RubyPort.cc (11266:452e10b868ea) RubyPort.cc (11284:b3926db25371)
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54 : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
55 m_controller(NULL), m_mandatory_q_ptr(NULL),
56 m_usingRubyTester(p->using_ruby_tester), system(p->system),
57 pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58 pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59 memMasterPort(csprintf("%s.mem-master-port", name()), this),
60 memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61 p->ruby_system->getAccessBackingStore(), -1,
62 p->no_retry_on_stall),
63 gotAddrRanges(p->port_master_connection_count)
64{
65 assert(m_version != -1);
66
67 // create the slave ports based on the number of connected ports
68 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
69 slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
70 i), this, p->ruby_system->getAccessBackingStore(),
71 i, p->no_retry_on_stall));
72 }
73
74 // create the master ports based on the number of connected ports
75 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
76 master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
77 name(), i), this));
78 }
79}
80
81void
82RubyPort::init()
83{
84 assert(m_controller != NULL);
85 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
86}
87
88BaseMasterPort &
89RubyPort::getMasterPort(const std::string &if_name, PortID idx)
90{
91 if (if_name == "mem_master_port") {
92 return memMasterPort;
93 }
94
95 if (if_name == "pio_master_port") {
96 return pioMasterPort;
97 }
98
99 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
100 // port
101 if (if_name != "master") {
102 // pass it along to our super class
103 return MemObject::getMasterPort(if_name, idx);
104 } else {
105 if (idx >= static_cast<PortID>(master_ports.size())) {
106 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
107 }
108
109 return *master_ports[idx];
110 }
111}
112
113BaseSlavePort &
114RubyPort::getSlavePort(const std::string &if_name, PortID idx)
115{
116 if (if_name == "mem_slave_port") {
117 return memSlavePort;
118 }
119
120 if (if_name == "pio_slave_port")
121 return pioSlavePort;
122
123 // used by the CPUs to connect the caches to the interconnect, and
124 // for the x86 case also the interrupt master
125 if (if_name != "slave") {
126 // pass it along to our super class
127 return MemObject::getSlavePort(if_name, idx);
128 } else {
129 if (idx >= static_cast<PortID>(slave_ports.size())) {
130 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
131 }
132
133 return *slave_ports[idx];
134 }
135}
136
137RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
138 RubyPort *_port)
139 : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
140 reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
141{
142 DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
143}
144
145RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
146 RubyPort *_port)
147 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
148{
149 DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
150}
151
152RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
153 RubyPort *_port)
154 : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
155 reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
156{
157 DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
158}
159
160RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
161 bool _access_backing_store, PortID id,
162 bool _no_retry_on_stall)
163 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
164 access_backing_store(_access_backing_store),
165 no_retry_on_stall(_no_retry_on_stall)
166{
167 DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
168}
169
170bool
171RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
172{
173 RubyPort *rp = static_cast<RubyPort *>(&owner);
174 DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
175
176 // send next cycle
177 rp->pioSlavePort.schedTimingResp(
178 pkt, curTick() + rp->m_ruby_system->clockPeriod());
179 return true;
180}
181
182bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
183{
184 // got a response from a device
185 assert(pkt->isResponse());
186
187 // First we must retrieve the request port from the sender State
188 RubyPort::SenderState *senderState =
189 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
190 MemSlavePort *port = senderState->port;
191 assert(port != NULL);
192 delete senderState;
193
194 // In FS mode, ruby memory will receive pio responses from devices
195 // and it must forward these responses back to the particular CPU.
