RubyPort.cc (10525:77787650cbbc) RubyPort.cc (10657:8bb4a9717eaa)
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54 : MemObject(p), m_version(p->version), m_controller(NULL),
55 m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
56 system(p->system),
57 pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58 pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59 memMasterPort(csprintf("%s.mem-master-port", name()), this),
60 memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61 p->ruby_system, p->access_backing_store, -1),
62 gotAddrRanges(p->port_master_connection_count), drainManager(NULL)
63{
64 assert(m_version != -1);
65
66 // create the slave ports based on the number of connected ports
67 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
68 slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
69 i), this, p->ruby_system, p->access_backing_store, i));
70 }
71
72 // create the master ports based on the number of connected ports
73 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
74 master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
75 name(), i), this));
76 }
77}
78
79void
80RubyPort::init()
81{
82 assert(m_controller != NULL);
83 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
84 m_mandatory_q_ptr->setSender(this);
85}
86
87BaseMasterPort &
88RubyPort::getMasterPort(const std::string &if_name, PortID idx)
89{
90 if (if_name == "mem_master_port") {
91 return memMasterPort;
92 }
93
94 if (if_name == "pio_master_port") {
95 return pioMasterPort;
96 }
97
98 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
99 // port
100 if (if_name != "master") {
101 // pass it along to our super class
102 return MemObject::getMasterPort(if_name, idx);
103 } else {
104 if (idx >= static_cast<PortID>(master_ports.size())) {
105 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
106 }
107
108 return *master_ports[idx];
109 }
110}
111
112BaseSlavePort &
113RubyPort::getSlavePort(const std::string &if_name, PortID idx)
114{
115 if (if_name == "mem_slave_port") {
116 return memSlavePort;
117 }
118
119 if (if_name == "pio_slave_port")
120 return pioSlavePort;
121
122 // used by the CPUs to connect the caches to the interconnect, and
123 // for the x86 case also the interrupt master
124 if (if_name != "slave") {
125 // pass it along to our super class
126 return MemObject::getSlavePort(if_name, idx);
127 } else {
128 if (idx >= static_cast<PortID>(slave_ports.size())) {
129 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
130 }
131
132 return *slave_ports[idx];
133 }
134}
135
136RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
137 RubyPort *_port)
138 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
139{
140 DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
141}
142
143RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
144 RubyPort *_port)
145 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
146{
147 DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
148}
149
150RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
151 RubyPort *_port)
152 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
153{
154 DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
155}
156
157RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
158 RubySystem *_system,
159 bool _access_backing_store, PortID id)
160 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
161 ruby_system(_system), access_backing_store(_access_backing_store)
162{
163 DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
164}
165
166bool
167RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
168{
169 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
170 DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
171
172 // send next cycle
173 ruby_port->pioSlavePort.schedTimingResp(
174 pkt, curTick() + g_system_ptr->clockPeriod());
175 return true;
176}
177
178bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
179{
180 // got a response from a device
181 assert(pkt->isResponse());
182
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54 : MemObject(p), m_version(p->version), m_controller(NULL),
55 m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
56 system(p->system),
57 pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58 pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59 memMasterPort(csprintf("%s.mem-master-port", name()), this),
60 memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61 p->ruby_system, p->access_backing_store, -1),
62 gotAddrRanges(p->port_master_connection_count), drainManager(NULL)
63{
64 assert(m_version != -1);
65
66 // create the slave ports based on the number of connected ports
67 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
68 slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
69 i), this, p->ruby_system, p->access_backing_store, i));
70 }
71
72 // create the master ports based on the number of connected ports
73 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
74 master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
75 name(), i), this));
76 }
77}
78
79void
