Deleted Added
sdiff udiff text old ( 11305:78c1e4f5dfc5 ) new ( 11306:a5340a2a24f9 )
full compact
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 */
45
46/**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52#ifndef __MEM_REQUEST_HH__
53#define __MEM_REQUEST_HH__
54
55#include <cassert>
56#include <climits>
57
58#include "base/flags.hh"
59#include "base/misc.hh"
60#include "base/types.hh"
61#include "cpu/inst_seq.hh"
62#include "sim/core.hh"
63
64/**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72namespace ContextSwitchTaskId {
73 enum TaskId {
74 MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75 Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76 DMA = 1023, /* Mostly Table Walker */
77 Unknown = 1024,
78 NumTaskId
79 };
80}
81
82class Request;
83
84typedef Request* RequestPtr;
85typedef uint16_t MasterID;
86
87class Request
88{
89 public:
90 typedef uint32_t FlagsType;
91 typedef uint8_t ArchFlagsType;
92 typedef ::Flags<FlagsType> Flags;
93
94 enum : FlagsType {
95 /**
96 * Architecture specific flags.
97 *
98 * These bits int the flag field are reserved for
99 * architecture-specific code. For example, SPARC uses them to
100 * represent ASIs.
101 */
102 ARCH_BITS = 0x000000FF,
103 /** The request was an instruction fetch. */
104 INST_FETCH = 0x00000100,
105 /** The virtual address is also the physical address. */
106 PHYSICAL = 0x00000200,
107 /**
108 * The request is to an uncacheable address.
109 *
110 * @note Uncacheable accesses may be reordered by CPU models. The
111 * STRICT_ORDER flag should be set if such reordering is
112 * undesirable.
113 */
114 UNCACHEABLE = 0x00000400,
115 /**
116 * The request is required to be strictly ordered by <i>CPU
117 * models</i> and is non-speculative.
118 *
119 * A strictly ordered request is guaranteed to never be
120 * re-ordered or executed speculatively by a CPU model. The
121 * memory system may still reorder requests in caches unless
122 * the UNCACHEABLE flag is set as well.
123 */
124 STRICT_ORDER = 0x00000800,
125 /** This request is to a memory mapped register. */
126 MMAPPED_IPR = 0x00002000,
127 /** This request is made in privileged mode. */
128 PRIVILEGED = 0x00008000,
129
130 /**
131 * This is a write that is targeted and zeroing an entire
132 * cache block. There is no need for a read/modify/write
133 */
134 CACHE_BLOCK_ZERO = 0x00010000,
135
136 /** The request should not cause a memory access. */
137 NO_ACCESS = 0x00080000,
138 /**
139 * This request will lock or unlock the accessed memory. When
140 * used with a load, the access locks the particular chunk of
141 * memory. When used with a store, it unlocks. The rule is
142 * that locked accesses have to be made up of a locked load,
143 * some operation on the data, and then a locked store.
144 */
145 LOCKED_RMW = 0x00100000,
146 /** The request is a Load locked/store conditional. */
147 LLSC = 0x00200000,
148 /** This request is for a memory swap. */
149 MEM_SWAP = 0x00400000,
150 MEM_SWAP_COND = 0x00800000,
151
152 /** The request is a prefetch. */
153 PREFETCH = 0x01000000,
154 /** The request should be prefetched into the exclusive state. */
155 PF_EXCLUSIVE = 0x02000000,
156 /** The request should be marked as LRU. */
157 EVICT_NEXT = 0x04000000,
158 /** The request should be marked with ACQUIRE. */
159 ACQUIRE = 0x00020000,
160 /** The request should be marked with RELEASE. */
161 RELEASE = 0x00040000,
162
163 /** The request should be marked with KERNEL.
164 * Used to indicate the synchronization associated with a GPU kernel
165 * launch or completion.
166 */
167 KERNEL = 0x00001000,
168
169 /**
170 * The request should be handled by the generic IPR code (only
171 * valid together with MMAPPED_IPR)
172 */
173 GENERIC_IPR = 0x08000000,
174
175 /** The request targets the secure memory space. */
176 SECURE = 0x10000000,
177 /** The request is a page table walk */
178 PT_WALK = 0x20000000,
179
180 /**
181 * These flags are *not* cleared when a Request object is
182 * reused (assigned a new address).
