cpu.cc (2704:731cd38be7f5) cpu.cc (2722:610b13e19da0)
1/*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#include <list>
32#include <string>
33
34#include "base/refcnt.hh"
35#include "cpu/base.hh"
36#include "cpu/base_dyn_inst.hh"
37#include "cpu/checker/cpu.hh"
38#include "cpu/simple_thread.hh"
39#include "cpu/thread_context.hh"
40#include "cpu/static_inst.hh"
1/*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#include <list>
32#include <string>
33
34#include "base/refcnt.hh"
35#include "cpu/base.hh"
36#include "cpu/base_dyn_inst.hh"
37#include "cpu/checker/cpu.hh"
38#include "cpu/simple_thread.hh"
39#include "cpu/thread_context.hh"
40#include "cpu/static_inst.hh"
41#include "mem/packet_impl.hh"
41#include "sim/byteswap.hh"
42#include "sim/sim_object.hh"
43#include "sim/stats.hh"
44
45#include "cpu/o3/alpha_dyn_inst.hh"
46#include "cpu/o3/alpha_impl.hh"
47
48//#include "cpu/ozone/dyn_inst.hh"
49//#include "cpu/ozone/ozone_impl.hh"
50//#include "cpu/ozone/simple_impl.hh"
51
52#if FULL_SYSTEM
53#include "sim/system.hh"
54#include "arch/vtophys.hh"
55#endif // FULL_SYSTEM
56
57using namespace std;
58//The CheckerCPU does alpha only
59using namespace AlphaISA;
60
61void
62CheckerCPU::init()
63{
64}
65
66CheckerCPU::CheckerCPU(Params *p)
67 : BaseCPU(p), thread(NULL), tc(NULL)
68{
69 memReq = NULL;
70
71 numInst = 0;
72 startNumInst = 0;
73 numLoad = 0;
74 startNumLoad = 0;
75 youngestSN = 0;
76
77 changedPC = willChangePC = changedNextPC = false;
78
79 exitOnError = p->exitOnError;
80#if FULL_SYSTEM
81 itb = p->itb;
82 dtb = p->dtb;
83 systemPtr = NULL;
84#else
85 process = p->process;
86#endif
42#include "sim/byteswap.hh"
43#include "sim/sim_object.hh"
44#include "sim/stats.hh"
45
46#include "cpu/o3/alpha_dyn_inst.hh"
47#include "cpu/o3/alpha_impl.hh"
48
49//#include "cpu/ozone/dyn_inst.hh"
50//#include "cpu/ozone/ozone_impl.hh"
51//#include "cpu/ozone/simple_impl.hh"
52
53#if FULL_SYSTEM
54#include "sim/system.hh"
55#include "arch/vtophys.hh"
56#endif // FULL_SYSTEM
57
58using namespace std;
59//The CheckerCPU does alpha only
60using namespace AlphaISA;
61
62void
63CheckerCPU::init()
64{
65}
66
67CheckerCPU::CheckerCPU(Params *p)
68 : BaseCPU(p), thread(NULL), tc(NULL)
69{
70 memReq = NULL;
71
72 numInst = 0;
73 startNumInst = 0;
74 numLoad = 0;
75 startNumLoad = 0;
76 youngestSN = 0;
77
78 changedPC = willChangePC = changedNextPC = false;
79
80 exitOnError = p->exitOnError;
81#if FULL_SYSTEM
82 itb = p->itb;
83 dtb = p->dtb;
84 systemPtr = NULL;
85#else
86 process = p->process;
87#endif
87
88 result.integer = 0;
89}
90
91CheckerCPU::~CheckerCPU()
92{
93}
94
95void
96CheckerCPU::setMemory(MemObject *mem)
97{
98#if !FULL_SYSTEM
99 memPtr = mem;
100 thread = new SimpleThread(this, /* thread_num */ 0, process,
101 /* asid */ 0, mem);
102
103 thread->setStatus(ThreadContext::Suspended);
104 tc = thread->getTC();
105 threadContexts.push_back(tc);
106#endif
107}
108
109void
110CheckerCPU::setSystem(System *system)
111{
112#if FULL_SYSTEM
113 systemPtr = system;
114
115 thread = new SimpleThread(this, 0, systemPtr, itb, dtb, false);
116
117 thread->setStatus(ThreadContext::Suspended);
118 tc = thread->getTC();
119 threadContexts.push_back(tc);
120 delete thread->kernelStats;
121 thread->kernelStats = NULL;
122#endif
