubyPort, "reading from %s block %s\n",
302 ruby_system->m_abs_cntrl_vec[i]->name(), block);
303 for (unsigned i = 0; i < size_in_bytes; ++i) {
304 data[i] = block.getByte(i + startByte);
305 }
306 return true;
307 }
308 }
309 } else {
310 // In Broadcast/Snoop protocols, this covers if you know the block
311 // exists somewhere in the caching hierarchy, then you want to read any
312 // valid RO or RW block. In directory protocols, same thing, you want
313 // to read any valid readable copy of the block.
314 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
315 num_busy, num_ro, num_rw);
316 // In this loop, we try to figure which controller has a read only or
317 // a read write copy of the given address. Any valid copy would suffice
318 // for a functional read.
319 for(int i = 0;i < num_controllers;++i) {
320 access_perm = ruby_system->m_abs_cntrl_vec[i]
321 ->getAccessPermission(line_address);
322 if(access_perm == AccessPermission_Read_Only ||
323 access_perm == AccessPermission_Read_Write)
324 {
325 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
326 ->getDataBlock(line_address);
327
328 DPRINTF(RubyPort, "reading from %s block %s\n",
329 ruby_system->m_abs_cntrl_vec[i]->name(), block);
330 for (unsigned i = 0; i < size_in_bytes; ++i) {
331 data[i] = block.getByte(i + startByte);
332 }
333 return true;
334 }
335 }
336 }
337 return false;
338}
339
340bool
341RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
342{
343 Address addr(pkt->getAddr());
344 Address line_addr = line_address(addr);
345 AccessPermission access_perm = AccessPermission_NotPresent;
346 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
347
348 DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
349
350 unsigned int num_ro = 0;
351 unsigned int num_rw = 0;
352 unsigned int num_busy = 0;
353 unsigned int num_backing_store = 0;
354 unsigned int num_invalid = 0;
355
356 // In this loop we count the number of controllers that have the given
357 // address in read only, read write and busy states.
358 for(int i = 0;i < num_controllers;++i) {
359 access_perm = ruby_system->m_abs_cntrl_vec[i]->
360 getAccessPermission(line_addr);
361 if (access_perm == AccessPermission_Read_Only)
362 num_ro++;
363 else if (access_perm == AccessPermission_Read_Write)
364 num_rw++;
365 else if (access_perm == AccessPermission_Busy)
366 num_busy++;
367 else if (access_perm == AccessPermission_Backing_Store)
368 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
369 // to represent blocks in memory *for Broadcast/Snooping protocols*,
370 // where memory has no idea whether it has an exclusive copy of data
371 // or not.
372 num_backing_store++;
373 else if (access_perm == AccessPermission_Invalid ||
374 access_perm == AccessPermission_NotPresent)
375 num_invalid++;
376 }
377
378 // If the number of read write copies is more than 1, then there is bug in
379 // coherence protocol. Otherwise, if all copies are in stable states, i.e.
380 // num_busy == 0, we update all the copies. If there is at least one copy
381 // in busy state, then we check if there is read write copy. If yes, then
382 // also we let the access go through. Or, if there is no copy in the cache
383 // hierarchy at all, we still want to do the write to the memory
384 // (Backing_Store) instead of failing.
385
386 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
387 num_busy, num_ro, num_rw);
388 assert(num_rw <= 1);
389
279 unsigned int size_in_bytes = pkt->getSize();
280 unsigned startByte = address.getAddress() - line_address.getAddress();
281
282 // This if case is meant to capture what happens in a Broadcast/Snoop
283 // protocol where the block does not exist in the cache hierarchy. You
284 // only want to read from the Backing_Store memory if there is no copy in
285 // the cache hierarchy, otherwise you want to try to read the RO or RW
286 // copies existing in the cache hierarchy (covered by the else statement).
287 // The reason is because the Backing_Store memory could easily be stale, if
288 // there are copies floating around the cache hierarchy, so you want to read
289 // it only if it's not in the cache hierarchy at all.