183 */
184 STICKY_FLAGS = INST_FETCH
185 };
186
187 /** Master Ids that are statically allocated
188 * @{*/
189 enum : MasterID {
190 /** This master id is used for writeback requests by the caches */
191 wbMasterId = 0,
192 /**
193 * This master id is used for functional requests that
194 * don't come from a particular device
195 */
196 funcMasterId = 1,
197 /** This master id is used for message signaled interrupts */
198 intMasterId = 2,
199 /**
200 * Invalid master id for assertion checking only. It is
201 * invalid behavior to ever send this id as part of a request.
202 */
203 invldMasterId = std::numeric_limits<MasterID>::max()
204 };
205 /** @} */
206
207 typedef uint32_t MemSpaceConfigFlagsType;
208 typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
209
210 enum : MemSpaceConfigFlagsType {
211 /** Has a synchronization scope been set? */
212 SCOPE_VALID = 0x00000001,
213 /** Access has Wavefront scope visibility */
214 WAVEFRONT_SCOPE = 0x00000002,
215 /** Access has Workgroup scope visibility */
216 WORKGROUP_SCOPE = 0x00000004,
217 /** Access has Device (e.g., GPU) scope visibility */
218 DEVICE_SCOPE = 0x00000008,
219 /** Access has System (e.g., CPU + GPU) scope visibility */
220 SYSTEM_SCOPE = 0x00000010,
221
222 /** Global Segment */
223 GLOBAL_SEGMENT = 0x00000020,
224 /** Group Segment */
225 GROUP_SEGMENT = 0x00000040,
226 /** Private Segment */
227 PRIVATE_SEGMENT = 0x00000080,
228 /** Kergarg Segment */
229 KERNARG_SEGMENT = 0x00000100,
230 /** Readonly Segment */
231 READONLY_SEGMENT = 0x00000200,
232 /** Spill Segment */
233 SPILL_SEGMENT = 0x00000400,
234 /** Arg Segment */
235 ARG_SEGMENT = 0x00000800,
236 };
237
238 private:
239 typedef uint8_t PrivateFlagsType;
240 typedef ::Flags<PrivateFlagsType> PrivateFlags;
241
242 enum : PrivateFlagsType {
243 /** Whether or not the size is valid. */
244 VALID_SIZE = 0x00000001,
245 /** Whether or not paddr is valid (has been written yet). */
246 VALID_PADDR = 0x00000002,
247 /** Whether or not the vaddr & asid are valid. */
248 VALID_VADDR = 0x00000004,
249 /** Whether or not the instruction sequence number is valid. */
250 VALID_INST_SEQ_NUM = 0x00000008,
251 /** Whether or not the pc is valid. */
252 VALID_PC = 0x00000010,
253 /** Whether or not the context ID is valid. */
254 VALID_CONTEXT_ID = 0x00000020,
255 VALID_THREAD_ID = 0x00000040,
256 /** Whether or not the sc result is valid. */
257 VALID_EXTRA_DATA = 0x00000080,
258 /**
259 * These flags are *not* cleared when a Request object is reused
260 * (assigned a new address).
261 */
262 STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID | VALID_THREAD_ID
263 };
264
265 private:
266
267 /**
268 * Set up a physical (e.g. device) request in a previously
269 * allocated Request object.
270 */
271 void
272 setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
273 {
274 _paddr = paddr;
275 _size = size;
276 _time = time;
277 _masterId = mid;
278 _flags.clear(~STICKY_FLAGS);
279 _flags.set(flags);
280 privateFlags.clear(~STICKY_PRIVATE_FLAGS);
281 privateFlags.set(VALID_PADDR|VALID_SIZE);
282 depth = 0;
283 accessDelta = 0;
284 //translateDelta = 0;
285 }
286
287 /**
288 * The physical address of the request. Valid only if validPaddr
289 * is set.
290 */
291 Addr _paddr;
292
293 /**
294 * The size of the request. This field must be set when vaddr or
295 * paddr is written via setVirt() or setPhys(), so it is always
296 * valid as long as one of the address fields is valid.
297 */
298 unsigned _size;
299
300 /** The requestor ID which is unique in the system for all ports
301 * that are capable of issuing a transaction
302 */
303 MasterID _masterId;
304
305 /** Flag structure for the request. */
306 Flags _flags;
307
308 /** Memory space configuraiton flag structure for the request. */
309 MemSpaceConfigFlags _memSpaceConfigFlags;
310
311 /** Private flags for field validity checking. */
312 PrivateFlags privateFlags;
313
314 /**
315 * The time this request was started. Used to calculate
316 * latencies. This field is set to curTick() any time paddr or vaddr
317 * is written.