80RubyPort::init()
81{
82 assert(m_controller != NULL);
83 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
84 m_mandatory_q_ptr->setSender(this);
85}
86
87BaseMasterPort &
88RubyPort::getMasterPort(const std::string &if_name, PortID idx)
89{
90 if (if_name == "mem_master_port") {
91 return memMasterPort;
92 }
93
94 if (if_name == "pio_master_port") {
95 return pioMasterPort;
96 }
97
98 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
99 // port
100 if (if_name != "master") {
101 // pass it along to our super class
102 return MemObject::getMasterPort(if_name, idx);
103 } else {
104 if (idx >= static_cast<PortID>(master_ports.size())) {
105 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
106 }
107
108 return *master_ports[idx];
109 }
110}
111
112BaseSlavePort &
113RubyPort::getSlavePort(const std::string &if_name, PortID idx)
114{
115 if (if_name == "mem_slave_port") {
116 return memSlavePort;
117 }
118
119 if (if_name == "pio_slave_port")
120 return pioSlavePort;
121
122 // used by the CPUs to connect the caches to the interconnect, and
123 // for the x86 case also the interrupt master
124 if (if_name != "slave") {
125 // pass it along to our super class
126 return MemObject::getSlavePort(if_name, idx);
127 } else {
128 if (idx >= static_cast<PortID>(slave_ports.size())) {
129 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
130 }
131
132 return *slave_ports[idx];
133 }
134}
135
136RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
137 RubyPort *_port)
138 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
139{
140 DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
141}
142
143RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
144 RubyPort *_port)
145 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
146{
147 DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
148}
149
150RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
151 RubyPort *_port)
152 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
153{
154 DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
155}
156
157RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
158 RubySystem *_system,
159 bool _access_backing_store, PortID id)
160 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
161 ruby_system(_system), access_backing_store(_access_backing_store)
162{
163 DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
164}
165
166bool
167RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
168{
169 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
170 DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
171
172 // send next cycle
173 ruby_port->pioSlavePort.schedTimingResp(
174 pkt, curTick() + g_system_ptr->clockPeriod());
175 return true;
176}
177
178bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
179{
180 // got a response from a device
181 assert(pkt->isResponse());
182
183 // In FS mode, ruby memory will receive pio responses from devices
184 // and it must forward these responses back to the particular CPU.
185 DPRINTF(RubyPort, "Pio response for address %#x, going to %d\n",
186 pkt->getAddr(), pkt->getDest());
187
188 // First we must retrieve the request port from the sender State
189 RubyPort::SenderState *senderState =
190 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
191 MemSlavePort *port = senderState->port;
192 assert(port != NULL);
193 delete senderState;
194
183 // First we must retrieve the request port from the sender State
184 RubyPort::SenderState *senderState =
185 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
186 MemSlavePort *port = senderState->port;
187 assert(port != NULL);
188 delete senderState;
189
190 // In FS mode, ruby memory will receive pio responses from devices
191 // and it must forward these responses back to the particular CPU.
192 DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n",
193 pkt->getAddr(), port->name());
194
195 // attempt to send the response in the next cycle
196 port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
197
198 return true;
199}
200
201bool
202RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
203{
204 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
205
206 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
207 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
208 for (auto it = l.begin(); it != l.end(); ++it) {
209 if (it->contains(pkt->getAddr())) {
210 // generally it is not safe to assume success here as
211 // the port could be blocked
212 bool M5_VAR_USED success =
213 ruby_port->master_ports[i]->sendTimingReq(pkt);
214 assert(success);
215 return true;
216 }
217 }
218 }
219 panic("Should never reach here!\n");
220}
221
222bool
223RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
224{
225 DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
226 pkt->getAddr(), id);
227 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
228
229 if (pkt->memInhibitAsserted())
230 panic("RubyPort should never see an inhibited request\n");
231
232 // Check for pio requests and directly send them to the dedicated
233 // pio port.