290 if (num_invalid == (num_controllers - 1) &&
291 num_backing_store == 1)
292 {
293 DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
294 for (int i = 0; i < num_controllers; ++i) {
295 access_perm = ruby_system->m_abs_cntrl_vec[i]
296 ->getAccessPermission(line_address);
297 if (access_perm == AccessPermission_Backing_Store) {
298 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
299 ->getDataBlock(line_address);
300
301 DPRINTF(RubyPort, "reading from %s block %s\n",
302 ruby_system->m_abs_cntrl_vec[i]->name(), block);
303 for (unsigned i = 0; i < size_in_bytes; ++i) {
304 data[i] = block.getByte(i + startByte);
305 }
306 return true;
307 }
308 }
309 } else {
310 // In Broadcast/Snoop protocols, this covers if you know the block
311 // exists somewhere in the caching hierarchy, then you want to read any
312 // valid RO or RW block. In directory protocols, same thing, you want
313 // to read any valid readable copy of the block.
314 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
315 num_busy, num_ro, num_rw);
316 // In this loop, we try to figure which controller has a read only or
317 // a read write copy of the given address. Any valid copy would suffice
318 // for a functional read.
319 for(int i = 0;i < num_controllers;++i) {
320 access_perm = ruby_system->m_abs_cntrl_vec[i]
321 ->getAccessPermission(line_address);
322 if(access_perm == AccessPermission_Read_Only ||
323 access_perm == AccessPermission_Read_Write)
324 {
325 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
326 ->getDataBlock(line_address);
327
328 DPRINTF(RubyPort, "reading from %s block %s\n",
329 ruby_system->m_abs_cntrl_vec[i]->name(), block);
330 for (unsigned i = 0; i < size_in_bytes; ++i) {
331 data[i] = block.getByte(i + startByte);
332 }
333 return true;
334 }
335 }
336 }
337 return false;
338}
339
340bool
341RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
342{
343 Address addr(pkt->getAddr());
344 Address line_addr = line_address(addr);
345 AccessPermission access_perm = AccessPermission_NotPresent;
346 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
347
348 DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
349
350 unsigned int num_ro = 0;
351 unsigned int num_rw = 0;
352 unsigned int num_busy = 0;
353 unsigned int num_backing_store = 0;
354 unsigned int num_invalid = 0;
355
356 // In this loop we count the number of controllers that have the given
357 // address in read only, read write and busy states.
358 for(int i = 0;i < num_controllers;++i) {
359 access_perm = ruby_system->m_abs_cntrl_vec[i]->
360 getAccessPermission(line_addr);
361 if (access_perm == AccessPermission_Read_Only)
362 num_ro++;
363 else if (access_perm == AccessPermission_Read_Write)
364 num_rw++;
365 else if (access_perm == AccessPermission_Busy)
366 num_busy++;
367 else if (access_perm == AccessPermission_Backing_Store)
368 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
369 // to represent blocks in memory *for Broadcast/Snooping protocols*,
370 // where memory has no idea whether it has an exclusive copy of data
371 // or not.
372 num_backing_store++;
373 else if (access_perm == AccessPermission_Invalid ||
374 access_perm == AccessPermission_NotPresent)
375 num_invalid++;
376 }
377
378 // If the number of read write copies is more than 1, then there is bug in
379 // coherence protocol. Otherwise, if all copies are in stable states, i.e.
380 // num_busy == 0, we update all the copies. If there is at least one copy
381 // in busy state, then we check if there is read write copy. If yes, then
382 // also we let the access go through. Or, if there is no copy in the cache
383 // hierarchy at all, we still want to do the write to the memory
384 // (Backing_Store) instead of failing.
385
386 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
387 num_busy, num_ro, num_rw);
388 assert(num_rw <= 1);
389
390 uint8* data = pkt->getPtr<uint8_t>(true);
390 uint8_t *data = pkt->getPtr<uint8_t>(true);
391 unsigned int size_in_bytes = pkt->getSize();
392 unsigned startByte = addr.getAddress() - line_addr.getAddress();
393
394 if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
395 (num_invalid == (num_controllers - 1) && num_backing_store == 1))
396 {
397 for(int i = 0; i < num_controllers;++i) {
398 access_perm = ruby_system->m_abs_cntrl_vec[i]->
399 getAccessPermission(line_addr);
400 if(access_perm == AccessPermission_Read_Only ||
401 access_perm == AccessPermission_Read_Write||
402 access_perm == AccessPermission_Maybe_Stale ||
403 access_perm == AccessPermission_Backing_Store)
404 {
405 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
406 ->getDataBlock(line_addr);
407
408 DPRINTF(RubyPort, "%s\n",block);
409 for (unsigned i = 0; i < size_in_bytes; ++i) {
410 block.setByte(i + startByte, data[i]);
411 }
412 DPRINTF(RubyPort, "%s\n",block);
413 }
414 }
415 return true;
416 }
417 return false;
418}
419
420void
421RubyPort::M5Port::recvFunctional(PacketPtr pkt)
422{
423 DPRINTF(RubyPort, "Functional access caught for address %#x\n",
424 pkt->getAddr());
425
426 // Check for pio requests and directly send them to the dedicated
427 // pio port.
