Deleted Added
sdiff udiff text old ( 11305:78c1e4f5dfc5 ) new ( 11306:a5340a2a24f9 )
full compact
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 */
45
46/**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52#ifndef __MEM_REQUEST_HH__
53#define __MEM_REQUEST_HH__
54
55#include <cassert>
56#include <climits>
57
58#include "base/flags.hh"
59#include "base/misc.hh"
60#include "base/types.hh"
61#include "cpu/inst_seq.hh"
62#include "sim/core.hh"
63
64/**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72namespace ContextSwitchTaskId {
73 enum TaskId {
74 MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75 Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76 DMA = 1023, /* Mostly Table Walker */
77 Unknown = 1024,
78 NumTaskId
79 };
80}
81
82class Request;
83
84typedef Request* RequestPtr;
85typedef uint16_t MasterID;
86
87class Request
88{
89 public:
90 typedef uint32_t FlagsType;
91 typedef uint8_t ArchFlagsType;
92 typedef ::Flags<FlagsType> Flags;
93
94 enum : FlagsType {
95 /**
96 * Architecture specific flags.
97 *
98 * These bits int the flag field are reserved for
99 * architecture-specific code. For example, SPARC uses them to
100 * represent ASIs.
101 */
102 ARCH_BITS = 0x000000FF,
103 /** The request was an instruction fetch. */
104 INST_FETCH = 0x00000100,
105 /** The virtual address is also the physical address. */
106 PHYSICAL = 0x00000200,
107 /**
108 * The request is to an uncacheable address.
109 *
110 * @note Uncacheable accesses may be reordered by CPU models. The
111 * STRICT_ORDER flag should be set if such reordering is
112 * undesirable.
113 */
114 UNCACHEABLE = 0x00000400,
115 /**
116 * The request is required to be strictly ordered by <i>CPU
117 * models</i> and is non-speculative.
118 *
119 * A strictly ordered request is guaranteed to never be
120 * re-ordered or executed speculatively by a CPU model. The
121 * memory system may still reorder requests in caches unless
122 * the UNCACHEABLE flag is set as well.
123 */
124 STRICT_ORDER = 0x00000800,
125 /** This request is to a memory mapped register. */
126 MMAPPED_IPR = 0x00002000,
127 /** This request is made in privileged mode. */
128 PRIVILEGED = 0x00008000,
129
130 /**
131 * This is a write that is targeted and zeroing an entire
132 * cache block. There is no need for a read/modify/write
133 */
134 CACHE_BLOCK_ZERO = 0x00010000,
135
136 /** The request should not cause a memory access. */
137 NO_ACCESS = 0x00080000,
138 /**
139 * This request will lock or unlock the accessed memory. When
140 * used with a load, the access locks the particular chunk of
141 * memory. When used with a store, it unlocks. The rule is
142 * that locked accesses have to be made up of a locked load,
143 * some operation on the data, and then a locked store.
144 */
145 LOCKED_RMW = 0x00100000,
146 /** The request is a Load locked/store conditional. */
147 LLSC = 0x00200000,
148 /** This request is for a memory swap. */
149 MEM_SWAP = 0x00400000,
150 MEM_SWAP_COND = 0x00800000,
151
152 /** The request is a prefetch. */
153 PREFETCH = 0x01000000,
154 /** The request should be prefetched into the exclusive state. */
155 PF_EXCLUSIVE = 0x02000000,
156 /** The request should be marked as LRU. */
157 EVICT_NEXT = 0x04000000,
158 /** The request should be marked with ACQUIRE. */
159 ACQUIRE = 0x00020000,
160 /** The request should be marked with RELEASE. */
161 RELEASE = 0x00040000,
162
163 /** The request is an atomic that returns data. */
164 ATOMIC_RETURN_OP = 0x40000000,
165 /** The request is an atomic that does not return data. */
166 ATOMIC_NO_RETURN_OP = 0x80000000,
167
168 /** The request should be marked with KERNEL.
169 * Used to indicate the synchronization associated with a GPU kernel
170 * launch or completion.
171 */
172 KERNEL = 0x00001000,
173
174 /**
175 * The request should be handled by the generic IPR code (only
176 * valid together with MMAPPED_IPR)
177 */
178 GENERIC_IPR = 0x08000000,
179
180 /** The request targets the secure memory space. */
181 SECURE = 0x10000000,
182 /** The request is a page table walk */
183 PT_WALK = 0x20000000,
184
185 /**
186 * These flags are *not* cleared when a Request object is
187 * reused (assigned a new address).
