RubyPort.cc (8931:7a1dfb191e3f) RubyPort.cc (8948:e95ee70f876c)
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Ruby.hh"
45#include "mem/protocol/AccessPermission.hh"
46#include "mem/ruby/slicc_interface/AbstractController.hh"
47#include "mem/ruby/system/RubyPort.hh"
48#include "sim/system.hh"
49
50RubyPort::RubyPort(const Params *p)
51 : MemObject(p), m_version(p->version), m_controller(NULL),
52 m_mandatory_q_ptr(NULL),
53 pio_port(csprintf("%s-pio-port", name()), this),
54 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
55 drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
56 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
57{
58 assert(m_version != -1);
59
60 // create the slave ports based on the number of connected ports
61 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
62 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
63 this, ruby_system, access_phys_mem));
64 }
65
66 // create the master ports based on the number of connected ports
67 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
68 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
69 this));
70 }
71}
72
73void
74RubyPort::init()
75{
76 assert(m_controller != NULL);
77 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
78}
79
80MasterPort &
81RubyPort::getMasterPort(const std::string &if_name, int idx)
82{
83 if (if_name == "pio_port") {
84 return pio_port;
85 }
86
87 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
88 // port
89 if (if_name != "master") {
90 // pass it along to our super class
91 return MemObject::getMasterPort(if_name, idx);
92 } else {
93 if (idx >= static_cast<int>(master_ports.size())) {
94 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
95 }
96
97 return *master_ports[idx];
98 }
99}
100
101SlavePort &
102RubyPort::getSlavePort(const std::string &if_name, int idx)
103{
104 // used by the CPUs to connect the caches to the interconnect, and
105 // for the x86 case also the interrupt master
106 if (if_name != "slave") {
107 // pass it along to our super class
108 return MemObject::getSlavePort(if_name, idx);
109 } else {
110 if (idx >= static_cast<int>(slave_ports.size())) {
111 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
112 }
113
114 return *slave_ports[idx];
115 }
116}
117
118RubyPort::PioPort::PioPort(const std::string &_name,
119 RubyPort *_port)
120 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
121 ruby_port(_port)
122{
123 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
124}
125
126RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
127 RubySystem *_system, bool _access_phys_mem)
128 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
129 ruby_port(_port), ruby_system(_system),
130 _onRetryList(false), access_phys_mem(_access_phys_mem)
131{
132 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
133}
134
135Tick
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Ruby.hh"
45#include "mem/protocol/AccessPermission.hh"
46#include "mem/ruby/slicc_interface/AbstractController.hh"
47#include "mem/ruby/system/RubyPort.hh"
48#include "sim/system.hh"
49
50RubyPort::RubyPort(const Params *p)
51 : MemObject(p), m_version(p->version), m_controller(NULL),
52 m_mandatory_q_ptr(NULL),
53 pio_port(csprintf("%s-pio-port", name()), this),
54 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
55 drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
56 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
57{
58 assert(m_version != -1);
59
60 // create the slave ports based on the number of connected ports
61 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
62 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
63 this, ruby_system, access_phys_mem));
64 }
65
66 // create the master ports based on the number of connected ports
67 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
68 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
69 this));
70 }
71}
72
73void
74RubyPort::init()
75{
76 assert(m_controller != NULL);
77 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
78}
79
80MasterPort &
81RubyPort::getMasterPort(const std::string &if_name, int idx)
82{
83 if (if_name == "pio_port") {
84 return pio_port;
85 }
86
87 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
88 // port
89 if (if_name != "master") {
90 // pass it along to our super class
91 return MemObject::getMasterPort(if_name, idx);
92 } else {
93 if (idx >= static_cast<int>(master_ports.size())) {
94 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
95 }
96
97 return *master_ports[idx];
98 }
99}
100
101SlavePort &
102RubyPort::getSlavePort(const std::string &if_name, int idx)
103{
104 // used by the CPUs to connect the caches to the interconnect, and
105 // for the x86 case also the interrupt master
106 if (if_name != "slave") {
107 // pass it along to our super class
108 return MemObject::getSlavePort(if_name, idx);
109 } else {
110 if (idx >= static_cast<int>(slave_ports.size())) {
111 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
112 }
113
114 return *slave_ports[idx];
115 }
116}
117
118RubyPort::PioPort::PioPort(const std::string &_name,
119 RubyPort *_port)
120 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
121 ruby_port(_port)
122{
123 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
124}
125
126RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
127 RubySystem *_system, bool _access_phys_mem)
128 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
129 ruby_port(_port), ruby_system(_system),
130 _onRetryList(false), access_phys_mem(_access_phys_mem)
131{
132 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
133}
134
135Tick
136RubyPort::PioPort::recvAtomic(PacketPtr pkt)
137{
138 panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
139 return 0;
140}
141
142Tick
143RubyPort::M5Port::recvAtomic(PacketPtr pkt)
144{
145 panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
146 return 0;
147}
148
149
150bool
151RubyPort::PioPort::recvTiming(PacketPtr pkt)
152{
153 // In FS mode, ruby memory will receive pio responses from devices
154 // and it must forward these responses back to the particular CPU.