428 if (!isPhysMemAddress(pkt->getAddr())) {
429 assert(ruby_port->pio_port.isConnected());
430 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
431 pkt->getAddr());
432 panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
433 }
434
435 assert(pkt->getAddr() + pkt->getSize() <=
436 line_address(Address(pkt->getAddr())).getAddress() +
437 RubySystem::getBlockSizeBytes());
438
439 bool accessSucceeded = false;
440 bool needsResponse = pkt->needsResponse();
441
442 // Do the functional access on ruby memory
443 if (pkt->isRead()) {
444 accessSucceeded = doFunctionalRead(pkt);
445 } else if (pkt->isWrite()) {
446 accessSucceeded = doFunctionalWrite(pkt);
447 } else {
448 panic("RubyPort: unsupported functional command %s\n",
449 pkt->cmdString());
450 }
451
452 // Unless the requester explicitly said otherwise, generate an error if
453 // the functional request failed
454 if (!accessSucceeded && !pkt->suppressFuncError()) {
455 fatal("Ruby functional %s failed for address %#x\n",
456 pkt->isWrite() ? "write" : "read", pkt->getAddr());
457 }
458
459 if (access_phys_mem) {
460 // The attached physmem contains the official version of data.
461 // The following command performs the real functional access.
462 // This line should be removed once Ruby supplies the official version
463 // of data.
464 ruby_port->system->getPhysMem().functionalAccess(pkt);
465 }
466
467 // turn packet around to go back to requester if response expected
468 if (needsResponse) {
469 pkt->setFunctionalResponseStatus(accessSucceeded);
470
471 // @todo There should not be a reverse call since the response is
472 // communicated through the packet pointer
473 // DPRINTF(RubyPort, "Sending packet back over port\n");
474 // sendFunctional(pkt);
475 }
476 DPRINTF(RubyPort, "Functional access %s!\n",
477 accessSucceeded ? "successful":"failed");
478}
479
480void
481RubyPort::ruby_hit_callback(PacketPtr pkt)
482{
483 // Retrieve the request port from the sender State
484 RubyPort::SenderState *senderState =
485 safe_cast<RubyPort::SenderState *>(pkt->senderState);
486 M5Port *port = senderState->port;
487 assert(port != NULL);
488
489 // pop the sender state from the packet
490 pkt->senderState = senderState->saved;
491 delete senderState;
492
493 port->hitCallback(pkt);
494
495 //
496 // If we had to stall the M5Ports, wake them up because the sequencer
497 // likely has free resources now.
498 //
499 if (waitingOnSequencer) {
500 //
501 // Record the current list of ports to retry on a temporary list before
502 // calling sendRetry on those ports. sendRetry will cause an
503 // immediate retry, which may result in the ports being put back on the
504 // list. Therefore we want to clear the retryList before calling
505 // sendRetry.
506 //
507 std::list<M5Port*> curRetryList(retryList);
508
509 retryList.clear();
510 waitingOnSequencer = false;
511
512 for (std::list<M5Port*>::iterator i = curRetryList.begin();
513 i != curRetryList.end(); ++i) {
514 DPRINTF(RubyPort,
515 "Sequencer may now be free. SendRetry to port %s\n",
516 (*i)->name());
517 (*i)->onRetryList(false);
518 (*i)->sendRetry();
519 }
520 }
521
522 testDrainComplete();
523}
524
525void
526RubyPort::testDrainComplete()
527{
528 //If we weren't able to drain before, we might be able to now.
529 if (drainEvent != NULL) {
530 unsigned int drainCount = getDrainCount(drainEvent);
531 DPRINTF(Drain, "Drain count: %u\n", drainCount);
532 if (drainCount == 0) {
533 DPRINTF(Drain, "RubyPort done draining, processing drain event\n");
534 drainEvent->process();
535 // Clear the drain event once we're done with it.
536 drainEvent = NULL;
537 }
538 }
539}
540
541unsigned int
542RubyPort::getDrainCount(Event *de)
543{
544 int count = 0;
545 //
546 // If the sequencer is not empty, then requests need to drain.
547 // The outstandingCount is the number of requests outstanding and thus the
548 // number of times M5's timing port will process the drain event.