123}
124
125void
126CheckerCPU::setIcachePort(Port *icache_port)
127{
128 icachePort = icache_port;
129}
130
131void
132CheckerCPU::setDcachePort(Port *dcache_port)
133{
134 dcachePort = dcache_port;
135}
136
137void
138CheckerCPU::serialize(ostream &os)
139{
140/*
141 BaseCPU::serialize(os);
142 SERIALIZE_SCALAR(inst);
143 nameOut(os, csprintf("%s.xc", name()));
144 thread->serialize(os);
145 cacheCompletionEvent.serialize(os);
146*/
147}
148
149void
150CheckerCPU::unserialize(Checkpoint *cp, const string &section)
151{
152/*
153 BaseCPU::unserialize(cp, section);
154 UNSERIALIZE_SCALAR(inst);
155 thread->unserialize(cp, csprintf("%s.xc", section));
156*/
157}
158
159Fault
160CheckerCPU::copySrcTranslate(Addr src)
161{
162 panic("Unimplemented!");
163}
164
165Fault
166CheckerCPU::copy(Addr dest)
167{
168 panic("Unimplemented!");
169}
170
171template <class T>
172Fault
173CheckerCPU::read(Addr addr, T &data, unsigned flags)
174{
175 // need to fill in CPU & thread IDs here
176 memReq = new Request();
177
178 memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
179
180 // translate to physical address
181 translateDataReadReq(memReq);
182
183 Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
184
185 pkt->dataStatic(&data);
186
187 if (!(memReq->getFlags() & UNCACHEABLE)) {
188 // Access memory to see if we have the same data
189 dcachePort->sendFunctional(pkt);
190 } else {
191 // Assume the data is correct if it's an uncached access
192 memcpy(&data, &unverifiedResult.integer, sizeof(T));
193 }
194
195 delete pkt;
196
197 return NoFault;
198}
199
200#ifndef DOXYGEN_SHOULD_SKIP_THIS
201
202template
203Fault
204CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
205
206template
207Fault
208CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
209
210template
211Fault
212CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
213
214template
215Fault
216CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
217
218#endif //DOXYGEN_SHOULD_SKIP_THIS
219
220template<>
221Fault
222CheckerCPU::read(Addr addr, double &data, unsigned flags)
223{
224 return read(addr, *(uint64_t*)&data, flags);
225}
226
227template<>
228Fault
229CheckerCPU::read(Addr addr, float &data, unsigned flags)
230{
231 return read(addr, *(uint32_t*)&data, flags);
232}
233
234template<>
235Fault
236CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
237{
238 return read(addr, (uint32_t&)data, flags);
239}
240
241template <class T>
242Fault
243CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
244{
245 // need to fill in CPU & thread IDs here
246 memReq = new Request();
247
248 memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
249
250 // translate to physical address
251 thread->translateDataWriteReq(memReq);
252
253 // Can compare the write data and result only if it's cacheable,
254 // not a store conditional, or is a store conditional that
255 // succeeded.
256 // @todo: Verify that actual memory matches up with these values.
257 // Right now it only verifies that the instruction data is the
258 // same as what was in the request that got sent to memory; there
259 // is no verification that it is the same as what is in memory.
260 // This is because the LSQ would have to be snooped in the CPU to
261 // verify this data.