318 */
319 Tick _time;
320
321 /**
322 * The task id associated with this request
323 */
324 uint32_t _taskId;
325
326 /** The address space ID. */
327 int _asid;
328
329 /** The virtual address of the request. */
330 Addr _vaddr;
331
332 /**
333 * Extra data for the request, such as the return value of
334 * store conditional or the compare value for a CAS. */
335 uint64_t _extraData;
336
337 /** The context ID (for statistics, typically). */
338 ContextID _contextId;
339 /** The thread ID (id within this CPU) */
340 ThreadID _threadId;
341
342 /** program counter of initiating access; for tracing/debugging */
343 Addr _pc;
344
345 /** Sequence number of the instruction that creates the request */
346 InstSeqNum _reqInstSeqNum;
347
348 public:
349
350 /**
351 * Minimal constructor. No fields are initialized. (Note that
352 * _flags and privateFlags are cleared by Flags default
353 * constructor.)
354 */
355 Request()
356 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
357 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
358 _extraData(0), _contextId(0), _threadId(0), _pc(0),
359 _reqInstSeqNum(0), translateDelta(0), accessDelta(0), depth(0)
360 {}
361
362 Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
363 InstSeqNum seq_num, ContextID cid, ThreadID tid)
364 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
365 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
366 _extraData(0), _contextId(0), _threadId(0), _pc(0),
367 _reqInstSeqNum(seq_num), translateDelta(0), accessDelta(0), depth(0)
368 {
369 setPhys(paddr, size, flags, mid, curTick());
370 setThreadContext(cid, tid);
371 privateFlags.set(VALID_INST_SEQ_NUM);
372 }
373
374 /**
375 * Constructor for physical (e.g. device) requests. Initializes
376 * just physical address, size, flags, and timestamp (to curTick()).
377 * These fields are adequate to perform a request.
378 */
379 Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
380 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
381 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
382 _extraData(0), _contextId(0), _threadId(0), _pc(0),
383 _reqInstSeqNum(0), translateDelta(0), accessDelta(0), depth(0)
384 {
385 setPhys(paddr, size, flags, mid, curTick());
386 }
387
388 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
389 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
390 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
391 _extraData(0), _contextId(0), _threadId(0), _pc(0),
392 _reqInstSeqNum(0), translateDelta(0), accessDelta(0), depth(0)
393 {
394 setPhys(paddr, size, flags, mid, time);
395 }
396
397 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
398 Addr pc)
399 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
400 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
401 _extraData(0), _contextId(0), _threadId(0), _pc(0),
402 _reqInstSeqNum(0), translateDelta(0), accessDelta(0), depth(0)
403 {
404 setPhys(paddr, size, flags, mid, time);
405 privateFlags.set(VALID_PC);
406 _pc = pc;
407 }
408
409 Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
410 Addr pc, ContextID cid, ThreadID tid)
411 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
412 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
413 _extraData(0), _contextId(0), _threadId(0), _pc(0),
414 _reqInstSeqNum(0), translateDelta(0), accessDelta(0), depth(0)
415 {
416 setVirt(asid, vaddr, size, flags, mid, pc);
417 setThreadContext(cid, tid);
418 }
419
420 ~Request() {}
421
422 /**
423 * Set up CPU and thread numbers.
424 */
425 void
426 setThreadContext(ContextID context_id, ThreadID tid)
427 {
428 _contextId = context_id;
429 _threadId = tid;
430 privateFlags.set(VALID_CONTEXT_ID|VALID_THREAD_ID);
431 }
432
433 /**
434 * Set up a virtual (e.g., CPU) request in a previously
435 * allocated Request object.
436 */
437 void
438 setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
439 Addr pc)
440 {
441 _asid = asid;
442 _vaddr = vaddr;
443 _size = size;
444 _masterId = mid;
445 _pc = pc;
446 _time = curTick();
447
448 _flags.clear(~STICKY_FLAGS);
449 _flags.set(flags);
450 privateFlags.clear(~STICKY_PRIVATE_FLAGS);
451 privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
452 depth = 0;
453 accessDelta = 0;
454 translateDelta = 0;
455 }
456
457 /**
458 * Set just the physical address. This usually used to record the
459 * result of a translation. However, when using virtualized CPUs
460 * setPhys() is sometimes called to finalize a physical address
461 * without a virtual address, so we can't check if the virtual
462 * address is valid.