155 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
156
157 assert(pkt->isResponse());
158
159 // First we must retrieve the request port from the sender State
160 RubyPort::SenderState *senderState =
161 safe_cast<RubyPort::SenderState *>(pkt->senderState);
162 M5Port *port = senderState->port;
163 assert(port != NULL);
164
165 // pop the sender state from the packet
166 pkt->senderState = senderState->saved;
167 delete senderState;
168
169 port->sendTiming(pkt);
170
171 return true;
172}
173
174bool
175RubyPort::M5Port::recvTiming(PacketPtr pkt)
176{
177 DPRINTF(RubyPort,
178 "Timing access caught for address %#x\n", pkt->getAddr());
179
180 //dsm: based on SimpleTimingPort::recvTiming(pkt);
181
182 // The received packets should only be M5 requests, which should never
183 // get nacked. There used to be code to hanldle nacks here, but
184 // I'm pretty sure it didn't work correctly with the drain code,
185 // so that would need to be fixed if we ever added it back.
186 assert(pkt->isRequest());
187
188 if (pkt->memInhibitAsserted()) {
189 warn("memInhibitAsserted???");
190 // snooper will supply based on copy of packet
191 // still target's responsibility to delete packet
192 delete pkt;
193 return true;
194 }
195
196 // Save the port in the sender state object to be used later to
197 // route the response
198 pkt->senderState = new SenderState(this, pkt->senderState);
199
200 // Check for pio requests and directly send them to the dedicated
201 // pio port.
202 if (!isPhysMemAddress(pkt->getAddr())) {
203 assert(ruby_port->pio_port.isConnected());
204 DPRINTF(RubyPort,
205 "Request for address 0x%#x is assumed to be a pio request\n",
206 pkt->getAddr());
207
208 return ruby_port->pio_port.sendNextCycle(pkt);
209 }
210
211 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
212 RubySystem::getBlockSizeBytes());
213
214 // Submit the ruby request
215 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
216
217 // If the request successfully issued then we should return true.
218 // Otherwise, we need to delete the senderStatus we just created and return
219 // false.
220 if (requestStatus == RequestStatus_Issued) {
221 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
222 return true;
223 }
224
225 //
226 // Unless one is using the ruby tester, record the stalled M5 port for
227 // later retry when the sequencer becomes free.
228 //
229 if (!ruby_port->m_usingRubyTester) {
230 ruby_port->addToRetryList(this);
231 }
232
233 DPRINTF(RubyPort,
234 "Request for address %#x did not issue because %s\n",
235 pkt->getAddr(), RequestStatus_to_string(requestStatus));
236
237 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
238 pkt->senderState = senderState->saved;
239 delete senderState;
240 return false;
241}
242
243bool
244RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
245{
246 Address address(pkt->getAddr());
247 Address line_address(address);
248 line_address.makeLineAddress();
249
250 AccessPermission access_perm = AccessPermission_NotPresent;
251 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
252
253 DPRINTF(RubyPort, "Functional Read request for %s\n",address);
254
255 unsigned int num_ro = 0;
256 unsigned int num_rw = 0;
257 unsigned int num_busy = 0;
258 unsigned int num_backing_store = 0;
259 unsigned int num_invalid = 0;
260
261 // In this loop we count the number of controllers that have the given
262 // address in read only, read write and busy states.
263 for (int i = 0; i < num_controllers; ++i) {
264 access_perm = ruby_system->m_abs_cntrl_vec[i]->
265 getAccessPermission(line_address);
266 if (access_perm == AccessPermission_Read_Only)
267 num_ro++;
268 else if (access_perm == AccessPermission_Read_Write)
269 num_rw++;
270 else if (access_perm == AccessPermission_Busy)
271 num_busy++;
272 else if (access_perm == AccessPermission_Backing_Store)
273 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
274 // to represent blocks in memory *for Broadcast/Snooping protocols*,
275 // where memory has no idea whether it has an exclusive copy of data
276 // or not.
277 num_backing_store++;
278 else if (access_perm == AccessPermission_Invalid ||
279 access_perm == AccessPermission_NotPresent)
280 num_invalid++;
281 }
282 assert(num_rw <= 1);
283
284 uint8* data = pkt->getPtr<uint8_t>(true);
285 unsigned int size_in_bytes = pkt->getSize();
286 unsigned startByte = address.getAddress() - line_address.getAddress();
287
288 // This if case is meant to capture what happens in a Broadcast/Snoop
289 // protocol where the block does not exist in the cache hierarchy. You
290 // only want to read from the Backing_Store memory if there is no copy in
291 // the cache hierarchy, otherwise you want to try to read the RO or RW
292 // copies existing in the cache hierarchy (covered by the else statement).
293 // The reason is because the Backing_Store memory could easily be stale, if
294 // there are copies floating around the cache hierarchy, so you want to read
295 // it only if it's not in the cache hierarchy at all.