262 if (unverifiedReq &&
263 !(unverifiedReq->getFlags() & UNCACHEABLE) &&
264 (!(unverifiedReq->getFlags() & LOCKED) ||
265 ((unverifiedReq->getFlags() & LOCKED) &&
266 unverifiedReq->getScResult() == 1))) {
267 T inst_data;
268/*
269 // This code would work if the LSQ allowed for snooping.
270 Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
271 pkt.dataStatic(&inst_data);
272
273 dcachePort->sendFunctional(pkt);
274
275 delete pkt;
276*/
277 memcpy(&inst_data, unverifiedMemData, sizeof(T));
278
279 if (data != inst_data) {
280 warn("%lli: Store value does not match value in memory! "
281 "Instruction: %#x, memory: %#x",
282 curTick, inst_data, data);
283 handleError();
284 }
285 }
286
287 // Assume the result was the same as the one passed in. This checker
288 // doesn't check if the SC should succeed or fail, it just checks the
289 // value.
290 if (res && unverifiedReq->scResultValid())
291 *res = unverifiedReq->getScResult();
292
293 return NoFault;
294}
295
296
297#ifndef DOXYGEN_SHOULD_SKIP_THIS
298template
299Fault
300CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
301
302template
303Fault
304CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
305
306template
307Fault
308CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
309
310template
311Fault
312CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
313
314#endif //DOXYGEN_SHOULD_SKIP_THIS
315
316template<>
317Fault
318CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
319{
320 return write(*(uint64_t*)&data, addr, flags, res);
321}
322
323template<>
324Fault
325CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
326{
327 return write(*(uint32_t*)&data, addr, flags, res);
328}
329
330template<>
331Fault
332CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
333{
334 return write((uint32_t)data, addr, flags, res);
335}
336
337
338#if FULL_SYSTEM
339Addr
340CheckerCPU::dbg_vtophys(Addr addr)
341{
342 return vtophys(tc, addr);
343}
344#endif // FULL_SYSTEM
345
346bool
347CheckerCPU::translateInstReq(Request *req)
348{
349#if FULL_SYSTEM
350 return (thread->translateInstReq(req) == NoFault);
351#else
352 thread->translateInstReq(req);
353 return true;
354#endif
355}
356
357void
358CheckerCPU::translateDataReadReq(Request *req)
359{
360 thread->translateDataReadReq(req);
361
362 if (req->getVaddr() != unverifiedReq->getVaddr()) {
363 warn("%lli: Request virtual addresses do not match! Inst: %#x, "
364 "checker: %#x",
365 curTick, unverifiedReq->getVaddr(), req->getVaddr());
366 handleError();
367 }
368 req->setPaddr(unverifiedReq->getPaddr());
369
370 if (checkFlags(req)) {
371 warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
372 curTick, unverifiedReq->getFlags(), req->getFlags());
373 handleError();
374 }
375}
376
377void
378CheckerCPU::translateDataWriteReq(Request *req)
379{
380 thread->translateDataWriteReq(req);
381
382 if (req->getVaddr() != unverifiedReq->getVaddr()) {
383 warn("%lli: Request virtual addresses do not match! Inst: %#x, "
384 "checker: %#x",
385 curTick, unverifiedReq->getVaddr(), req->getVaddr());
386 handleError();
387 }
388 req->setPaddr(unverifiedReq->getPaddr());
389
390 if (checkFlags(req)) {
391 warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
392 curTick, unverifiedReq->getFlags(), req->getFlags());
393 handleError();
394 }
395}
396
397bool
398CheckerCPU::checkFlags(Request *req)
399{
400 // Remove any dynamic flags that don't have to do with the request itself.