234 if (!isPhysMemAddress(pkt->getAddr())) {
235 assert(ruby_port->memMasterPort.isConnected());
236 DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
237 pkt->getAddr());
238
239 // Save the port in the sender state object to be used later to
240 // route the response
241 pkt->pushSenderState(new SenderState(this));
242
243 // send next cycle
244 ruby_port->memMasterPort.schedTimingReq(pkt,
245 curTick() + g_system_ptr->clockPeriod());
246 return true;
247 }
248
195 // attempt to send the response in the next cycle
196 port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
197
198 return true;
199}
200
201bool
202RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
203{
204 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
205
206 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
207 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
208 for (auto it = l.begin(); it != l.end(); ++it) {
209 if (it->contains(pkt->getAddr())) {
210 // generally it is not safe to assume success here as
211 // the port could be blocked
212 bool M5_VAR_USED success =
213 ruby_port->master_ports[i]->sendTimingReq(pkt);
214 assert(success);
215 return true;
216 }
217 }
218 }
219 panic("Should never reach here!\n");
220}
221
222bool
223RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
224{
225 DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
226 pkt->getAddr(), id);
227 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
228
229 if (pkt->memInhibitAsserted())
230 panic("RubyPort should never see an inhibited request\n");
231
232 // Check for pio requests and directly send them to the dedicated
233 // pio port.
234 if (!isPhysMemAddress(pkt->getAddr())) {
235 assert(ruby_port->memMasterPort.isConnected());
236 DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
237 pkt->getAddr());
238
239 // Save the port in the sender state object to be used later to
240 // route the response
241 pkt->pushSenderState(new SenderState(this));
242
243 // send next cycle
244 ruby_port->memMasterPort.schedTimingReq(pkt,
245 curTick() + g_system_ptr->clockPeriod());
246 return true;
247 }
248
249 // Save the port id to be used later to route the response
250 pkt->setSrc(id);
251
252 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
253 RubySystem::getBlockSizeBytes());
254
255 // Submit the ruby request
256 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
257
258 // If the request successfully issued then we should return true.
259 // Otherwise, we need to tell the port to retry at a later point
260 // and return false.
261 if (requestStatus == RequestStatus_Issued) {
249 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
250 RubySystem::getBlockSizeBytes());
251
252 // Submit the ruby request
253 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
254
255 // If the request successfully issued then we should return true.
256 // Otherwise, we need to tell the port to retry at a later point
257 // and return false.
258 if (requestStatus == RequestStatus_Issued) {
259 // Save the port in the sender state object to be used later to
260 // route the response
261 pkt->pushSenderState(new SenderState(this));
262
262 DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
263 pkt->getAddr());
264 return true;
265 }
266
267 //
268 // Unless one is using the ruby tester, record the stalled M5 port for
269 // later retry when the sequencer becomes free.
270 //
271 if (!ruby_port->m_usingRubyTester) {
272 ruby_port->addToRetryList(this);
273 }
274
275 DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
276 pkt->getAddr(), RequestStatus_to_string(requestStatus));
277
278 return false;
279}
280
281void
282RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
283{
284 DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
285
286 // Check for pio requests and directly send them to the dedicated
287 // pio port.
288 if (!isPhysMemAddress(pkt->getAddr())) {
289 RubyPort *ruby_port M5_VAR_USED = static_cast<RubyPort *>(&owner);
290 assert(ruby_port->memMasterPort.isConnected());
291 DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
292 panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
293 }
294
295 assert(pkt->getAddr() + pkt->getSize() <=
296 line_address(Address(pkt->getAddr())).getAddress() +
297 RubySystem::getBlockSizeBytes());
298
299 bool accessSucceeded = false;
300 bool needsResponse = pkt->needsResponse();
301
302 // Do the functional access on ruby memory
303 if (pkt->isRead()) {
304 accessSucceeded = ruby_system->functionalRead(pkt);
305 } else if (pkt->isWrite()) {
306 accessSucceeded = ruby_system->functionalWrite(pkt);
307 } else {
308 panic("Unsupported functional command %s\n", pkt->cmdString());
309 }
310
311 // Unless the requester explicitly said otherwise, generate an error if
312 // the functional request failed
313 if (!accessSucceeded && !pkt->suppressFuncError()) {
314 fatal("Ruby functional %s failed for address %#x\n",
315 pkt->isWrite() ? "write" : "read", pkt->getAddr());
316 }
317
318 if (access_backing_store) {
319 // The attached physmem contains the official version of data.
320 // The following command performs the real functional access.
321 // This line should be removed once Ruby supplies the official version
322 // of data.