296 if (num_invalid == (num_controllers - 1) &&
297 num_backing_store == 1)
298 {
299 DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
300 for (int i = 0; i < num_controllers; ++i) {
301 access_perm = ruby_system->m_abs_cntrl_vec[i]
302 ->getAccessPermission(line_address);
303 if (access_perm == AccessPermission_Backing_Store) {
304 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
305 ->getDataBlock(line_address);
306
307 DPRINTF(RubyPort, "reading from %s block %s\n",
308 ruby_system->m_abs_cntrl_vec[i]->name(), block);
309 for (unsigned i = 0; i < size_in_bytes; ++i) {
310 data[i] = block.getByte(i + startByte);
311 }
312 return true;
313 }
314 }
315 } else {
316 // In Broadcast/Snoop protocols, this covers if you know the block
317 // exists somewhere in the caching hierarchy, then you want to read any
318 // valid RO or RW block. In directory protocols, same thing, you want
319 // to read any valid readable copy of the block.
320 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
321 num_busy, num_ro, num_rw);
322 // In this loop, we try to figure which controller has a read only or
323 // a read write copy of the given address. Any valid copy would suffice
324 // for a functional read.
325 for(int i = 0;i < num_controllers;++i) {
326 access_perm = ruby_system->m_abs_cntrl_vec[i]
327 ->getAccessPermission(line_address);
328 if(access_perm == AccessPermission_Read_Only ||
329 access_perm == AccessPermission_Read_Write)
330 {
331 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
332 ->getDataBlock(line_address);
333
334 DPRINTF(RubyPort, "reading from %s block %s\n",
335 ruby_system->m_abs_cntrl_vec[i]->name(), block);
336 for (unsigned i = 0; i < size_in_bytes; ++i) {
337 data[i] = block.getByte(i + startByte);
338 }
339 return true;
340 }
341 }
342 }
343 return false;
344}
345
346bool
347RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
348{
349 Address addr(pkt->getAddr());
350 Address line_addr = line_address(addr);
351 AccessPermission access_perm = AccessPermission_NotPresent;
352 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
353
354 DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
355
356 unsigned int num_ro = 0;
357 unsigned int num_rw = 0;
358 unsigned int num_busy = 0;
359 unsigned int num_backing_store = 0;
360 unsigned int num_invalid = 0;
361
362 // In this loop we count the number of controllers that have the given
363 // address in read only, read write and busy states.
364 for(int i = 0;i < num_controllers;++i) {
365 access_perm = ruby_system->m_abs_cntrl_vec[i]->
366 getAccessPermission(line_addr);
367 if (access_perm == AccessPermission_Read_Only)
368 num_ro++;
369 else if (access_perm == AccessPermission_Read_Write)
370 num_rw++;
371 else if (access_perm == AccessPermission_Busy)
372 num_busy++;
373 else if (access_perm == AccessPermission_Backing_Store)
374 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
375 // to represent blocks in memory *for Broadcast/Snooping protocols*,
376 // where memory has no idea whether it has an exclusive copy of data
377 // or not.
378 num_backing_store++;
379 else if (access_perm == AccessPermission_Invalid ||
380 access_perm == AccessPermission_NotPresent)
381 num_invalid++;
382 }
383
384 // If the number of read write copies is more than 1, then there is bug in
385 // coherence protocol. Otherwise, if all copies are in stable states, i.e.
386 // num_busy == 0, we update all the copies. If there is at least one copy
387 // in busy state, then we check if there is read write copy. If yes, then
388 // also we let the access go through. Or, if there is no copy in the cache
389 // hierarchy at all, we still want to do the write to the memory
390 // (Backing_Store) instead of failing.
391
392 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
393 num_busy, num_ro, num_rw);
394 assert(num_rw <= 1);
395
396 uint8* data = pkt->getPtr<uint8_t>(true);
397 unsigned int size_in_bytes = pkt->getSize();
398 unsigned startByte = addr.getAddress() - line_addr.getAddress();
399
400 if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
401 (num_invalid == (num_controllers - 1) && num_backing_store == 1))
402 {
403 for(int i = 0; i < num_controllers;++i) {
404 access_perm = ruby_system->m_abs_cntrl_vec[i]->
405 getAccessPermission(line_addr);
406 if(access_perm == AccessPermission_Read_Only ||
407 access_perm == AccessPermission_Read_Write||
408 access_perm == AccessPermission_Maybe_Stale ||
409 access_perm == AccessPermission_Backing_Store)
410 {
411 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
412 ->getDataBlock(line_addr);
413
414 DPRINTF(RubyPort, "%s\n",block);
415 for (unsigned i = 0; i < size_in_bytes; ++i) {
416 block.setByte(i + startByte, data[i]);
417 }
418 DPRINTF(RubyPort, "%s\n",block);
419 }
420 }
421 return true;
422 }
423 return false;
424}
425
426void
427RubyPort::M5Port::recvFunctional(PacketPtr pkt)
428{
429 DPRINTF(RubyPort, "Functional access caught for address %#x\n",
430 pkt->getAddr());
431
432 // Check for pio requests and directly send them to the dedicated
433 // pio port.