196 DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n",
197 pkt->getAddr(), port->name());
198
199 // attempt to send the response in the next cycle
200 RubyPort *rp = static_cast<RubyPort *>(&owner);
201 port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
202
203 return true;
204}
205
206bool
207RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
208{
209 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
210
211 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
212 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
213 for (auto it = l.begin(); it != l.end(); ++it) {
214 if (it->contains(pkt->getAddr())) {
215 // generally it is not safe to assume success here as
216 // the port could be blocked
217 bool M5_VAR_USED success =
218 ruby_port->master_ports[i]->sendTimingReq(pkt);
219 assert(success);
220 return true;
221 }
222 }
223 }
224 panic("Should never reach here!\n");
225}
226
227bool
228RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
229{
230 DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
231 pkt->getAddr(), id);
232 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
233
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54 : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
55 m_controller(NULL), m_mandatory_q_ptr(NULL),
56 m_usingRubyTester(p->using_ruby_tester), system(p->system),
57 pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58 pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59 memMasterPort(csprintf("%s.mem-master-port", name()), this),
60 memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61 p->ruby_system->getAccessBackingStore(), -1,
62 p->no_retry_on_stall),
63 gotAddrRanges(p->port_master_connection_count)
64{
65 assert(m_version != -1);
66
67 // create the slave ports based on the number of connected ports
68 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
69 slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
70 i), this, p->ruby_system->getAccessBackingStore(),
71 i, p->no_retry_on_stall));
72 }
73
74 // create the master ports based on the number of connected ports
75 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
76 master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
77 name(), i), this));
78 }
79}
80
81void
82RubyPort::init()
83{
84 assert(m_controller != NULL);
85 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
86}
87
88BaseMasterPort &
89RubyPort::getMasterPort(const std::string &if_name, PortID idx)
90{
91 if (if_name == "mem_master_port") {
92 return memMasterPort;
93 }
94
95 if (if_name == "pio_master_port") {
96 return pioMasterPort;
97 }
98
99 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
100 // port
101 if (if_name != "master") {
102 // pass it along to our super class
103 return MemObject::getMasterPort(if_name, idx);
104 } else {
105 if (idx >= static_cast<PortID>(master_ports.size())) {
106 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
107 }
108
109 return *master_ports[idx];
110 }
111}
112
113BaseSlavePort &
114RubyPort::getSlavePort(const std::string &if_name, PortID idx)
115{
116 if (if_name == "mem_slave_port") {
117 return memSlavePort;
118 }
119
120 if (if_name == "pio_slave_port")
121 return pioSlavePort;
122
123 // used by the CPUs to connect the caches to the interconnect, and
124 // for the x86 case also the interrupt master
125 if (if_name != "slave") {
126 // pass it along to our super class
127 return MemObject::getSlavePort(if_name, idx);
128 } else {
129 if (idx >= static_cast<PortID>(slave_ports.size())) {
130 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
131 }
132
133 return *slave_ports[idx];
134 }
135}
136
137RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
138 RubyPort *_port)
139 : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
140 reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
141{
142 DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
143}
144
145RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
146 RubyPort *_port)
147 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
148{
149 DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
150}
151
152RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
153 RubyPort *_port)
154 : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
155 reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
156{
157 DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
158}
159
160RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
161 bool _access_backing_store, PortID id,
162 bool _no_retry_on_stall)
163 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
164 access_backing_store(_access_backing_store),
165 no_retry_on_stall(_no_retry_on_stall)
166{
167 DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
168}
169
170bool
171RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
172{
173 RubyPort *rp = static_cast<RubyPort *>(&owner);
174 DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
175
176 // send next cycle
177 rp->pioSlavePort.schedTimingResp(
178 pkt, curTick() + rp->m_ruby_system->clockPeriod());
179 return true;
180}
181
182bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
183{
184 // got a response from a device
185 assert(pkt->isResponse());
186
187 // First we must retrieve the request port from the sender State
188 RubyPort::SenderState *senderState =
189 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
190 MemSlavePort *port = senderState->port;
191 assert(port != NULL);
192 delete senderState;
193
194 // In FS mode, ruby memory will receive pio responses from devices
195 // and it must forward these responses back to the particular CPU.
196 DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n",
197 pkt->getAddr(), port->name());
198
199 // attempt to send the response in the next cycle
200 RubyPort *rp = static_cast<RubyPort *>(&owner);
201 port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
202
203 return true;
204}
205
206bool
207RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
208{
209 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
210
211 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
212 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
213 for (auto it = l.begin(); it != l.end(); ++it) {
214 if (it->contains(pkt->getAddr())) {
215 // generally it is not safe to assume success here as
216 // the port could be blocked
217 bool M5_VAR_USED success =
218 ruby_port->master_ports[i]->sendTimingReq(pkt);
219 assert(success);
220 return true;
221 }
222 }
223 }
224 panic("Should never reach here!\n");
225}
226
227bool
228RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
229{
230 DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
231 pkt->getAddr(), id);
232 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
233
234 if (pkt->memInhibitAsserted())
235 panic("RubyPort should never see an inhibited request\n");
234 if (pkt->cacheResponding())
235 panic("RubyPort should never see request with the "
236 "cacheResponding flag set\n");
236
237 // Check for pio requests and directly send them to the dedicated
238 // pio port.