323 ruby_system->getPhysMem()->functionalAccess(pkt);
324 }
325
326 // turn packet around to go back to requester if response expected
327 if (needsResponse) {
328 pkt->setFunctionalResponseStatus(accessSucceeded);
329 }
330
331 DPRINTF(RubyPort, "Functional access %s!\n",
332 accessSucceeded ? "successful":"failed");
333}
334
335void
336RubyPort::ruby_hit_callback(PacketPtr pkt)
337{
338 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
339 pkt->getAddr());
340
341 // The packet was destined for memory and has not yet been turned
342 // into a response
343 assert(system->isMemAddr(pkt->getAddr()));
344 assert(pkt->isRequest());
345
263 DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
264 pkt->getAddr());
265 return true;
266 }
267
268 //
269 // Unless one is using the ruby tester, record the stalled M5 port for
270 // later retry when the sequencer becomes free.
271 //
272 if (!ruby_port->m_usingRubyTester) {
273 ruby_port->addToRetryList(this);
274 }
275
276 DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
277 pkt->getAddr(), RequestStatus_to_string(requestStatus));
278
279 return false;
280}
281
282void
283RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
284{
285 DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
286
287 // Check for pio requests and directly send them to the dedicated
288 // pio port.
289 if (!isPhysMemAddress(pkt->getAddr())) {
290 RubyPort *ruby_port M5_VAR_USED = static_cast<RubyPort *>(&owner);
291 assert(ruby_port->memMasterPort.isConnected());
292 DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
293 panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
294 }
295
296 assert(pkt->getAddr() + pkt->getSize() <=
297 line_address(Address(pkt->getAddr())).getAddress() +
298 RubySystem::getBlockSizeBytes());
299
300 bool accessSucceeded = false;
301 bool needsResponse = pkt->needsResponse();
302
303 // Do the functional access on ruby memory
304 if (pkt->isRead()) {
305 accessSucceeded = ruby_system->functionalRead(pkt);
306 } else if (pkt->isWrite()) {
307 accessSucceeded = ruby_system->functionalWrite(pkt);
308 } else {
309 panic("Unsupported functional command %s\n", pkt->cmdString());
310 }
311
312 // Unless the requester explicitly said otherwise, generate an error if
313 // the functional request failed
314 if (!accessSucceeded && !pkt->suppressFuncError()) {
315 fatal("Ruby functional %s failed for address %#x\n",
316 pkt->isWrite() ? "write" : "read", pkt->getAddr());
317 }
318
319 if (access_backing_store) {
320 // The attached physmem contains the official version of data.
321 // The following command performs the real functional access.
322 // This line should be removed once Ruby supplies the official version
323 // of data.
324 ruby_system->getPhysMem()->functionalAccess(pkt);
325 }
326
327 // turn packet around to go back to requester if response expected
328 if (needsResponse) {
329 pkt->setFunctionalResponseStatus(accessSucceeded);
330 }
331
332 DPRINTF(RubyPort, "Functional access %s!\n",
333 accessSucceeded ? "successful":"failed");
334}
335
336void
337RubyPort::ruby_hit_callback(PacketPtr pkt)
338{
339 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
340 pkt->getAddr());
341
342 // The packet was destined for memory and has not yet been turned
343 // into a response
344 assert(system->isMemAddr(pkt->getAddr()));
345 assert(pkt->isRequest());
346
346 // As it has not yet been turned around, the source field tells us
347 // which port it came from.
348 assert(pkt->getSrc() < slave_ports.size());
347 // First we must retrieve the request port from the sender State
348 RubyPort::SenderState *senderState =
349 safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
350 MemSlavePort *port = senderState->port;
351 assert(port != NULL);
352 delete senderState;
349
353
350 slave_ports[pkt->getSrc()]->hitCallback(pkt);
354 port->hitCallback(pkt);
351
352 //
353 // If we had to stall the MemSlavePorts, wake them up because the sequencer
354 // likely has free resources now.