401 unsigned flags = unverifiedReq->getFlags();
402 unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
403 flags = flags & (mask);
404 if (flags == req->getFlags()) {
405 return false;
406 } else {
407 return true;
408 }
409}
410
411template <class DynInstPtr>
412void
413Checker<DynInstPtr>::tick(DynInstPtr &completed_inst)
414{
415 DynInstPtr inst;
416
417 // Either check this instruction, or add it to a list of
418 // instructions waiting to be checked. Instructions must be
419 // checked in program order, so if a store has committed yet not
420 // completed, there may be some instructions that are waiting
421 // behind it that have completed and must be checked.
422 if (!instList.empty()) {
423 if (youngestSN < completed_inst->seqNum) {
424 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
425 completed_inst->seqNum, completed_inst->readPC());
426 instList.push_back(completed_inst);
427 youngestSN = completed_inst->seqNum;
428 }
429
430 if (!instList.front()->isCompleted()) {
431 return;
432 } else {
433 inst = instList.front();
434 instList.pop_front();
435 }
436 } else {
437 if (!completed_inst->isCompleted()) {
438 if (youngestSN < completed_inst->seqNum) {
439 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
440 completed_inst->seqNum, completed_inst->readPC());
441 instList.push_back(completed_inst);
442 youngestSN = completed_inst->seqNum;
443 }
444 return;
445 } else {
446 if (youngestSN < completed_inst->seqNum) {
447 inst = completed_inst;
448 youngestSN = completed_inst->seqNum;
449 } else {
450 return;
451 }
452 }
453 }
454
455 // Try to check all instructions that are completed, ending if we
456 // run out of instructions to check or if an instruction is not
457 // yet completed.
458 while (1) {
459 DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
460 inst->seqNum, inst->readPC());
461 unverifiedResult.integer = inst->readIntResult();
462 unverifiedReq = inst->req;
463 unverifiedMemData = inst->memData;
464 numCycles++;
465
466 Fault fault = NoFault;
467
468 // maintain $r0 semantics
469 thread->setIntReg(ZeroReg, 0);
470#ifdef TARGET_ALPHA
471 thread->setFloatRegDouble(ZeroReg, 0.0);
472#endif // TARGET_ALPHA
473
474 // Check if any recent PC changes match up with anything we
475 // expect to happen. This is mostly to check if traps or
476 // PC-based events have occurred in both the checker and CPU.
477 if (changedPC) {
478 DPRINTF(Checker, "Changed PC recently to %#x\n",
479 thread->readPC());
480 if (willChangePC) {
481 if (newPC == thread->readPC()) {
482 DPRINTF(Checker, "Changed PC matches expected PC\n");
483 } else {
484 warn("%lli: Changed PC does not match expected PC, "
485 "changed: %#x, expected: %#x",
486 curTick, thread->readPC(), newPC);
487 handleError();
488 }
489 willChangePC = false;
490 }
491 changedPC = false;
492 }
493 if (changedNextPC) {
494 DPRINTF(Checker, "Changed NextPC recently to %#x\n",
495 thread->readNextPC());
496 changedNextPC = false;
497 }
498
499 // Try to fetch the instruction
500
501#if FULL_SYSTEM
502#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
503#else
504#define IFETCH_FLAGS(pc) 0
505#endif
506
507 uint64_t fetch_PC = thread->readPC() & ~3;
508
509 // set up memory request for instruction fetch
510 memReq = new Request(inst->threadNumber, fetch_PC,
511 sizeof(uint32_t),
512 IFETCH_FLAGS(thread->readPC()),
513 fetch_PC, thread->readCpuId(), inst->threadNumber);
514
515 bool succeeded = translateInstReq(memReq);
516
517 if (!succeeded) {
518 if (inst->getFault() == NoFault) {
519 // In this case the instruction was not a dummy
520 // instruction carrying an ITB fault. In the single
521 // threaded case the ITB should still be able to
522 // translate this instruction; in the SMT case it's
523 // possible that its ITB entry was kicked out.