549 //
550 count += outstandingCount();
551
552 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
553
554 // To simplify the draining process, the sequencer's deadlock detection
555 // event should have been descheduled.
556 assert(isDeadlockEventScheduled() == false);
557
558 if (pio_port.isConnected()) {
559 count += pio_port.drain(de);
560 DPRINTF(Config, "count after pio check %d\n", count);
561 }
562
563 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
564 count += (*p)->drain(de);
565 DPRINTF(Config, "count after slave port check %d\n", count);
566 }
567
568 for (std::vector<PioPort*>::iterator p = master_ports.begin();
569 p != master_ports.end(); ++p) {
570 count += (*p)->drain(de);
571 DPRINTF(Config, "count after master port check %d\n", count);
572 }
573
574 DPRINTF(Config, "final count %d\n", count);
575
576 return count;
577}
578
579unsigned int
580RubyPort::drain(Event *de)
581{
582 if (isDeadlockEventScheduled()) {
583 descheduleDeadlockEvent();
584 }
585
586 int count = getDrainCount(de);
587
588 // Set status
589 if (count != 0) {
590 drainEvent = de;
591
592 DPRINTF(Drain, "RubyPort not drained\n");
593 changeState(SimObject::Draining);
594 return count;
595 }
596
597 changeState(SimObject::Drained);
598 return 0;
599}
600
601void
602RubyPort::M5Port::hitCallback(PacketPtr pkt)
603{
604 bool needsResponse = pkt->needsResponse();
605
606 //
607 // Unless specified at configuraiton, all responses except failed SC
608 // and Flush operations access M5 physical memory.
609 //
610 bool accessPhysMem = access_phys_mem;
611
612 if (pkt->isLLSC()) {
613 if (pkt->isWrite()) {
614 if (pkt->req->getExtraData() != 0) {
615 //
616 // Successful SC packets convert to normal writes
617 //
618 pkt->convertScToWrite();
619 } else {
620 //
621 // Failed SC packets don't access physical memory and thus
622 // the RubyPort itself must convert it to a response.
623 //
624 accessPhysMem = false;
625 }
626 } else {
627 //
628 // All LL packets convert to normal loads so that M5 PhysMem does
629 // not lock the blocks.
630 //
631 pkt->convertLlToRead();
632 }
633 }
634
635 //
636 // Flush requests don't access physical memory
637 //
638 if (pkt->isFlush()) {
639 accessPhysMem = false;
640 }
641
642 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
643
644 if (accessPhysMem) {
645 ruby_port->system->getPhysMem().access(pkt);
646 } else if (needsResponse) {
647 pkt->makeResponse();
648 }
649
650 // turn packet around to go back to requester if response expected
651 if (needsResponse) {
652 DPRINTF(RubyPort, "Sending packet back over port\n");
653 // send next cycle
654 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
655 } else {
656 delete pkt;
657 }
658 DPRINTF(RubyPort, "Hit callback done!\n");
659}
660
661AddrRangeList
662RubyPort::M5Port::getAddrRanges() const
663{
664 // at the moment the assumption is that the master does not care
665 AddrRangeList ranges;
666 return ranges;
667}
668
669bool
670RubyPort::M5Port::isPhysMemAddress(Addr addr)
671{
672 return ruby_port->system->isMemAddr(addr);
673}
674
675unsigned
676RubyPort::M5Port::deviceBlockSize() const
677{
678 return (unsigned) RubySystem::getBlockSizeBytes();
679}
680
681void
682RubyPort::ruby_eviction_callback(const Address& address)
683{
684 DPRINTF(RubyPort, "Sending invalidations.\n");
685 // should this really be using funcMasterId?
686 Request req(address.getAddress(), 0, 0, Request::funcMasterId);
687 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
688 // check if the connected master port is snooping
689 if ((*p)->isSnooping()) {
690 Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
691 // send as a snoop request
692 (*p)->sendTimingSnoopReq(pkt);
693 }
694 }
695}
391 unsigned int size_in_bytes = pkt->getSize();
392 unsigned startByte = addr.getAddress() - line_addr.getAddress();
393
394 if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
395 (num_invalid == (num_controllers - 1) && num_backing_store == 1))
396 {
397 for(int i = 0; i < num_controllers;++i) {
398 access_perm = ruby_system->m_abs_cntrl_vec[i]->
399 getAccessPermission(line_addr);
400 if(access_perm == AccessPermission_Read_Only ||
401 access_perm == AccessPermission_Read_Write||
402 access_perm == AccessPermission_Maybe_Stale ||
403 access_perm == AccessPermission_Backing_Store)
404 {
405 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
406 ->getDataBlock(line_addr);
407
408 DPRINTF(RubyPort, "%s\n",block);
409 for (unsigned i = 0; i < size_in_bytes; ++i) {
410 block.setByte(i + startByte, data[i]);
411 }
412 DPRINTF(RubyPort, "%s\n",block);
413 }
414 }
415 return true;
416 }
417 return false;
418}
419
420void
421RubyPort::M5Port::recvFunctional(PacketPtr pkt)
422{
423 DPRINTF(RubyPort, "Functional access caught for address %#x\n",
424 pkt->getAddr());
425
426 // Check for pio requests and directly send them to the dedicated
427 // pio port.