434 if (!isPhysMemAddress(pkt->getAddr())) {
435 assert(ruby_port->pio_port.isConnected());
436 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
437 pkt->getAddr());
438 panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
439 }
440
441 assert(pkt->getAddr() + pkt->getSize() <=
442 line_address(Address(pkt->getAddr())).getAddress() +
443 RubySystem::getBlockSizeBytes());
444
445 bool accessSucceeded = false;
446 bool needsResponse = pkt->needsResponse();
447
448 // Do the functional access on ruby memory
449 if (pkt->isRead()) {
450 accessSucceeded = doFunctionalRead(pkt);
451 } else if (pkt->isWrite()) {
452 accessSucceeded = doFunctionalWrite(pkt);
453 } else {
454 panic("RubyPort: unsupported functional command %s\n",
455 pkt->cmdString());
456 }
457
458 // Unless the requester explicitly said otherwise, generate an error if
459 // the functional request failed
460 if (!accessSucceeded && !pkt->suppressFuncError()) {
461 fatal("Ruby functional %s failed for address %#x\n",
462 pkt->isWrite() ? "write" : "read", pkt->getAddr());
463 }
464
465 if (access_phys_mem) {
466 // The attached physmem contains the official version of data.
467 // The following command performs the real functional access.
468 // This line should be removed once Ruby supplies the official version
469 // of data.
470 ruby_port->system->getPhysMem().functionalAccess(pkt);
471 }
472
473 // turn packet around to go back to requester if response expected
474 if (needsResponse) {
475 pkt->setFunctionalResponseStatus(accessSucceeded);
476
477 // @todo There should not be a reverse call since the response is
478 // communicated through the packet pointer
479 // DPRINTF(RubyPort, "Sending packet back over port\n");
480 // sendFunctional(pkt);
481 }
482 DPRINTF(RubyPort, "Functional access %s!\n",
483 accessSucceeded ? "successful":"failed");
484}
485
486void
487RubyPort::ruby_hit_callback(PacketPtr pkt)
488{
489 // Retrieve the request port from the sender State
490 RubyPort::SenderState *senderState =
491 safe_cast<RubyPort::SenderState *>(pkt->senderState);
492 M5Port *port = senderState->port;
493 assert(port != NULL);
494
495 // pop the sender state from the packet
496 pkt->senderState = senderState->saved;
497 delete senderState;
498
499 port->hitCallback(pkt);
500
501 //
502 // If we had to stall the M5Ports, wake them up because the sequencer
503 // likely has free resources now.
504 //
505 if (waitingOnSequencer) {
506 //
507 // Record the current list of ports to retry on a temporary list before
508 // calling sendRetry on those ports. sendRetry will cause an
509 // immediate retry, which may result in the ports being put back on the
510 // list. Therefore we want to clear the retryList before calling
511 // sendRetry.
512 //
513 std::list<M5Port*> curRetryList(retryList);
514
515 retryList.clear();
516 waitingOnSequencer = false;
517
518 for (std::list<M5Port*>::iterator i = curRetryList.begin();
519 i != curRetryList.end(); ++i) {
520 DPRINTF(RubyPort,
521 "Sequencer may now be free. SendRetry to port %s\n",
522 (*i)->name());
523 (*i)->onRetryList(false);
524 (*i)->sendRetry();
525 }
526 }
527
528 testDrainComplete();
529}
530
531void
532RubyPort::testDrainComplete()
533{
534 //If we weren't able to drain before, we might be able to now.
535 if (drainEvent != NULL) {
536 unsigned int drainCount = getDrainCount(drainEvent);
537 DPRINTF(Config, "Drain count: %u\n", drainCount);
538 if (drainCount == 0) {
539 drainEvent->process();
540 // Clear the drain event once we're done with it.
541 drainEvent = NULL;
542 }
543 }
544}
545
546unsigned int
547RubyPort::getDrainCount(Event *de)
548{
549 int count = 0;
550 //
551 // If the sequencer is not empty, then requests need to drain.
552 // The outstandingCount is the number of requests outstanding and thus the
553 // number of times M5's timing port will process the drain event.
554 //
555 count += outstandingCount();
556
557 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
558
559 // To simplify the draining process, the sequencer's deadlock detection
560 // event should have been descheduled.
561 assert(isDeadlockEventScheduled() == false);
562
563 if (pio_port.isConnected()) {
564 count += pio_port.drain(de);
565 DPRINTF(Config, "count after pio check %d\n", count);
566 }
567
568 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
569 count += (*p)->drain(de);
570 DPRINTF(Config, "count after slave port check %d\n", count);
571 }
572
573 for (std::vector<PioPort*>::iterator p = master_ports.begin();
574 p != master_ports.end(); ++p) {
575 count += (*p)->drain(de);
576 DPRINTF(Config, "count after master port check %d\n", count);
577 }
578
579 DPRINTF(Config, "final count %d\n", count);
580
581 return count;
582}
583
584unsigned int
585RubyPort::drain(Event *de)
586{
587 if (isDeadlockEventScheduled()) {
588 descheduleDeadlockEvent();
589 }
590
591 int count = getDrainCount(de);
592
593 // Set status
594 if (count != 0) {
595 drainEvent = de;
596
597 changeState(SimObject::Draining);
598 return count;
599 }
600
601 changeState(SimObject::Drained);
602 return 0;
603}
604
605void
606RubyPort::M5Port::hitCallback(PacketPtr pkt)
607{
608 bool needsResponse = pkt->needsResponse();
609
610 //
611 // Unless specified at configuraiton, all responses except failed SC
612 // and Flush operations access M5 physical memory.
613 //
614 bool accessPhysMem = access_phys_mem;
615
616 if (pkt->isLLSC()) {
617 if (pkt->isWrite()) {
618 if (pkt->req->getExtraData() != 0) {
619 //
620 // Successful SC packets convert to normal writes
621 //
622 pkt->convertScToWrite();
623 } else {
624 //
625 // Failed SC packets don't access physical memory and thus
626 // the RubyPort itself must convert it to a response.