524 warn("%lli: Instruction PC %#x was not found in the ITB!",
525 curTick, thread->readPC());
526 handleError();
527
528 // go to the next instruction
529 thread->setPC(thread->readNextPC());
530 thread->setNextPC(thread->readNextPC() + sizeof(MachInst));
531
532 return;
533 } else {
534 // The instruction is carrying an ITB fault. Handle
535 // the fault and see if our results match the CPU on
536 // the next tick().
537 fault = inst->getFault();
538 }
539 }
540
541 if (fault == NoFault) {
542 Packet *pkt = new Packet(memReq, Packet::ReadReq,
543 Packet::Broadcast);
544
545 pkt->dataStatic(&machInst);
546
547 icachePort->sendFunctional(pkt);
548
549 delete pkt;
550
551 // keep an instruction count
552 numInst++;
553
554 // decode the instruction
555 machInst = gtoh(machInst);
556 // Checks that the instruction matches what we expected it to be.
557 // Checks both the machine instruction and the PC.
558 validateInst(inst);
559
560 curStaticInst = StaticInst::decode(makeExtMI(machInst,
561 thread->readPC()));
562
563#if FULL_SYSTEM
564 thread->setInst(machInst);
565#endif // FULL_SYSTEM
566
567 fault = inst->getFault();
568 }
569
570 // Discard fetch's memReq.
571 delete memReq;
572 memReq = NULL;
573
574 // Either the instruction was a fault and we should process the fault,
575 // or we should just go ahead execute the instruction. This assumes
576 // that the instruction is properly marked as a fault.
577 if (fault == NoFault) {
578
579 thread->funcExeInst++;
580
581 fault = curStaticInst->execute(this, NULL);
582
583 // Checks to make sure instrution results are correct.
584 validateExecution(inst);
585
586 if (curStaticInst->isLoad()) {
587 ++numLoad;
588 }
589 }
590
591 if (fault != NoFault) {
592#if FULL_SYSTEM
593 fault->invoke(tc);
594 willChangePC = true;
595 newPC = thread->readPC();
596 DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
597#else // !FULL_SYSTEM
598 fatal("fault (%d) detected @ PC 0x%08p", fault, thread->readPC());
599#endif // FULL_SYSTEM
600 } else {
601#if THE_ISA != MIPS_ISA
602 // go to the next instruction
603 thread->setPC(thread->readNextPC());
604 thread->setNextPC(thread->readNextPC() + sizeof(MachInst));
605#else
606 // go to the next instruction
607 thread->setPC(thread->readNextPC());
608 thread->setNextPC(thread->readNextNPC());
609 thread->setNextNPC(thread->readNextNPC() + sizeof(MachInst));
610#endif
611
612 }
613
614#if FULL_SYSTEM
615 // @todo: Determine if these should happen only if the
616 // instruction hasn't faulted. In the SimpleCPU case this may
617 // not be true, but in the O3 or Ozone case this may be true.
618 Addr oldpc;
619 int count = 0;
620 do {
621 oldpc = thread->readPC();
622 system->pcEventQueue.service(tc);
623 count++;
624 } while (oldpc != thread->readPC());
625 if (count > 1) {
626 willChangePC = true;
627 newPC = thread->readPC();
628 DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
629 }
630#endif
631
632 // @todo: Optionally can check all registers. (Or just those
633 // that have been modified).
634 validateState();
635
636 if (memReq) {
637 delete memReq;
638 memReq = NULL;
639 }
640
641 // Continue verifying instructions if there's another completed
642 // instruction waiting to be verified.