428 if (!isPhysMemAddress(pkt->getAddr())) {
429 assert(ruby_port->pio_port.isConnected());
430 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
431 pkt->getAddr());
432 panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
433 }
434
435 assert(pkt->getAddr() + pkt->getSize() <=
436 line_address(Address(pkt->getAddr())).getAddress() +
437 RubySystem::getBlockSizeBytes());
438
439 bool accessSucceeded = false;
440 bool needsResponse = pkt->needsResponse();
441
442 // Do the functional access on ruby memory
443 if (pkt->isRead()) {
444 accessSucceeded = doFunctionalRead(pkt);
445 } else if (pkt->isWrite()) {
446 accessSucceeded = doFunctionalWrite(pkt);
447 } else {
448 panic("RubyPort: unsupported functional command %s\n",
449 pkt->cmdString());
450 }
451
452 // Unless the requester explicitly said otherwise, generate an error if
453 // the functional request failed
454 if (!accessSucceeded && !pkt->suppressFuncError()) {
455 fatal("Ruby functional %s failed for address %#x\n",
456 pkt->isWrite() ? "write" : "read", pkt->getAddr());
457 }
458
459 if (access_phys_mem) {
460 // The attached physmem contains the official version of data.
461 // The following command performs the real functional access.
462 // This line should be removed once Ruby supplies the official version
463 // of data.
464 ruby_port->system->getPhysMem().functionalAccess(pkt);
465 }
466
467 // turn packet around to go back to requester if response expected
468 if (needsResponse) {
469 pkt->setFunctionalResponseStatus(accessSucceeded);
470
471 // @todo There should not be a reverse call since the response is
472 // communicated through the packet pointer
473 // DPRINTF(RubyPort, "Sending packet back over port\n");
474 // sendFunctional(pkt);
475 }
476 DPRINTF(RubyPort, "Functional access %s!\n",
477 accessSucceeded ? "successful":"failed");
478}
479
480void
481RubyPort::ruby_hit_callback(PacketPtr pkt)
482{
483 // Retrieve the request port from the sender State
484 RubyPort::SenderState *senderState =
485 safe_cast<RubyPort::SenderState *>(pkt->senderState);
486 M5Port *port = senderState->port;
487 assert(port != NULL);
488
489 // pop the sender state from the packet
490 pkt->senderState = senderState->saved;
491 delete senderState;
492
493 port->hitCallback(pkt);
494
495 //
496 // If we had to stall the M5Ports, wake them up because the sequencer
497 // likely has free resources now.
498 //
499 if (waitingOnSequencer) {
500 //
501 // Record the current list of ports to retry on a temporary list before
502 // calling sendRetry on those ports. sendRetry will cause an
503 // immediate retry, which may result in the ports being put back on the
504 // list. Therefore we want to clear the retryList before calling
505 // sendRetry.
506 //
507 std::list<M5Port*> curRetryList(retryList);
508
509 retryList.clear();
510 waitingOnSequencer = false;
511
512 for (std::list<M5Port*>::iterator i = curRetryList.begin();
513 i != curRetryList.end(); ++i) {
514 DPRINTF(RubyPort,
515 "Sequencer may now be free. SendRetry to port %s\n",
516 (*i)->name());
517 (*i)->onRetryList(false);
518 (*i)->sendRetry();
519 }
520 }
521
522 testDrainComplete();
523}
524
525void
526RubyPort::testDrainComplete()
527{
528 //If we weren't able to drain before, we might be able to now.
529 if (drainEvent != NULL) {
530 unsigned int drainCount = getDrainCount(drainEvent);
531 DPRINTF(Drain, "Drain count: %u\n", drainCount);
532 if (drainCount == 0) {
533 DPRINTF(Drain, "RubyPort done draining, processing drain event\n");
534 drainEvent->process();
535 // Clear the drain event once we're done with it.