627 //
628 accessPhysMem = false;
629 }
630 } else {
631 //
632 // All LL packets convert to normal loads so that M5 PhysMem does
633 // not lock the blocks.
634 //
635 pkt->convertLlToRead();
636 }
637 }
638
639 //
640 // Flush requests don't access physical memory
641 //
642 if (pkt->isFlush()) {
643 accessPhysMem = false;
644 }
645
646 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
647
648 if (accessPhysMem) {
649 ruby_port->system->getPhysMem().access(pkt);
650 } else if (needsResponse) {
651 pkt->makeResponse();
652 }
653
654 // turn packet around to go back to requester if response expected
655 if (needsResponse) {
656 DPRINTF(RubyPort, "Sending packet back over port\n");
657 sendNextCycle(pkt);
658 } else {
659 delete pkt;
660 }
661 DPRINTF(RubyPort, "Hit callback done!\n");
662}
663
664bool
136RubyPort::M5Port::recvAtomic(PacketPtr pkt)
137{
138 panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
139 return 0;
140}
141
142
143bool
144RubyPort::PioPort::recvTiming(PacketPtr pkt)
145{
146 // In FS mode, ruby memory will receive pio responses from devices
147 // and it must forward these responses back to the particular CPU.
148 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
149
150 assert(pkt->isResponse());
151
152 // First we must retrieve the request port from the sender State
153 RubyPort::SenderState *senderState =
154 safe_cast<RubyPort::SenderState *>(pkt->senderState);
155 M5Port *port = senderState->port;
156 assert(port != NULL);
157
158 // pop the sender state from the packet
159 pkt->senderState = senderState->saved;
160 delete senderState;
161
162 port->sendTiming(pkt);
163
164 return true;
165}
166
167bool
168RubyPort::M5Port::recvTiming(PacketPtr pkt)
169{
170 DPRINTF(RubyPort,
171 "Timing access caught for address %#x\n", pkt->getAddr());
172
173 //dsm: based on SimpleTimingPort::recvTiming(pkt);
174
175 // The received packets should only be M5 requests, which should never
176 // get nacked. There used to be code to hanldle nacks here, but
177 // I'm pretty sure it didn't work correctly with the drain code,
178 // so that would need to be fixed if we ever added it back.
179 assert(pkt->isRequest());
180
181 if (pkt->memInhibitAsserted()) {
182 warn("memInhibitAsserted???");
183 // snooper will supply based on copy of packet
184 // still target's responsibility to delete packet
185 delete pkt;
186 return true;
187 }
188
189 // Save the port in the sender state object to be used later to
190 // route the response
191 pkt->senderState = new SenderState(this, pkt->senderState);
192
193 // Check for pio requests and directly send them to the dedicated
194 // pio port.
195 if (!isPhysMemAddress(pkt->getAddr())) {
196 assert(ruby_port->pio_port.isConnected());
197 DPRINTF(RubyPort,
198 "Request for address 0x%#x is assumed to be a pio request\n",
199 pkt->getAddr());
200
201 return ruby_port->pio_port.sendNextCycle(pkt);
202 }
203
204 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
205 RubySystem::getBlockSizeBytes());
206
207 // Submit the ruby request
208 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
209
210 // If the request successfully issued then we should return true.
211 // Otherwise, we need to delete the senderStatus we just created and return
212 // false.
213 if (requestStatus == RequestStatus_Issued) {
214 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
215 return true;
216 }
217
218 //
219 // Unless one is using the ruby tester, record the stalled M5 port for
220 // later retry when the sequencer becomes free.
221 //
222 if (!ruby_port->m_usingRubyTester) {
223 ruby_port->addToRetryList(this);
224 }
225
226 DPRINTF(RubyPort,
227 "Request for address %#x did not issue because %s\n",
228 pkt->getAddr(), RequestStatus_to_string(requestStatus));
229
230 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
231 pkt->senderState = senderState->saved;
232 delete senderState;
233 return false;
234}
235
236bool
237RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
238{
239 Address address(pkt->getAddr());
240 Address line_address(address);
241 line_address.makeLineAddress();
242
243 AccessPermission access_perm = AccessPermission_NotPresent;
244 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
245
246 DPRINTF(RubyPort, "Functional Read request for %s\n",address);
247
248 unsigned int num_ro = 0;
249 unsigned int num_rw = 0;
250 unsigned int num_busy = 0;
251 unsigned int num_backing_store = 0;
252 unsigned int num_invalid = 0;
253
254 // In this loop we count the number of controllers that have the given
255 // address in read only, read write and busy states.
256 for (int i = 0; i < num_controllers; ++i) {
257 access_perm = ruby_system->m_abs_cntrl_vec[i]->
258 getAccessPermission(line_address);
259 if (access_perm == AccessPermission_Read_Only)
260 num_ro++;
261 else if (access_perm == AccessPermission_Read_Write)
262 num_rw++;
263 else if (access_perm == AccessPermission_Busy)
264 num_busy++;
265 else if (access_perm == AccessPermission_Backing_Store)
266 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
267 // to represent blocks in memory *for Broadcast/Snooping protocols*,
268 // where memory has no idea whether it has an exclusive copy of data
269 // or not.