188 */
189 STICKY_FLAGS = INST_FETCH
190 };
191
192 /** Master Ids that are statically allocated
193 * @{*/
194 enum : MasterID {
195 /** This master id is used for writeback requests by the caches */
196 wbMasterId = 0,
197 /**
198 * This master id is used for functional requests that
199 * don't come from a particular device
200 */
201 funcMasterId = 1,
202 /** This master id is used for message signaled interrupts */
203 intMasterId = 2,
204 /**
205 * Invalid master id for assertion checking only. It is
206 * invalid behavior to ever send this id as part of a request.
207 */
208 invldMasterId = std::numeric_limits<MasterID>::max()
209 };
210 /** @} */
211
212 typedef uint32_t MemSpaceConfigFlagsType;
213 typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
214
215 enum : MemSpaceConfigFlagsType {
216 /** Has a synchronization scope been set? */
217 SCOPE_VALID = 0x00000001,
218 /** Access has Wavefront scope visibility */
219 WAVEFRONT_SCOPE = 0x00000002,
220 /** Access has Workgroup scope visibility */
221 WORKGROUP_SCOPE = 0x00000004,
222 /** Access has Device (e.g., GPU) scope visibility */
223 DEVICE_SCOPE = 0x00000008,
224 /** Access has System (e.g., CPU + GPU) scope visibility */
225 SYSTEM_SCOPE = 0x00000010,
226
227 /** Global Segment */
228 GLOBAL_SEGMENT = 0x00000020,
229 /** Group Segment */
230 GROUP_SEGMENT = 0x00000040,
231 /** Private Segment */
232 PRIVATE_SEGMENT = 0x00000080,
233 /** Kergarg Segment */
234 KERNARG_SEGMENT = 0x00000100,
235 /** Readonly Segment */
236 READONLY_SEGMENT = 0x00000200,
237 /** Spill Segment */
238 SPILL_SEGMENT = 0x00000400,
239 /** Arg Segment */
240 ARG_SEGMENT = 0x00000800,
241 };
242
243 private:
244 typedef uint8_t PrivateFlagsType;
245 typedef ::Flags<PrivateFlagsType> PrivateFlags;
246
247 enum : PrivateFlagsType {
248 /** Whether or not the size is valid. */
249 VALID_SIZE = 0x00000001,
250 /** Whether or not paddr is valid (has been written yet). */
251 VALID_PADDR = 0x00000002,
252 /** Whether or not the vaddr & asid are valid. */
253 VALID_VADDR = 0x00000004,
254 /** Whether or not the instruction sequence number is valid. */
255 VALID_INST_SEQ_NUM = 0x00000008,
256 /** Whether or not the pc is valid. */
257 VALID_PC = 0x00000010,
258 /** Whether or not the context ID is valid. */
259 VALID_CONTEXT_ID = 0x00000020,
260 VALID_THREAD_ID = 0x00000040,
261 /** Whether or not the sc result is valid. */
262 VALID_EXTRA_DATA = 0x00000080,
263 /**
264 * These flags are *not* cleared when a Request object is reused
265 * (assigned a new address).
266 */
267 STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID | VALID_THREAD_ID
268 };
269
270 private:
271
272 /**
273 * Set up a physical (e.g. device) request in a previously
274 * allocated Request object.
275 */
276 void
277 setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
278 {
279 _paddr = paddr;
280 _size = size;
281 _time = time;
282 _masterId = mid;
283 _flags.clear(~STICKY_FLAGS);
284 _flags.set(flags);
285 privateFlags.clear(~STICKY_PRIVATE_FLAGS);
286 privateFlags.set(VALID_PADDR|VALID_SIZE);
287 depth = 0;
288 accessDelta = 0;
289 //translateDelta = 0;
290 }
291
292 /**
293 * The physical address of the request. Valid only if validPaddr
294 * is set.
295 */
296 Addr _paddr;
297
298 /**
299 * The size of the request. This field must be set when vaddr or
300 * paddr is written via setVirt() or setPhys(), so it is always
301 * valid as long as one of the address fields is valid.
302 */
303 unsigned _size;
304
305 /** The requestor ID which is unique in the system for all ports
306 * that are capable of issuing a transaction
307 */
308 MasterID _masterId;
309
310 /** Flag structure for the request. */
311 Flags _flags;
312
313 /** Memory space configuraiton flag structure for the request. */
314 MemSpaceConfigFlags _memSpaceConfigFlags;
315
316 /** Private flags for field validity checking. */
317 PrivateFlags privateFlags;
318
319 /**
320 * The time this request was started. Used to calculate
321 * latencies. This field is set to curTick() any time paddr or vaddr
322 * is written.