355 //
356 if (!retryList.empty()) {
357 //
358 // Record the current list of ports to retry on a temporary list before
359 // calling sendRetry on those ports. sendRetry will cause an
360 // immediate retry, which may result in the ports being put back on the
361 // list. Therefore we want to clear the retryList before calling
362 // sendRetry.
363 //
364 std::vector<MemSlavePort *> curRetryList(retryList);
365
366 retryList.clear();
367
368 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
369 DPRINTF(RubyPort,
370 "Sequencer may now be free. SendRetry to port %s\n",
371 (*i)->name());
372 (*i)->sendRetry();
373 }
374 }
375
376 testDrainComplete();
377}
378
379void
380RubyPort::testDrainComplete()
381{
382 //If we weren't able to drain before, we might be able to now.
383 if (drainManager != NULL) {
384 unsigned int drainCount = outstandingCount();
385 DPRINTF(Drain, "Drain count: %u\n", drainCount);
386 if (drainCount == 0) {
387 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
388 drainManager->signalDrainDone();
389 // Clear the drain manager once we're done with it.
390 drainManager = NULL;
391 }
392 }
393}
394
395unsigned int
396RubyPort::getChildDrainCount(DrainManager *dm)
397{
398 int count = 0;
399
400 if (memMasterPort.isConnected()) {
401 count += memMasterPort.drain(dm);
402 DPRINTF(Config, "count after pio check %d\n", count);
403 }
404
405 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
406 count += (*p)->drain(dm);
407 DPRINTF(Config, "count after slave port check %d\n", count);
408 }
409
410 for (std::vector<PioMasterPort *>::iterator p = master_ports.begin();
411 p != master_ports.end(); ++p) {
412 count += (*p)->drain(dm);
413 DPRINTF(Config, "count after master port check %d\n", count);
414 }
415
416 DPRINTF(Config, "final count %d\n", count);
417 return count;
418}
419
420unsigned int
421RubyPort::drain(DrainManager *dm)
422{
423 if (isDeadlockEventScheduled()) {
424 descheduleDeadlockEvent();
425 }
426
427 //
428 // If the RubyPort is not empty, then it needs to clear all outstanding
429 // requests before it should call drainManager->signalDrainDone()
430 //
431 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
432 bool need_drain = outstandingCount() > 0;
433
434 //
435 // Also, get the number of child ports that will also need to clear
436 // their buffered requests before they call drainManager->signalDrainDone()
437 //
438 unsigned int child_drain_count = getChildDrainCount(dm);
439
440 // Set status
441 if (need_drain) {
442 drainManager = dm;
443
444 DPRINTF(Drain, "RubyPort not drained\n");
445 setDrainState(Drainable::Draining);
446 return child_drain_count + 1;
447 }
448
449 drainManager = NULL;
450 setDrainState(Drainable::Drained);
451 return child_drain_count;
452}
453
454void
455RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
456{
457 bool needsResponse = pkt->needsResponse();
458
459 // Unless specified at configuraiton, all responses except failed SC
460 // and Flush operations access M5 physical memory.
461 bool accessPhysMem = access_backing_store;
462
463 if (pkt->isLLSC()) {
464 if (pkt->isWrite()) {
465 if (pkt->req->getExtraData() != 0) {
466 //
467 // Successful SC packets convert to normal writes
468 //
469 pkt->convertScToWrite();
470 } else {
471 //
472 // Failed SC packets don't access physical memory and thus
473 // the RubyPort itself must convert it to a response.
474 //
475 accessPhysMem = false;
476 }
477 } else {
478 //
479 // All LL packets convert to normal loads so that M5 PhysMem does
480 // not lock the blocks.