270 num_backing_store++;
271 else if (access_perm == AccessPermission_Invalid ||
272 access_perm == AccessPermission_NotPresent)
273 num_invalid++;
274 }
275 assert(num_rw <= 1);
276
277 uint8* data = pkt->getPtr<uint8_t>(true);
278 unsigned int size_in_bytes = pkt->getSize();
279 unsigned startByte = address.getAddress() - line_address.getAddress();
280
281 // This if case is meant to capture what happens in a Broadcast/Snoop
282 // protocol where the block does not exist in the cache hierarchy. You
283 // only want to read from the Backing_Store memory if there is no copy in
284 // the cache hierarchy, otherwise you want to try to read the RO or RW
285 // copies existing in the cache hierarchy (covered by the else statement).
286 // The reason is because the Backing_Store memory could easily be stale, if
287 // there are copies floating around the cache hierarchy, so you want to read
288 // it only if it's not in the cache hierarchy at all.
289 if (num_invalid == (num_controllers - 1) &&
290 num_backing_store == 1)
291 {
292 DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
293 for (int i = 0; i < num_controllers; ++i) {
294 access_perm = ruby_system->m_abs_cntrl_vec[i]
295 ->getAccessPermission(line_address);
296 if (access_perm == AccessPermission_Backing_Store) {
297 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
298 ->getDataBlock(line_address);
299
300 DPRINTF(RubyPort, "reading from %s block %s\n",
301 ruby_system->m_abs_cntrl_vec[i]->name(), block);
302 for (unsigned i = 0; i < size_in_bytes; ++i) {
303 data[i] = block.getByte(i + startByte);
304 }
305 return true;
306 }
307 }
308 } else {
309 // In Broadcast/Snoop protocols, this covers if you know the block
310 // exists somewhere in the caching hierarchy, then you want to read any
311 // valid RO or RW block. In directory protocols, same thing, you want
312 // to read any valid readable copy of the block.
313 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
314 num_busy, num_ro, num_rw);
315 // In this loop, we try to figure which controller has a read only or
316 // a read write copy of the given address. Any valid copy would suffice
317 // for a functional read.
318 for(int i = 0;i < num_controllers;++i) {
319 access_perm = ruby_system->m_abs_cntrl_vec[i]
320 ->getAccessPermission(line_address);
321 if(access_perm == AccessPermission_Read_Only ||
322 access_perm == AccessPermission_Read_Write)
323 {
324 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
325 ->getDataBlock(line_address);
326
327 DPRINTF(RubyPort, "reading from %s block %s\n",
328 ruby_system->m_abs_cntrl_vec[i]->name(), block);
329 for (unsigned i = 0; i < size_in_bytes; ++i) {
330 data[i] = block.getByte(i + startByte);
331 }
332 return true;
333 }
334 }
335 }
336 return false;
337}
338
339bool
340RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
341{
342 Address addr(pkt->getAddr());
343 Address line_addr = line_address(addr);
344 AccessPermission access_perm = AccessPermission_NotPresent;
345 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
346
347 DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
348
349 unsigned int num_ro = 0;
350 unsigned int num_rw = 0;
351 unsigned int num_busy = 0;
352 unsigned int num_backing_store = 0;
353 unsigned int num_invalid = 0;
354
355 // In this loop we count the number of controllers that have the given
356 // address in read only, read write and busy states.
357 for(int i = 0;i < num_controllers;++i) {
358 access_perm = ruby_system->m_abs_cntrl_vec[i]->
359 getAccessPermission(line_addr);
360 if (access_perm == AccessPermission_Read_Only)
361 num_ro++;
362 else if (access_perm == AccessPermission_Read_Write)
363 num_rw++;
364 else if (access_perm == AccessPermission_Busy)
365 num_busy++;
366 else if (access_perm == AccessPermission_Backing_Store)
367 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
368 // to represent blocks in memory *for Broadcast/Snooping protocols*,
369 // where memory has no idea whether it has an exclusive copy of data
370 // or not.
371 num_backing_store++;
372 else if (access_perm == AccessPermission_Invalid ||
373 access_perm == AccessPermission_NotPresent)
374 num_invalid++;
375 }
376
377 // If the number of read write copies is more than 1, then there is bug in
378 // coherence protocol. Otherwise, if all copies are in stable states, i.e.
379 // num_busy == 0, we update all the copies. If there is at least one copy
380 // in busy state, then we check if there is read write copy. If yes, then
381 // also we let the access go through. Or, if there is no copy in the cache
382 // hierarchy at all, we still want to do the write to the memory
383 // (Backing_Store) instead of failing.