239 if (!isPhysMemAddress(pkt->getAddr())) {
240 assert(ruby_port->memMasterPort.isConnected());
241 DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
242 pkt->getAddr());
243
244 // Save the port in the sender state object to be used later to
245 // route the response
246 pkt->pushSenderState(new SenderState(this));
247
248 // send next cycle
249 RubySystem *rs = ruby_port->m_ruby_system;
250 ruby_port->memMasterPort.schedTimingReq(pkt,
251 curTick() + rs->clockPeriod());
252 return true;
253 }
254
255 assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
256 RubySystem::getBlockSizeBytes());
257
258 // Submit the ruby request
259 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
260
261 // If the request successfully issued then we should return true.
262 // Otherwise, we need to tell the port to retry at a later point
263 // and return false.
264 if (requestStatus == RequestStatus_Issued) {
265 // Save the port in the sender state object to be used later to
266 // route the response
267 pkt->pushSenderState(new SenderState(this));
268
269 DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
270 pkt->getAddr());
271 return true;
272 }
273
274
275 DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
276 pkt->getAddr(), RequestStatus_to_string(requestStatus));
277
278 addToRetryList();
279
280 return false;
281}
282
283void
284RubyPort::MemSlavePort::addToRetryList()
285{
286 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
287
288 //
289 // Unless the requestor do not want retries (e.g., the Ruby tester),
290 // record the stalled M5 port for later retry when the sequencer
291 // becomes free.
292 //
293 if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
294 ruby_port->addToRetryList(this);
295 }
296}
297
298void
299RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
300{
301 DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
302
303 RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
304 RubySystem *rs = rp->m_ruby_system;
305
306 // Check for pio requests and directly send them to the dedicated
307 // pio port.
308 if (!isPhysMemAddress(pkt->getAddr())) {
309 assert(rp->memMasterPort.isConnected());
310 DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
311 panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
312 }
313
314 assert(pkt->getAddr() + pkt->getSize() <=
315 makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes());
316
317 if (access_backing_store) {
318 // The attached physmem contains the official version of data.
319 // The following command performs the real functional access.
320 // This line should be removed once Ruby supplies the official version
321 // of data.
322 rs->getPhysMem()->functionalAccess(pkt);
323 } else {
324 bool accessSucceeded = false;
325 bool needsResponse = pkt->needsResponse();
326
327 // Do the functional access on ruby memory
328 if (pkt->isRead()) {
329 accessSucceeded = rs->functionalRead(pkt);
330 } else if (pkt->isWrite()) {
331 accessSucceeded = rs->functionalWrite(pkt);
332 } else {
333 panic("Unsupported functional command %s\n", pkt->cmdString());
334 }
335
336 // Unless the requester explicitly said otherwise, generate an error if
337 // the functional request failed
338 if (!accessSucceeded && !pkt->suppressFuncError()) {
339 fatal("Ruby functional %s failed for address %#x\n",
340 pkt->isWrite() ? "write" : "read", pkt->getAddr());
341 }
342
343 // turn packet around to go back to requester if response expected
344 if (needsResponse) {
345 pkt->setFunctionalResponseStatus(accessSucceeded);
346 }
347
348 DPRINTF(RubyPort, "Functional access %s!\n",
349 accessSucceeded ? "successful":"failed");
350 }
351}
352
353void
354RubyPort::ruby_hit_callback(PacketPtr pkt)
355{
356 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
357 pkt->getAddr());
358
359 // The packet was destined for memory and has not yet been turned
360 // into a response
361 assert(system->isMemAddr(pkt->getAddr()));
362 assert(pkt->isRequest());
363
364 // First we must retrieve the request port from the sender State
365 RubyPort::SenderState *senderState =
366 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
367 MemSlavePort *port = senderState->port;
368 assert(port != NULL);
369 delete senderState;
370
371 port->hitCallback(pkt);
372
373 trySendRetries();
374}
375
376void
377RubyPort::trySendRetries()
378{
379 //
380 // If we had to stall the MemSlavePorts, wake them up because the sequencer
381 // likely has free resources now.
382 //
383 if (!retryList.empty()) {
384 // Record the current list of ports to retry on a temporary list
385 // before calling sendRetryReq on those ports. sendRetryReq will cause
386 // an immediate retry, which may result in the ports being put back on
387 // the list. Therefore we want to clear the retryList before calling
388 // sendRetryReq.
389 std::vector<MemSlavePort *> curRetryList(retryList);
390
391 retryList.clear();
392
393 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
394 DPRINTF(RubyPort,
395 "Sequencer may now be free. SendRetry to port %s\n",
396 (*i)->name());
397 (*i)->sendRetryReq();
398 }
399 }
400}
401
402void
403RubyPort::testDrainComplete()
404{
405 //If we weren't able to drain before, we might be able to now.