481 //
482 pkt->convertLlToRead();
483 }
484 }
485
486 // Flush requests don't access physical memory
487 if (pkt->isFlush()) {
488 accessPhysMem = false;
489 }
490
491 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
492
493 if (accessPhysMem) {
494 ruby_system->getPhysMem()->functionalAccess(pkt);
495 } else if (needsResponse) {
496 pkt->makeResponse();
497 }
498
499 // turn packet around to go back to requester if response expected
500 if (needsResponse) {
501 DPRINTF(RubyPort, "Sending packet back over port\n");
502 // send next cycle
503 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
504 } else {
505 delete pkt;
506 }
507
508 DPRINTF(RubyPort, "Hit callback done!\n");
509}
510
511AddrRangeList
512RubyPort::PioSlavePort::getAddrRanges() const
513{
514 // at the moment the assumption is that the master does not care
515 AddrRangeList ranges;
516 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
517
518 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
519 ranges.splice(ranges.begin(),
520 ruby_port->master_ports[i]->getAddrRanges());
521 }
522 for (const auto M5_VAR_USED &r : ranges)
523 DPRINTF(RubyPort, "%s\n", r.to_string());
524 return ranges;
525}
526
527bool
528RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
529{
530 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
531 return ruby_port->system->isMemAddr(addr);
532}
533
534void
535RubyPort::ruby_eviction_callback(const Address& address)
536{
537 DPRINTF(RubyPort, "Sending invalidations.\n");
538 // This request is deleted in the stack-allocated packet destructor
539 // when this function exits
540 // TODO: should this really be using funcMasterId?
541 RequestPtr req =
542 new Request(address.getAddress(), 0, 0, Request::funcMasterId);
543 // Use a single packet to signal all snooping ports of the invalidation.
544 // This assumes that snooping ports do NOT modify the packet/request
545 Packet pkt(req, MemCmd::InvalidationReq);
546 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
547 // check if the connected master port is snooping
548 if ((*p)->isSnooping()) {
549 // send as a snoop request
550 (*p)->sendTimingSnoopReq(&pkt);
551 }
552 }
553}
554
555void
556RubyPort::PioMasterPort::recvRangeChange()
557{
558 RubyPort &r = static_cast<RubyPort &>(owner);
559 r.gotAddrRanges--;
560 if (r.gotAddrRanges == 0 && FullSystem) {
561 r.pioSlavePort.sendRangeChange();
562 }
563}
355
356 //
357 // If we had to stall the MemSlavePorts, wake them up because the sequencer
358 // likely has free resources now.
359 //
360 if (!retryList.empty()) {
361 //
362 // Record the current list of ports to retry on a temporary list before
363 // calling sendRetry on those ports. sendRetry will cause an
364 // immediate retry, which may result in the ports being put back on the
365 // list. Therefore we want to clear the retryList before calling
366 // sendRetry.
367 //
368 std::vector<MemSlavePort *> curRetryList(retryList);
369
370 retryList.clear();
371
372 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
373 DPRINTF(RubyPort,
374 "Sequencer may now be free. SendRetry to port %s\n",
375 (*i)->name());
376 (*i)->sendRetry();
377 }
378 }
379
380 testDrainComplete();
381}
382
383void
384RubyPort::testDrainComplete()
385{
386 //If we weren't able to drain before, we might be able to now.
387 if (drainManager != NULL) {
388 unsigned int drainCount = outstandingCount();
389 DPRINTF(Drain, "Drain count: %u\n", drainCount);
390 if (drainCount == 0) {
391 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
392 drainManager->signalDrainDone();
393 // Clear the drain manager once we're done with it.