384
385 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
386 num_busy, num_ro, num_rw);
387 assert(num_rw <= 1);
388
389 uint8* data = pkt->getPtr<uint8_t>(true);
390 unsigned int size_in_bytes = pkt->getSize();
391 unsigned startByte = addr.getAddress() - line_addr.getAddress();
392
393 if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
394 (num_invalid == (num_controllers - 1) && num_backing_store == 1))
395 {
396 for(int i = 0; i < num_controllers;++i) {
397 access_perm = ruby_system->m_abs_cntrl_vec[i]->
398 getAccessPermission(line_addr);
399 if(access_perm == AccessPermission_Read_Only ||
400 access_perm == AccessPermission_Read_Write||
401 access_perm == AccessPermission_Maybe_Stale ||
402 access_perm == AccessPermission_Backing_Store)
403 {
404 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
405 ->getDataBlock(line_addr);
406
407 DPRINTF(RubyPort, "%s\n",block);
408 for (unsigned i = 0; i < size_in_bytes; ++i) {
409 block.setByte(i + startByte, data[i]);
410 }
411 DPRINTF(RubyPort, "%s\n",block);
412 }
413 }
414 return true;
415 }
416 return false;
417}
418
419void
420RubyPort::M5Port::recvFunctional(PacketPtr pkt)
421{
422 DPRINTF(RubyPort, "Functional access caught for address %#x\n",
423 pkt->getAddr());
424
425 // Check for pio requests and directly send them to the dedicated
426 // pio port.
427 if (!isPhysMemAddress(pkt->getAddr())) {
428 assert(ruby_port->pio_port.isConnected());
429 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
430 pkt->getAddr());
431 panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
432 }
433
434 assert(pkt->getAddr() + pkt->getSize() <=
435 line_address(Address(pkt->getAddr())).getAddress() +
436 RubySystem::getBlockSizeBytes());
437
438 bool accessSucceeded = false;
439 bool needsResponse = pkt->needsResponse();
440
441 // Do the functional access on ruby memory
442 if (pkt->isRead()) {
443 accessSucceeded = doFunctionalRead(pkt);
444 } else if (pkt->isWrite()) {
445 accessSucceeded = doFunctionalWrite(pkt);
446 } else {
447 panic("RubyPort: unsupported functional command %s\n",
448 pkt->cmdString());
449 }
450
451 // Unless the requester explicitly said otherwise, generate an error if
452 // the functional request failed
453 if (!accessSucceeded && !pkt->suppressFuncError()) {
454 fatal("Ruby functional %s failed for address %#x\n",
455 pkt->isWrite() ? "write" : "read", pkt->getAddr());
456 }
457
458 if (access_phys_mem) {
459 // The attached physmem contains the official version of data.
460 // The following command performs the real functional access.
461 // This line should be removed once Ruby supplies the official version
462 // of data.
463 ruby_port->system->getPhysMem().functionalAccess(pkt);
464 }
465
466 // turn packet around to go back to requester if response expected
467 if (needsResponse) {
468 pkt->setFunctionalResponseStatus(accessSucceeded);
469
470 // @todo There should not be a reverse call since the response is
471 // communicated through the packet pointer
472 // DPRINTF(RubyPort, "Sending packet back over port\n");
473 // sendFunctional(pkt);
474 }
475 DPRINTF(RubyPort, "Functional access %s!\n",
476 accessSucceeded ? "successful":"failed");
477}
478
479void
480RubyPort::ruby_hit_callback(PacketPtr pkt)
481{
482 // Retrieve the request port from the sender State
483 RubyPort::SenderState *senderState =
484 safe_cast<RubyPort::SenderState *>(pkt->senderState);
485 M5Port *port = senderState->port;
486 assert(port != NULL);
487
488 // pop the sender state from the packet
489 pkt->senderState = senderState->saved;
490 delete senderState;
491
492 port->hitCallback(pkt);
493
494 //
495 // If we had to stall the M5Ports, wake them up because the sequencer
496 // likely has free resources now.
497 //
498 if (waitingOnSequencer) {
499 //
500 // Record the current list of ports to retry on a temporary list before
501 // calling sendRetry on those ports. sendRetry will cause an
502 // immediate retry, which may result in the ports being put back on the
503 // list. Therefore we want to clear the retryList before calling
504 // sendRetry.
505 //
506 std::list<M5Port*> curRetryList(retryList);
507
508 retryList.clear();
509 waitingOnSequencer = false;
510
511 for (std::list<M5Port*>::iterator i = curRetryList.begin();
512 i != curRetryList.end(); ++i) {
513 DPRINTF(RubyPort,
514 "Sequencer may now be free. SendRetry to port %s\n",
515 (*i)->name());
516 (*i)->onRetryList(false);
517 (*i)->sendRetry();
518 }
519 }
520
521 testDrainComplete();
522}
523
524void
525RubyPort::testDrainComplete()
526{
527 //If we weren't able to drain before, we might be able to now.
528 if (drainEvent != NULL) {
529 unsigned int drainCount = getDrainCount(drainEvent);
530 DPRINTF(Config, "Drain count: %u\n", drainCount);
531 if (drainCount == 0) {
532 drainEvent->process();
533 // Clear the drain event once we're done with it.
534 drainEvent = NULL;
535 }
536 }
537}
538
539unsigned int
540RubyPort::getDrainCount(Event *de)
541{
542 int count = 0;
543 //
544 // If the sequencer is not empty, then requests need to drain.
545 // The outstandingCount is the number of requests outstanding and thus the
546 // number of times M5's timing port will process the drain event.
547 //
548 count += outstandingCount();
549
550 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
551
552 // To simplify the draining process, the sequencer's deadlock detection
553 // event should have been descheduled.