643 if (instList.empty()) {
644 break;
645 } else if (instList.front()->isCompleted()) {
646 inst = instList.front();
647 instList.pop_front();
648 } else {
649 break;
650 }
651 }
652}
653
654template <class DynInstPtr>
655void
656Checker<DynInstPtr>::switchOut(Sampler *s)
657{
658 instList.clear();
659}
660
661template <class DynInstPtr>
662void
663Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
664{
665}
666
667template <class DynInstPtr>
668void
669Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
670{
671 if (inst->readPC() != thread->readPC()) {
672 warn("%lli: PCs do not match! Inst: %#x, checker: %#x",
673 curTick, inst->readPC(), thread->readPC());
674 if (changedPC) {
675 warn("%lli: Changed PCs recently, may not be an error",
676 curTick);
677 } else {
678 handleError();
679 }
680 }
681
682 MachInst mi = static_cast<MachInst>(inst->staticInst->machInst);
683
684 if (mi != machInst) {
685 warn("%lli: Binary instructions do not match! Inst: %#x, "
686 "checker: %#x",
687 curTick, mi, machInst);
688 handleError();
689 }
690}
691
692template <class DynInstPtr>
693void
694Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
695{
696 if (inst->numDestRegs()) {
697 // @todo: Support more destination registers.
698 if (inst->isUnverifiable()) {
699 // Unverifiable instructions assume they were executed
700 // properly by the CPU. Grab the result from the
701 // instruction and write it to the register.
702 RegIndex idx = inst->destRegIdx(0);
703 if (idx < TheISA::FP_Base_DepTag) {
704 thread->setIntReg(idx, inst->readIntResult());
705 } else if (idx < TheISA::Fpcr_DepTag) {
706 thread->setFloatRegBits(idx, inst->readIntResult());
707 } else {
708 thread->setMiscReg(idx, inst->readIntResult());
709 }
710 } else if (result.integer != inst->readIntResult()) {
711 warn("%lli: Instruction results do not match! (Values may not "
712 "actually be integers) Inst: %#x, checker: %#x",
713 curTick, inst->readIntResult(), result.integer);
714 handleError();
715 }
716 }
717
718 if (inst->readNextPC() != thread->readNextPC()) {
719 warn("%lli: Instruction next PCs do not match! Inst: %#x, "
720 "checker: %#x",
721 curTick, inst->readNextPC(), thread->readNextPC());
722 handleError();
723 }
724
725 // Checking side effect registers can be difficult if they are not
726 // checked simultaneously with the execution of the instruction.
727 // This is because other valid instructions may have modified
728 // these registers in the meantime, and their values are not
729 // stored within the DynInst.
730 while (!miscRegIdxs.empty()) {
731 int misc_reg_idx = miscRegIdxs.front();
732 miscRegIdxs.pop();
733
734 if (inst->tcBase()->readMiscReg(misc_reg_idx) !=
735 thread->readMiscReg(misc_reg_idx)) {
736 warn("%lli: Misc reg idx %i (side effect) does not match! "
737 "Inst: %#x, checker: %#x",
738 curTick, misc_reg_idx,
739 inst->tcBase()->readMiscReg(misc_reg_idx),
740 thread->readMiscReg(misc_reg_idx));
741 handleError();
742 }
743 }
744}
745
746template <class DynInstPtr>
747void
748Checker<DynInstPtr>::validateState()
749{
750}
751
752template <class DynInstPtr>
753void
754Checker<DynInstPtr>::dumpInsts()
755{
756 int num = 0;
757
758 InstListIt inst_list_it = --(instList.end());
759
760 cprintf("Inst list size: %i\n", instList.size());
761
762 while (inst_list_it != instList.end())
763 {
764 cprintf("Instruction:%i\n",
765 num);
766
767 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
768 "Completed:%i\n",
769 (*inst_list_it)->readPC(),
770 (*inst_list_it)->seqNum,
771 (*inst_list_it)->threadNumber,
772 (*inst_list_it)->isCompleted());
773
774 cprintf("\n");
775
776 inst_list_it--;
777 ++num;
778 }
779
780}
781
782//template
783//class Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >;