394 drainManager = NULL;
395 }
396 }
397}
398
399unsigned int
400RubyPort::getChildDrainCount(DrainManager *dm)
401{
402 int count = 0;
403
404 if (memMasterPort.isConnected()) {
405 count += memMasterPort.drain(dm);
406 DPRINTF(Config, "count after pio check %d\n", count);
407 }
408
409 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
410 count += (*p)->drain(dm);
411 DPRINTF(Config, "count after slave port check %d\n", count);
412 }
413
414 for (std::vector<PioMasterPort *>::iterator p = master_ports.begin();
415 p != master_ports.end(); ++p) {
416 count += (*p)->drain(dm);
417 DPRINTF(Config, "count after master port check %d\n", count);
418 }
419
420 DPRINTF(Config, "final count %d\n", count);
421 return count;
422}
423
424unsigned int
425RubyPort::drain(DrainManager *dm)
426{
427 if (isDeadlockEventScheduled()) {
428 descheduleDeadlockEvent();
429 }
430
431 //
432 // If the RubyPort is not empty, then it needs to clear all outstanding
433 // requests before it should call drainManager->signalDrainDone()
434 //
435 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
436 bool need_drain = outstandingCount() > 0;
437
438 //
439 // Also, get the number of child ports that will also need to clear
440 // their buffered requests before they call drainManager->signalDrainDone()
441 //
442 unsigned int child_drain_count = getChildDrainCount(dm);
443
444 // Set status
445 if (need_drain) {
446 drainManager = dm;
447
448 DPRINTF(Drain, "RubyPort not drained\n");
449 setDrainState(Drainable::Draining);
450 return child_drain_count + 1;
451 }
452
453 drainManager = NULL;
454 setDrainState(Drainable::Drained);
455 return child_drain_count;
456}
457
458void
459RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
460{
461 bool needsResponse = pkt->needsResponse();
462
463 // Unless specified at configuraiton, all responses except failed SC
464 // and Flush operations access M5 physical memory.
465 bool accessPhysMem = access_backing_store;
466
467 if (pkt->isLLSC()) {
468 if (pkt->isWrite()) {
469 if (pkt->req->getExtraData() != 0) {
470 //
471 // Successful SC packets convert to normal writes
472 //
473 pkt->convertScToWrite();
474 } else {
475 //
476 // Failed SC packets don't access physical memory and thus
477 // the RubyPort itself must convert it to a response.
478 //
479 accessPhysMem = false;
480 }
481 } else {
482 //
483 // All LL packets convert to normal loads so that M5 PhysMem does
484 // not lock the blocks.
485 //
486 pkt->convertLlToRead();
487 }
488 }
489
490 // Flush requests don't access physical memory
491 if (pkt->isFlush()) {
492 accessPhysMem = false;
493 }
494
495 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
496
497 if (accessPhysMem) {
498 ruby_system->getPhysMem()->functionalAccess(pkt);
499 } else if (needsResponse) {
500 pkt->makeResponse();
501 }
502
503 // turn packet around to go back to requester if response expected
504 if (needsResponse) {
505 DPRINTF(RubyPort, "Sending packet back over port\n");
506 // send next cycle
507 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
508 } else {
509 delete pkt;
510 }
511
512 DPRINTF(RubyPort, "Hit callback done!\n");
513}
514
515AddrRangeList
516RubyPort::PioSlavePort::getAddrRanges() const
517{
518 // at the moment the assumption is that the master does not care
519 AddrRangeList ranges;
520 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
521
522 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
523 ranges.splice(ranges.begin(),
524 ruby_port->master_ports[i]->getAddrRanges());
525 }
526 for (const auto M5_VAR_USED &r : ranges)
527 DPRINTF(RubyPort, "%s\n", r.to_string());
528 return ranges;
529}
530
531bool
532RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
533{
534 RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
535 return ruby_port->system->isMemAddr(addr);
536}
537
538void
539RubyPort::ruby_eviction_callback(const Address& address)
540{
541 DPRINTF(RubyPort, "Sending invalidations.\n");
542 // This request is deleted in the stack-allocated packet destructor
543 // when this function exits
544 // TODO: should this really be using funcMasterId?
545 RequestPtr req =
546 new Request(address.getAddress(), 0, 0, Request::funcMasterId);
547 // Use a single packet to signal all snooping ports of the invalidation.
548 // This assumes that snooping ports do NOT modify the packet/request
549 Packet pkt(req, MemCmd::InvalidationReq);
550 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
551 // check if the connected master port is snooping
552 if ((*p)->isSnooping()) {
553 // send as a snoop request
554 (*p)->sendTimingSnoopReq(&pkt);
555 }
556 }
557}
558
559void
560RubyPort::PioMasterPort::recvRangeChange()
561{
562 RubyPort &r = static_cast<RubyPort &>(owner);
563 r.gotAddrRanges--;
564 if (r.gotAddrRanges == 0 && FullSystem) {
565 r.pioSlavePort.sendRangeChange();
566 }
567}