554 assert(isDeadlockEventScheduled() == false);
555
556 if (pio_port.isConnected()) {
557 count += pio_port.drain(de);
558 DPRINTF(Config, "count after pio check %d\n", count);
559 }
560
561 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
562 count += (*p)->drain(de);
563 DPRINTF(Config, "count after slave port check %d\n", count);
564 }
565
566 for (std::vector<PioPort*>::iterator p = master_ports.begin();
567 p != master_ports.end(); ++p) {
568 count += (*p)->drain(de);
569 DPRINTF(Config, "count after master port check %d\n", count);
570 }
571
572 DPRINTF(Config, "final count %d\n", count);
573
574 return count;
575}
576
577unsigned int
578RubyPort::drain(Event *de)
579{
580 if (isDeadlockEventScheduled()) {
581 descheduleDeadlockEvent();
582 }
583
584 int count = getDrainCount(de);
585
586 // Set status
587 if (count != 0) {
588 drainEvent = de;
589
590 changeState(SimObject::Draining);
591 return count;
592 }
593
594 changeState(SimObject::Drained);
595 return 0;
596}
597
598void
599RubyPort::M5Port::hitCallback(PacketPtr pkt)
600{
601 bool needsResponse = pkt->needsResponse();
602
603 //
604 // Unless specified at configuraiton, all responses except failed SC
605 // and Flush operations access M5 physical memory.
606 //
607 bool accessPhysMem = access_phys_mem;
608
609 if (pkt->isLLSC()) {
610 if (pkt->isWrite()) {
611 if (pkt->req->getExtraData() != 0) {
612 //
613 // Successful SC packets convert to normal writes
614 //
615 pkt->convertScToWrite();
616 } else {
617 //
618 // Failed SC packets don't access physical memory and thus
619 // the RubyPort itself must convert it to a response.
620 //
621 accessPhysMem = false;
622 }
623 } else {
624 //
625 // All LL packets convert to normal loads so that M5 PhysMem does
626 // not lock the blocks.
627 //
628 pkt->convertLlToRead();
629 }
630 }
631
632 //
633 // Flush requests don't access physical memory
634 //
635 if (pkt->isFlush()) {
636 accessPhysMem = false;
637 }
638
639 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
640
641 if (accessPhysMem) {
642 ruby_port->system->getPhysMem().access(pkt);
643 } else if (needsResponse) {
644 pkt->makeResponse();
645 }
646
647 // turn packet around to go back to requester if response expected
648 if (needsResponse) {
649 DPRINTF(RubyPort, "Sending packet back over port\n");
650 sendNextCycle(pkt);
651 } else {
652 delete pkt;
653 }
654 DPRINTF(RubyPort, "Hit callback done!\n");
655}
656
657bool
665RubyPort::M5Port::sendNextCycle(PacketPtr pkt)
658RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
666{
667 //minimum latency, must be > 0
659{
660 //minimum latency, must be > 0
668 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
661 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
662 send_as_snoop);
669 return true;
670}
671
672bool
673RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
674{
675 //minimum latency, must be > 0
676 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
677 return true;
678}
679
680AddrRangeList
681RubyPort::M5Port::getAddrRanges()
682{
683 // at the moment the assumption is that the master does not care
684 AddrRangeList ranges;
685 return ranges;
686}
687
688bool
689RubyPort::M5Port::isPhysMemAddress(Addr addr)
690{
691 return ruby_port->system->isMemAddr(addr);
692}
693
694unsigned
695RubyPort::M5Port::deviceBlockSize() const
696{
697 return (unsigned) RubySystem::getBlockSizeBytes();
698}
699
700void
701RubyPort::ruby_eviction_callback(const Address& address)
702{
703 DPRINTF(RubyPort, "Sending invalidations.\n");
704 // should this really be using funcMasterId?
705 Request req(address.getAddress(), 0, 0, Request::funcMasterId);
706 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
707 if ((*p)->getMasterPort().isSnooping()) {
708 Packet *pkt = new Packet(&req, MemCmd::InvalidationReq, -1);
663 return true;
664}
665
666bool
667RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
668{
669 //minimum latency, must be > 0
670 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
671 return true;
672}
673
674AddrRangeList
675RubyPort::M5Port::getAddrRanges()
676{
677 // at the moment the assumption is that the master does not care
678 AddrRangeList ranges;
679 return ranges;
680}
681
682bool
683RubyPort::M5Port::isPhysMemAddress(Addr addr)
684{
685 return ruby_port->system->isMemAddr(addr);
686}
687
688unsigned
689RubyPort::M5Port::deviceBlockSize() const
690{
691 return (unsigned) RubySystem::getBlockSizeBytes();
692}
693
694void
695RubyPort::ruby_eviction_callback(const Address& address)
696{
697 DPRINTF(RubyPort, "Sending invalidations.\n");
698 // should this really be using funcMasterId?
699 Request req(address.getAddress(), 0, 0, Request::funcMasterId);
700 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
701 if ((*p)->getMasterPort().isSnooping()) {
702 Packet *pkt = new Packet(&req, MemCmd::InvalidationReq, -1);
709 (*p)->sendNextCycle(pkt);
703 // send as a snoop request
704 (*p)->sendNextCycle(pkt, true);
710 }
711 }
712}
705 }
706 }
707}