536 drainEvent = NULL;
537 }
538 }
539}
540
541unsigned int
542RubyPort::getDrainCount(Event *de)
543{
544 int count = 0;
545 //
546 // If the sequencer is not empty, then requests need to drain.
547 // The outstandingCount is the number of requests outstanding and thus the
548 // number of times M5's timing port will process the drain event.
549 //
550 count += outstandingCount();
551
552 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
553
554 // To simplify the draining process, the sequencer's deadlock detection
555 // event should have been descheduled.
556 assert(isDeadlockEventScheduled() == false);
557
558 if (pio_port.isConnected()) {
559 count += pio_port.drain(de);
560 DPRINTF(Config, "count after pio check %d\n", count);
561 }
562
563 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
564 count += (*p)->drain(de);
565 DPRINTF(Config, "count after slave port check %d\n", count);
566 }
567
568 for (std::vector<PioPort*>::iterator p = master_ports.begin();
569 p != master_ports.end(); ++p) {
570 count += (*p)->drain(de);
571 DPRINTF(Config, "count after master port check %d\n", count);
572 }
573
574 DPRINTF(Config, "final count %d\n", count);
575
576 return count;
577}
578
579unsigned int
580RubyPort::drain(Event *de)
581{
582 if (isDeadlockEventScheduled()) {
583 descheduleDeadlockEvent();
584 }
585
586 int count = getDrainCount(de);
587
588 // Set status
589 if (count != 0) {
590 drainEvent = de;
591
592 DPRINTF(Drain, "RubyPort not drained\n");
593 changeState(SimObject::Draining);
594 return count;
595 }
596
597 changeState(SimObject::Drained);
598 return 0;
599}
600
601void
602RubyPort::M5Port::hitCallback(PacketPtr pkt)
603{
604 bool needsResponse = pkt->needsResponse();
605
606 //
607 // Unless specified at configuraiton, all responses except failed SC
608 // and Flush operations access M5 physical memory.
609 //
610 bool accessPhysMem = access_phys_mem;
611
612 if (pkt->isLLSC()) {
613 if (pkt->isWrite()) {
614 if (pkt->req->getExtraData() != 0) {
615 //
616 // Successful SC packets convert to normal writes
617 //
618 pkt->convertScToWrite();
619 } else {
620 //
621 // Failed SC packets don't access physical memory and thus
622 // the RubyPort itself must convert it to a response.
623 //
624 accessPhysMem = false;
625 }
626 } else {
627 //
628 // All LL packets convert to normal loads so that M5 PhysMem does
629 // not lock the blocks.
630 //
631 pkt->convertLlToRead();
632 }
633 }
634
635 //
636 // Flush requests don't access physical memory
637 //
638 if (pkt->isFlush()) {
639 accessPhysMem = false;
640 }
641
642 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
643
644 if (accessPhysMem) {
645 ruby_port->system->getPhysMem().access(pkt);
646 } else if (needsResponse) {
647 pkt->makeResponse();
648 }
649
650 // turn packet around to go back to requester if response expected
651 if (needsResponse) {
652 DPRINTF(RubyPort, "Sending packet back over port\n");
653 // send next cycle
654 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
655 } else {
656 delete pkt;
657 }
658 DPRINTF(RubyPort, "Hit callback done!\n");
659}
660
661AddrRangeList
662RubyPort::M5Port::getAddrRanges() const
663{
664 // at the moment the assumption is that the master does not care
665 AddrRangeList ranges;
666 return ranges;
667}
668
669bool
670RubyPort::M5Port::isPhysMemAddress(Addr addr)
671{
672 return ruby_port->system->isMemAddr(addr);
673}
674
675unsigned
676RubyPort::M5Port::deviceBlockSize() const
677{
678 return (unsigned) RubySystem::getBlockSizeBytes();
679}
680
681void
682RubyPort::ruby_eviction_callback(const Address& address)
683{
684 DPRINTF(RubyPort, "Sending invalidations.\n");
685 // should this really be using funcMasterId?
686 Request req(address.getAddress(), 0, 0, Request::funcMasterId);
687 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
688 // check if the connected master port is snooping
689 if ((*p)->isSnooping()) {
690 Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
691 // send as a snoop request
692 (*p)->sendTimingSnoopReq(pkt);
693 }
694 }
695}