406 if (drainState() == DrainState::Draining) {
407 unsigned int drainCount = outstandingCount();
408 DPRINTF(Drain, "Drain count: %u\n", drainCount);
409 if (drainCount == 0) {
410 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
411 signalDrainDone();
412 }
413 }
414}
415
416DrainState
417RubyPort::drain()
418{
419 if (isDeadlockEventScheduled()) {
420 descheduleDeadlockEvent();
421 }
422
423 //
424 // If the RubyPort is not empty, then it needs to clear all outstanding
425 // requests before it should call signalDrainDone()
426 //
427 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
428 if (outstandingCount() > 0) {
429 DPRINTF(Drain, "RubyPort not drained\n");
430 return DrainState::Draining;
431 } else {
432 return DrainState::Drained;
433 }
434}
435
436void
437RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
438{
439 bool needsResponse = pkt->needsResponse();
440
441 // Unless specified at configuraiton, all responses except failed SC
442 // and Flush operations access M5 physical memory.
443 bool accessPhysMem = access_backing_store;
444
445 if (pkt->isLLSC()) {
446 if (pkt->isWrite()) {
447 if (pkt->req->getExtraData() != 0) {
448 //
449 // Successful SC packets convert to normal writes
450 //
451 pkt->convertScToWrite();
452 } else {
453 //
454 // Failed SC packets don't access physical memory and thus
455 // the RubyPort itself must convert it to a response.
456 //
457 accessPhysMem = false;
458 }
459 } else {
460 //
461 // All LL packets convert to normal loads so that M5 PhysMem does
462 // not lock the blocks.
463 //
464 pkt->convertLlToRead();
465 }
466 }
467
468 // Flush requests don't access physical memory
469 if (pkt->isFlush()) {
470 accessPhysMem = false;
471 }
472
473 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
474
475 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
476 RubySystem *rs = ruby_port->m_ruby_system;
477 if (accessPhysMem) {
478 rs->getPhysMem()->access(pkt);
479 } else if (needsResponse) {
480 pkt->makeResponse();
481 }
482
483 // turn packet around to go back to requester if response expected
484 if (needsResponse) {
485 DPRINTF(RubyPort, "Sending packet back over port\n");
486 // Send a response in the same cycle. There is no need to delay the
487 // response because the response latency is already incurred in the
488 // Ruby protocol.
489 schedTimingResp(pkt, curTick());
490 } else {
491 delete pkt;
492 }
493
494 DPRINTF(RubyPort, "Hit callback done!\n");
495}
496
497AddrRangeList
498RubyPort::PioSlavePort::getAddrRanges() const
499{
500 // at the moment the assumption is that the master does not care
501 AddrRangeList ranges;
502 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
503
504 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
505 ranges.splice(ranges.begin(),
506 ruby_port->master_ports[i]->getAddrRanges());
507 }
508 for (const auto M5_VAR_USED &r : ranges)
509 DPRINTF(RubyPort, "%s\n", r.to_string());
510 return ranges;
511}
512
513bool
514RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
515{
516 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
517 return ruby_port->system->isMemAddr(addr);
518}
519
520void
521RubyPort::ruby_eviction_callback(Addr address)
522{
523 DPRINTF(RubyPort, "Sending invalidations.\n");
524 // Allocate the invalidate request and packet on the stack, as it is
525 // assumed they will not be modified or deleted by receivers.
526 // TODO: should this really be using funcMasterId?
527 Request request(address, RubySystem::getBlockSizeBytes(), 0,
528 Request::funcMasterId);
529 // Use a single packet to signal all snooping ports of the invalidation.
530 // This assumes that snooping ports do NOT modify the packet/request
531 Packet pkt(&request, MemCmd::InvalidateReq);
532 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
533 // check if the connected master port is snooping
534 if ((*p)->isSnooping()) {
535 // send as a snoop request
536 (*p)->sendTimingSnoopReq(&pkt);
537 }
538 }
539}
540
541void
542RubyPort::PioMasterPort::recvRangeChange()
543{
544 RubyPort &r = static_cast<RubyPort &>(owner);
545 r.gotAddrRanges--;
546 if (r.gotAddrRanges == 0 && FullSystem) {
547 r.pioSlavePort.sendRangeChange();
548 }
549}
237
238 // Check for pio requests and directly send them to the dedicated
239 // pio port.