463 */
464 void
465 setPaddr(Addr paddr)
466 {
467 _paddr = paddr;
468 privateFlags.set(VALID_PADDR);
469 }
470
471 /**
472 * Generate two requests as if this request had been split into two
473 * pieces. The original request can't have been translated already.
474 */
475 void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
476 {
477 assert(privateFlags.isSet(VALID_VADDR));
478 assert(privateFlags.noneSet(VALID_PADDR));
479 assert(split_addr > _vaddr && split_addr < _vaddr + _size);
480 req1 = new Request(*this);
481 req2 = new Request(*this);
482 req1->_size = split_addr - _vaddr;
483 req2->_vaddr = split_addr;
484 req2->_size = _size - req1->_size;
485 }
486
487 /**
488 * Accessor for paddr.
489 */
490 bool
491 hasPaddr() const
492 {
493 return privateFlags.isSet(VALID_PADDR);
494 }
495
496 Addr
497 getPaddr() const
498 {
499 assert(privateFlags.isSet(VALID_PADDR));
500 return _paddr;
501 }
502
503 /**
504 * Time for the TLB/table walker to successfully translate this request.
505 */
506 Tick translateDelta;
507
508 /**
509 * Access latency to complete this memory transaction not including
510 * translation time.
511 */
512 Tick accessDelta;
513
514 /**
515 * Level of the cache hierachy where this request was responded to
516 * (e.g. 0 = L1; 1 = L2).
517 */
518 mutable int depth;
519
520 /**
521 * Accessor for size.
522 */
523 bool
524 hasSize() const
525 {
526 return privateFlags.isSet(VALID_SIZE);
527 }
528
529 unsigned
530 getSize() const
531 {
532 assert(privateFlags.isSet(VALID_SIZE));
533 return _size;
534 }
535
536 /** Accessor for time. */
537 Tick
538 time() const
539 {
540 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
541 return _time;
542 }
543
544 /** Accessor for flags. */
545 Flags
546 getFlags()
547 {
548 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
549 return _flags;
550 }
551
552 /** Note that unlike other accessors, this function sets *specific
553 flags* (ORs them in); it does not assign its argument to the
554 _flags field. Thus this method should rightly be called
555 setFlags() and not just flags(). */
556 void
557 setFlags(Flags flags)
558 {
559 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
560 _flags.set(flags);
561 }
562
563 void
564 setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
565 {
566 assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
567 _memSpaceConfigFlags.set(extraFlags);
568 }
569
570 /** Accessor function for vaddr.*/
571 bool
572 hasVaddr() const
573 {
574 return privateFlags.isSet(VALID_VADDR);
575 }
576
577 Addr
578 getVaddr() const
579 {
580 assert(privateFlags.isSet(VALID_VADDR));
581 return _vaddr;
582 }
583
584 /** Accesssor for the requestor id. */
585 MasterID
586 masterId() const
587 {
588 return _masterId;
589 }
590
591 uint32_t
592 taskId() const
593 {
594 return _taskId;
595 }
596
597 void
598 taskId(uint32_t id) {
599 _taskId = id;
600 }
601
602 /** Accessor function for asid.*/
603 int
604 getAsid() const
605 {
606 assert(privateFlags.isSet(VALID_VADDR));
607 return _asid;
608 }
609
610 /** Accessor function for asid.*/
611 void
612 setAsid(int asid)
613 {
614 _asid = asid;
615 }
616
617 /** Accessor function for architecture-specific flags.*/
618 ArchFlagsType
619 getArchFlags() const
620 {
621 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
622 return _flags & ARCH_BITS;
623 }
624
625 /** Accessor function to check if sc result is valid. */
626 bool
627 extraDataValid() const
628 {
629 return privateFlags.isSet(VALID_EXTRA_DATA);
630 }
631
632 /** Accessor function for store conditional return value.*/
633 uint64_t
634 getExtraData() const
635 {
636 assert(privateFlags.isSet(VALID_EXTRA_DATA));
637 return _extraData;
638 }
639
640 /** Accessor function for store conditional return value.*/
641 void
642 setExtraData(uint64_t extraData)
643 {
644 _extraData = extraData;
645 privateFlags.set(VALID_EXTRA_DATA);
646 }
647
648 bool
649 hasContextId() const
650 {
651 return privateFlags.isSet(VALID_CONTEXT_ID);
652 }
653
654 /** Accessor function for context ID.*/
655 ContextID
656 contextId() const
657 {
658 assert(privateFlags.isSet(VALID_CONTEXT_ID));
659 return _contextId;
660 }
661
662 /** Accessor function for thread ID. */
663 ThreadID
664 threadId() const
665 {
666 assert(privateFlags.isSet(VALID_THREAD_ID));
667 return _threadId;
668 }
669
670 void
671 setPC(Addr pc)
672 {
673 privateFlags.set(VALID_PC);
674 _pc = pc;
675 }
676
677 bool
678 hasPC() const
679 {
680 return privateFlags.isSet(VALID_PC);
681 }
682
683 /** Accessor function for pc.*/
684 Addr
685 getPC() const
686 {
687 assert(privateFlags.isSet(VALID_PC));
688 return _pc;
689 }
690
691 /**
692 * Increment/Get the depth at which this request is responded to.