323 */
324 Tick _time;
325
326 /**
327 * The task id associated with this request
328 */
329 uint32_t _taskId;
330
331 /** The address space ID. */
332 int _asid;
333
334 /** The virtual address of the request. */
335 Addr _vaddr;
336
337 /**
338 * Extra data for the request, such as the return value of
339 * store conditional or the compare value for a CAS. */
340 uint64_t _extraData;
341
342 /** The context ID (for statistics, typically). */
343 ContextID _contextId;
344 /** The thread ID (id within this CPU) */
345 ThreadID _threadId;
346
347 /** program counter of initiating access; for tracing/debugging */
348 Addr _pc;
349
350 /** Sequence number of the instruction that creates the request */
351 InstSeqNum _reqInstSeqNum;
352
353 /** A pointer to an atomic operation */
354 AtomicOpFunctor *atomicOpFunctor;
355
356 public:
357
358 /**
359 * Minimal constructor. No fields are initialized. (Note that
360 * _flags and privateFlags are cleared by Flags default
361 * constructor.)
362 */
363 Request()
364 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
365 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
366 _extraData(0), _contextId(0), _threadId(0), _pc(0),
367 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
368 accessDelta(0), depth(0)
369 {}
370
371 Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
372 InstSeqNum seq_num, ContextID cid, ThreadID tid)
373 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
374 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
375 _extraData(0), _contextId(0), _threadId(0), _pc(0),
376 _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0),
377 accessDelta(0), depth(0)
378 {
379 setPhys(paddr, size, flags, mid, curTick());
380 setThreadContext(cid, tid);
381 privateFlags.set(VALID_INST_SEQ_NUM);
382 }
383
384 /**
385 * Constructor for physical (e.g. device) requests. Initializes
386 * just physical address, size, flags, and timestamp (to curTick()).
387 * These fields are adequate to perform a request.
388 */
389 Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
390 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
391 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
392 _extraData(0), _contextId(0), _threadId(0), _pc(0),
393 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
394 accessDelta(0), depth(0)
395 {
396 setPhys(paddr, size, flags, mid, curTick());
397 }
398
399 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
400 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
401 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
402 _extraData(0), _contextId(0), _threadId(0), _pc(0),
403 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
404 accessDelta(0), depth(0)
405 {
406 setPhys(paddr, size, flags, mid, time);
407 }
408
409 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
410 Addr pc)
411 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
412 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
413 _extraData(0), _contextId(0), _threadId(0), _pc(pc),
414 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
415 accessDelta(0), depth(0)
416 {
417 setPhys(paddr, size, flags, mid, time);
418 privateFlags.set(VALID_PC);
419 }
420
421 Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
422 Addr pc, ContextID cid, ThreadID tid)
423 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
424 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
425 _extraData(0), _contextId(0), _threadId(0), _pc(0),
426 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
427 accessDelta(0), depth(0)
428 {
429 setVirt(asid, vaddr, size, flags, mid, pc);
430 setThreadContext(cid, tid);
431 }
432
433 Request(int asid, Addr vaddr, int size, Flags flags, MasterID mid, Addr pc,
434 int cid, ThreadID tid, AtomicOpFunctor *atomic_op)
435 : atomicOpFunctor(atomic_op)
436 {
437 setVirt(asid, vaddr, size, flags, mid, pc);
438 setThreadContext(cid, tid);
439 }
440
441 ~Request()
442 {
443 if (hasAtomicOpFunctor()) {
444 delete atomicOpFunctor;
445 }
446 }
447
448 /**
449 * Set up CPU and thread numbers.
450 */
451 void
452 setThreadContext(ContextID context_id, ThreadID tid)
453 {
454 _contextId = context_id;
455 _threadId = tid;
456 privateFlags.set(VALID_CONTEXT_ID|VALID_THREAD_ID);
457 }
458
459 /**
460 * Set up a virtual (e.g., CPU) request in a previously
461 * allocated Request object.
462 */
463 void
464 setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
465 Addr pc)
466 {
467 _asid = asid;
468 _vaddr = vaddr;
469 _size = size;
470 _masterId = mid;
471 _pc = pc;
472 _time = curTick();
473
474 _flags.clear(~STICKY_FLAGS);
475 _flags.set(flags);
476 privateFlags.clear(~STICKY_PRIVATE_FLAGS);
477 privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
478 depth = 0;
479 accessDelta = 0;
480 translateDelta = 0;
481 }
482
483 /**
484 * Set just the physical address. This usually used to record the
485 * result of a translation. However, when using virtualized CPUs
486 * setPhys() is sometimes called to finalize a physical address
487 * without a virtual address, so we can't check if the virtual
488 * address is valid.