240 if (!isPhysMemAddress(pkt->getAddr())) {
241 assert(ruby_port->memMasterPort.isConnected());
242 DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
243 pkt->getAddr());
244
245 // Save the port in the sender state object to be used later to
246 // route the response
247 pkt->pushSenderState(new SenderState(this));
248
249 // send next cycle
250 RubySystem *rs = ruby_port->m_ruby_system;
251 ruby_port->memMasterPort.schedTimingReq(pkt,
252 curTick() + rs->clockPeriod());
253 return true;
254 }
255
256 assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
257 RubySystem::getBlockSizeBytes());
258
259 // Submit the ruby request
260 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
261
262 // If the request successfully issued then we should return true.
263 // Otherwise, we need to tell the port to retry at a later point
264 // and return false.
265 if (requestStatus == RequestStatus_Issued) {
266 // Save the port in the sender state object to be used later to
267 // route the response
268 pkt->pushSenderState(new SenderState(this));
269
270 DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
271 pkt->getAddr());
272 return true;
273 }
274
275
276 DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
277 pkt->getAddr(), RequestStatus_to_string(requestStatus));
278
279 addToRetryList();
280
281 return false;
282}
283
284void
285RubyPort::MemSlavePort::addToRetryList()
286{
287 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
288
289 //
290 // Unless the requestor do not want retries (e.g., the Ruby tester),
291 // record the stalled M5 port for later retry when the sequencer
292 // becomes free.
293 //
294 if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
295 ruby_port->addToRetryList(this);
296 }
297}
298
299void
300RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
301{
302 DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
303
304 RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
305 RubySystem *rs = rp->m_ruby_system;
306
307 // Check for pio requests and directly send them to the dedicated
308 // pio port.
309 if (!isPhysMemAddress(pkt->getAddr())) {
310 assert(rp->memMasterPort.isConnected());
311 DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
312 panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
313 }
314
315 assert(pkt->getAddr() + pkt->getSize() <=
316 makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes());
317
318 if (access_backing_store) {
319 // The attached physmem contains the official version of data.
320 // The following command performs the real functional access.
321 // This line should be removed once Ruby supplies the official version
322 // of data.
323 rs->getPhysMem()->functionalAccess(pkt);
324 } else {
325 bool accessSucceeded = false;
326 bool needsResponse = pkt->needsResponse();
327
328 // Do the functional access on ruby memory
329 if (pkt->isRead()) {
330 accessSucceeded = rs->functionalRead(pkt);
331 } else if (pkt->isWrite()) {
332 accessSucceeded = rs->functionalWrite(pkt);
333 } else {
334 panic("Unsupported functional command %s\n", pkt->cmdString());
335 }
336
337 // Unless the requester explicitly said otherwise, generate an error if
338 // the functional request failed
339 if (!accessSucceeded && !pkt->suppressFuncError()) {
340 fatal("Ruby functional %s failed for address %#x\n",
341 pkt->isWrite() ? "write" : "read", pkt->getAddr());
342 }
343
344 // turn packet around to go back to requester if response expected
345 if (needsResponse) {
346 pkt->setFunctionalResponseStatus(accessSucceeded);
347 }
348
349 DPRINTF(RubyPort, "Functional access %s!\n",
350 accessSucceeded ? "successful":"failed");
351 }
352}
353
354void
355RubyPort::ruby_hit_callback(PacketPtr pkt)
356{
357 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
358 pkt->getAddr());
359
360 // The packet was destined for memory and has not yet been turned
361 // into a response
362 assert(system->isMemAddr(pkt->getAddr()));
363 assert(pkt->isRequest());
364
365 // First we must retrieve the request port from the sender State
366 RubyPort::SenderState *senderState =
367 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
368 MemSlavePort *port = senderState->port;
369 assert(port != NULL);
370 delete senderState;
371
372 port->hitCallback(pkt);
373
374 trySendRetries();
375}
376
377void
378RubyPort::trySendRetries()
379{
380 //
381 // If we had to stall the MemSlavePorts, wake them up because the sequencer
382 // likely has free resources now.
383 //
384 if (!retryList.empty()) {
385 // Record the current list of ports to retry on a temporary list
386 // before calling sendRetryReq on those ports. sendRetryReq will cause
387 // an immediate retry, which may result in the ports being put back on
388 // the list. Therefore we want to clear the retryList before calling
389 // sendRetryReq.