693 * This currently happens when the request misses in any cache level.
694 */
695 void incAccessDepth() const { depth++; }
696 int getAccessDepth() const { return depth; }
697
698 /**
699 * Set/Get the time taken for this request to be successfully translated.
700 */
701 void setTranslateLatency() { translateDelta = curTick() - _time; }
702 Tick getTranslateLatency() const { return translateDelta; }
703
704 /**
705 * Set/Get the time taken to complete this request's access, not including
706 * the time to successfully translate the request.
707 */
708 void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
709 Tick getAccessLatency() const { return accessDelta; }
710
711 /**
712 * Accessor for the sequence number of instruction that creates the
713 * request.
714 */
715 bool
716 hasInstSeqNum() const
717 {
718 return privateFlags.isSet(VALID_INST_SEQ_NUM);
719 }
720
721 InstSeqNum
722 getReqInstSeqNum() const
723 {
724 assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
725 return _reqInstSeqNum;
726 }
727
728 void
729 setReqInstSeqNum(const InstSeqNum seq_num)
730 {
731 privateFlags.set(VALID_INST_SEQ_NUM);
732 _reqInstSeqNum = seq_num;
733 }
734
735 /** Accessor functions for flags. Note that these are for testing
736 only; setting flags should be done via setFlags(). */
737 bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
738 bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
739 bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
740 bool isPrefetch() const { return _flags.isSet(PREFETCH); }
741 bool isLLSC() const { return _flags.isSet(LLSC); }
742 bool isPriv() const { return _flags.isSet(PRIVILEGED); }
743 bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
744 bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
745 bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
746 bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
747 bool isSecure() const { return _flags.isSet(SECURE); }
748 bool isPTWalk() const { return _flags.isSet(PT_WALK); }
749 bool isAcquire() const { return _flags.isSet(ACQUIRE); }
750 bool isRelease() const { return _flags.isSet(RELEASE); }
751 bool isKernel() const { return _flags.isSet(KERNEL); }
752
753 /**
754 * Accessor functions for the memory space configuration flags and used by
755 * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
756 * these are for testing only; setting extraFlags should be done via
757 * setMemSpaceConfigFlags().
758 */
759 bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
760
761 bool
762 isWavefrontScope() const
763 {
764 assert(isScoped());
765 return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
766 }
767
768 bool
769 isWorkgroupScope() const
770 {
771 assert(isScoped());
772 return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
773 }
774
775 bool
776 isDeviceScope() const
777 {
778 assert(isScoped());
779 return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
780 }
781
782 bool
783 isSystemScope() const
784 {
785 assert(isScoped());
786 return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
787 }
788
789 bool
790 isGlobalSegment() const
791 {
792 return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
793 (!isGroupSegment() && !isPrivateSegment() &&
794 !isKernargSegment() && !isReadonlySegment() &&
795 !isSpillSegment() && !isArgSegment());
796 }
797
798 bool
799 isGroupSegment() const
800 {
801 return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
802 }
803
804 bool
805 isPrivateSegment() const
806 {
807 return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
808 }
809
810 bool
811 isKernargSegment() const
812 {
813 return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
814 }
815
816 bool
817 isReadonlySegment() const
818 {
819 return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
820 }
821
822 bool
823 isSpillSegment() const
824 {
825 return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
826 }
827
828 bool
829 isArgSegment() const
830 {
831 return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
832 }
833};
834
835#endif // __MEM_REQUEST_HH__