489 */
490 void
491 setPaddr(Addr paddr)
492 {
493 _paddr = paddr;
494 privateFlags.set(VALID_PADDR);
495 }
496
497 /**
498 * Generate two requests as if this request had been split into two
499 * pieces. The original request can't have been translated already.
500 */
501 void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
502 {
503 assert(privateFlags.isSet(VALID_VADDR));
504 assert(privateFlags.noneSet(VALID_PADDR));
505 assert(split_addr > _vaddr && split_addr < _vaddr + _size);
506 req1 = new Request(*this);
507 req2 = new Request(*this);
508 req1->_size = split_addr - _vaddr;
509 req2->_vaddr = split_addr;
510 req2->_size = _size - req1->_size;
511 }
512
513 /**
514 * Accessor for paddr.
515 */
516 bool
517 hasPaddr() const
518 {
519 return privateFlags.isSet(VALID_PADDR);
520 }
521
522 Addr
523 getPaddr() const
524 {
525 assert(privateFlags.isSet(VALID_PADDR));
526 return _paddr;
527 }
528
529 /**
530 * Time for the TLB/table walker to successfully translate this request.
531 */
532 Tick translateDelta;
533
534 /**
535 * Access latency to complete this memory transaction not including
536 * translation time.
537 */
538 Tick accessDelta;
539
540 /**
541 * Level of the cache hierachy where this request was responded to
542 * (e.g. 0 = L1; 1 = L2).
543 */
544 mutable int depth;
545
546 /**
547 * Accessor for size.
548 */
549 bool
550 hasSize() const
551 {
552 return privateFlags.isSet(VALID_SIZE);
553 }
554
555 unsigned
556 getSize() const
557 {
558 assert(privateFlags.isSet(VALID_SIZE));
559 return _size;
560 }
561
562 /** Accessor for time. */
563 Tick
564 time() const
565 {
566 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
567 return _time;
568 }
569
570 /**
571 * Accessor for atomic-op functor.
572 */
573 bool
574 hasAtomicOpFunctor()
575 {
576 return atomicOpFunctor != NULL;
577 }
578
579 AtomicOpFunctor *
580 getAtomicOpFunctor()
581 {
582 assert(atomicOpFunctor != NULL);
583 return atomicOpFunctor;
584 }
585
586 /** Accessor for flags. */
587 Flags
588 getFlags()
589 {
590 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
591 return _flags;
592 }
593
594 /** Note that unlike other accessors, this function sets *specific
595 flags* (ORs them in); it does not assign its argument to the
596 _flags field. Thus this method should rightly be called
597 setFlags() and not just flags(). */
598 void
599 setFlags(Flags flags)
600 {
601 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
602 _flags.set(flags);
603 }
604
605 void
606 setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
607 {
608 assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
609 _memSpaceConfigFlags.set(extraFlags);
610 }
611
612 /** Accessor function for vaddr.*/
613 bool
614 hasVaddr() const
615 {
616 return privateFlags.isSet(VALID_VADDR);
617 }
618
619 Addr
620 getVaddr() const
621 {
622 assert(privateFlags.isSet(VALID_VADDR));
623 return _vaddr;
624 }
625
626 /** Accesssor for the requestor id. */
627 MasterID
628 masterId() const
629 {
630 return _masterId;
631 }
632
633 uint32_t
634 taskId() const
635 {
636 return _taskId;
637 }
638
639 void
640 taskId(uint32_t id) {
641 _taskId = id;
642 }
643
644 /** Accessor function for asid.*/
645 int
646 getAsid() const
647 {
648 assert(privateFlags.isSet(VALID_VADDR));
649 return _asid;
650 }
651
652 /** Accessor function for asid.*/
653 void
654 setAsid(int asid)
655 {
656 _asid = asid;
657 }
658
659 /** Accessor function for architecture-specific flags.*/
660 ArchFlagsType
661 getArchFlags() const
662 {
663 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
664 return _flags & ARCH_BITS;
665 }
666
667 /** Accessor function to check if sc result is valid. */
668 bool
669 extraDataValid() const
670 {
671 return privateFlags.isSet(VALID_EXTRA_DATA);
672 }
673
674 /** Accessor function for store conditional return value.*/
675 uint64_t
676 getExtraData() const
677 {
678 assert(privateFlags.isSet(VALID_EXTRA_DATA));
679 return _extraData;
680 }
681
682 /** Accessor function for store conditional return value.*/
683 void
684 setExtraData(uint64_t extraData)
685 {
686 _extraData = extraData;
687 privateFlags.set(VALID_EXTRA_DATA);
688 }
689
690 bool
691 hasContextId() const
692 {
693 return privateFlags.isSet(VALID_CONTEXT_ID);
694 }
695
696 /** Accessor function for context ID.*/
697 ContextID
698 contextId() const
699 {
700 assert(privateFlags.isSet(VALID_CONTEXT_ID));
701 return _contextId;
702 }
703
704 /** Accessor function for thread ID. */
705 ThreadID
706 threadId() const
707 {
708 assert(privateFlags.isSet(VALID_THREAD_ID));
709 return _threadId;
710 }
711
712 void
713 setPC(Addr pc)
714 {
715 privateFlags.set(VALID_PC);
716 _pc = pc;
717 }
718
719 bool
720 hasPC() const
721 {
722 return privateFlags.isSet(VALID_PC);
723 }
724
725 /** Accessor function for pc.*/
726 Addr
727 getPC() const
728 {
729 assert(privateFlags.isSet(VALID_PC));
730 return _pc;
731 }
732
733 /**
734 * Increment/Get the depth at which this request is responded to.