390 std::vector<MemSlavePort *> curRetryList(retryList);
391
392 retryList.clear();
393
394 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
395 DPRINTF(RubyPort,
396 "Sequencer may now be free. SendRetry to port %s\n",
397 (*i)->name());
398 (*i)->sendRetryReq();
399 }
400 }
401}
402
403void
404RubyPort::testDrainComplete()
405{
406 //If we weren't able to drain before, we might be able to now.
407 if (drainState() == DrainState::Draining) {
408 unsigned int drainCount = outstandingCount();
409 DPRINTF(Drain, "Drain count: %u\n", drainCount);
410 if (drainCount == 0) {
411 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
412 signalDrainDone();
413 }
414 }
415}
416
417DrainState
418RubyPort::drain()
419{
420 if (isDeadlockEventScheduled()) {
421 descheduleDeadlockEvent();
422 }
423
424 //
425 // If the RubyPort is not empty, then it needs to clear all outstanding
426 // requests before it should call signalDrainDone()
427 //
428 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
429 if (outstandingCount() > 0) {
430 DPRINTF(Drain, "RubyPort not drained\n");
431 return DrainState::Draining;
432 } else {
433 return DrainState::Drained;
434 }
435}
436
437void
438RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
439{
440 bool needsResponse = pkt->needsResponse();
441
442 // Unless specified at configuraiton, all responses except failed SC
443 // and Flush operations access M5 physical memory.
444 bool accessPhysMem = access_backing_store;
445
446 if (pkt->isLLSC()) {
447 if (pkt->isWrite()) {
448 if (pkt->req->getExtraData() != 0) {
449 //
450 // Successful SC packets convert to normal writes
451 //
452 pkt->convertScToWrite();
453 } else {
454 //
455 // Failed SC packets don't access physical memory and thus
456 // the RubyPort itself must convert it to a response.
457 //
458 accessPhysMem = false;
459 }
460 } else {
461 //
462 // All LL packets convert to normal loads so that M5 PhysMem does
463 // not lock the blocks.
464 //
465 pkt->convertLlToRead();
466 }
467 }
468
469 // Flush requests don't access physical memory
470 if (pkt->isFlush()) {
471 accessPhysMem = false;
472 }
473
474 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
475
476 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
477 RubySystem *rs = ruby_port->m_ruby_system;
478 if (accessPhysMem) {
479 rs->getPhysMem()->access(pkt);
480 } else if (needsResponse) {
481 pkt->makeResponse();
482 }
483
484 // turn packet around to go back to requester if response expected
485 if (needsResponse) {
486 DPRINTF(RubyPort, "Sending packet back over port\n");
487 // Send a response in the same cycle. There is no need to delay the
488 // response because the response latency is already incurred in the
489 // Ruby protocol.
490 schedTimingResp(pkt, curTick());
491 } else {
492 delete pkt;
493 }
494
495 DPRINTF(RubyPort, "Hit callback done!\n");
496}
497
498AddrRangeList
499RubyPort::PioSlavePort::getAddrRanges() const
500{
501 // at the moment the assumption is that the master does not care
502 AddrRangeList ranges;
503 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
504
505 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
506 ranges.splice(ranges.begin(),
507 ruby_port->master_ports[i]->getAddrRanges());
508 }
509 for (const auto M5_VAR_USED &r : ranges)
510 DPRINTF(RubyPort, "%s\n", r.to_string());
511 return ranges;
512}
513
514bool
515RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
516{
517 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
518 return ruby_port->system->isMemAddr(addr);
519}
520
521void
522RubyPort::ruby_eviction_callback(Addr address)
523{
524 DPRINTF(RubyPort, "Sending invalidations.\n");
525 // Allocate the invalidate request and packet on the stack, as it is
526 // assumed they will not be modified or deleted by receivers.
527 // TODO: should this really be using funcMasterId?
528 Request request(address, RubySystem::getBlockSizeBytes(), 0,
529 Request::funcMasterId);
530 // Use a single packet to signal all snooping ports of the invalidation.
531 // This assumes that snooping ports do NOT modify the packet/request
532 Packet pkt(&request, MemCmd::InvalidateReq);
533 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
534 // check if the connected master port is snooping
535 if ((*p)->isSnooping()) {
536 // send as a snoop request
537 (*p)->sendTimingSnoopReq(&pkt);
538 }
539 }
540}
541
542void
543RubyPort::PioMasterPort::recvRangeChange()
544{
545 RubyPort &r = static_cast<RubyPort &>(owner);
546 r.gotAddrRanges--;
547 if (r.gotAddrRanges == 0 && FullSystem) {
548 r.pioSlavePort.sendRangeChange();
549 }
550}