735 * This currently happens when the request misses in any cache level.
736 */
737 void incAccessDepth() const { depth++; }
738 int getAccessDepth() const { return depth; }
739
740 /**
741 * Set/Get the time taken for this request to be successfully translated.
742 */
743 void setTranslateLatency() { translateDelta = curTick() - _time; }
744 Tick getTranslateLatency() const { return translateDelta; }
745
746 /**
747 * Set/Get the time taken to complete this request's access, not including
748 * the time to successfully translate the request.
749 */
750 void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
751 Tick getAccessLatency() const { return accessDelta; }
752
753 /**
754 * Accessor for the sequence number of instruction that creates the
755 * request.
756 */
757 bool
758 hasInstSeqNum() const
759 {
760 return privateFlags.isSet(VALID_INST_SEQ_NUM);
761 }
762
763 InstSeqNum
764 getReqInstSeqNum() const
765 {
766 assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
767 return _reqInstSeqNum;
768 }
769
770 void
771 setReqInstSeqNum(const InstSeqNum seq_num)
772 {
773 privateFlags.set(VALID_INST_SEQ_NUM);
774 _reqInstSeqNum = seq_num;
775 }
776
777 /** Accessor functions for flags. Note that these are for testing
778 only; setting flags should be done via setFlags(). */
779 bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
780 bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
781 bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
782 bool isPrefetch() const { return _flags.isSet(PREFETCH); }
783 bool isLLSC() const { return _flags.isSet(LLSC); }
784 bool isPriv() const { return _flags.isSet(PRIVILEGED); }
785 bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
786 bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
787 bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
788 bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
789 bool isSecure() const { return _flags.isSet(SECURE); }
790 bool isPTWalk() const { return _flags.isSet(PT_WALK); }
791 bool isAcquire() const { return _flags.isSet(ACQUIRE); }
792 bool isRelease() const { return _flags.isSet(RELEASE); }
793 bool isKernel() const { return _flags.isSet(KERNEL); }
794 bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); }
795 bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); }
796
797 bool
798 isAtomic() const
799 {
800 return _flags.isSet(ATOMIC_RETURN_OP) ||
801 _flags.isSet(ATOMIC_NO_RETURN_OP);
802 }
803
804 /**
805 * Accessor functions for the memory space configuration flags and used by
806 * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
807 * these are for testing only; setting extraFlags should be done via
808 * setMemSpaceConfigFlags().
809 */
810 bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
811
812 bool
813 isWavefrontScope() const
814 {
815 assert(isScoped());
816 return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
817 }
818
819 bool
820 isWorkgroupScope() const
821 {
822 assert(isScoped());
823 return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
824 }
825
826 bool
827 isDeviceScope() const
828 {
829 assert(isScoped());
830 return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
831 }
832
833 bool
834 isSystemScope() const
835 {
836 assert(isScoped());
837 return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
838 }
839
840 bool
841 isGlobalSegment() const
842 {
843 return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
844 (!isGroupSegment() && !isPrivateSegment() &&
845 !isKernargSegment() && !isReadonlySegment() &&
846 !isSpillSegment() && !isArgSegment());
847 }
848
849 bool
850 isGroupSegment() const
851 {
852 return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
853 }
854
855 bool
856 isPrivateSegment() const
857 {
858 return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
859 }
860
861 bool
862 isKernargSegment() const
863 {
864 return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
865 }
866
867 bool
868 isReadonlySegment() const
869 {
870 return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
871 }
872
873 bool
874 isSpillSegment() const
875 {
876 return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
877 }
878
879 bool
880 isArgSegment() const
881 {
882 return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
883 }
884};
885
886#endif // __MEM_REQUEST_HH__