784
785template
786class Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >;
88}
89
90CheckerCPU::~CheckerCPU()
91{
92}
93
94void
95CheckerCPU::setMemory(MemObject *mem)
96{
97#if !FULL_SYSTEM
98 memPtr = mem;
99 thread = new SimpleThread(this, /* thread_num */ 0, process,
100 /* asid */ 0, mem);
101
102 thread->setStatus(ThreadContext::Suspended);
103 tc = thread->getTC();
104 threadContexts.push_back(tc);
105#endif
106}
107
108void
109CheckerCPU::setSystem(System *system)
110{
111#if FULL_SYSTEM
112 systemPtr = system;
113
114 thread = new SimpleThread(this, 0, systemPtr, itb, dtb, false);
115
116 thread->setStatus(ThreadContext::Suspended);
117 tc = thread->getTC();
118 threadContexts.push_back(tc);
119 delete thread->kernelStats;
120 thread->kernelStats = NULL;
121#endif
122}
123
124void
125CheckerCPU::setIcachePort(Port *icache_port)
126{
127 icachePort = icache_port;
128}
129
130void
131CheckerCPU::setDcachePort(Port *dcache_port)
132{
133 dcachePort = dcache_port;
134}
135
136void
137CheckerCPU::serialize(ostream &os)
138{
139/*
140 BaseCPU::serialize(os);
141 SERIALIZE_SCALAR(inst);
142 nameOut(os, csprintf("%s.xc", name()));
143 thread->serialize(os);
144 cacheCompletionEvent.serialize(os);
145*/
146}
147
148void
149CheckerCPU::unserialize(Checkpoint *cp, const string &section)
150{
151/*
152 BaseCPU::unserialize(cp, section);
153 UNSERIALIZE_SCALAR(inst);
154 thread->unserialize(cp, csprintf("%s.xc", section));
155*/
156}
157
158Fault
159CheckerCPU::copySrcTranslate(Addr src)
160{
161 panic("Unimplemented!");
162}
163
164Fault
165CheckerCPU::copy(Addr dest)
166{
167 panic("Unimplemented!");
168}
169
170template <class T>
171Fault
172CheckerCPU::read(Addr addr, T &data, unsigned flags)
173{
174 // need to fill in CPU & thread IDs here
175 memReq = new Request();
176
177 memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
178
179 // translate to physical address
180 translateDataReadReq(memReq);
181
182 Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
183
184 pkt->dataStatic(&data);
185
186 if (!(memReq->getFlags() & UNCACHEABLE)) {
187 // Access memory to see if we have the same data
188 dcachePort->sendFunctional(pkt);
189 } else {
190 // Assume the data is correct if it's an uncached access
191 memcpy(&data, &unverifiedResult.integer, sizeof(T));
192 }
193
194 delete pkt;
195
196 return NoFault;
197}
198
199#ifndef DOXYGEN_SHOULD_SKIP_THIS
200
201template
202Fault
203CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
204
205template
206Fault
207CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
208
209template
210Fault
211CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
212
213template
214Fault
215CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
216
217#endif //DOXYGEN_SHOULD_SKIP_THIS
218
219template<>
220Fault
221CheckerCPU::read(Addr addr, double &data, unsigned flags)
222{
223 return read(addr, *(uint64_t*)&data, flags);
224}
225
226template<>
227Fault
228CheckerCPU::read(Addr addr, float &data, unsigned flags)
229{
230 return read(addr, *(uint32_t*)&data, flags);
231}
232
233template<>
234Fault
235CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
236{
237 return read(addr, (uint32_t&)data, flags);
238}
239
240template <class T>
241Fault
242CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
243{
244 // need to fill in CPU & thread IDs here
245 memReq = new Request();
246
247 memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
248
249 // translate to physical address
250 thread->translateDataWriteReq(memReq);
251
252 // Can compare the write data and result only if it's cacheable,
253 // not a store conditional, or is a store conditional that
254 // succeeded.
255 // @todo: Verify that actual memory matches up with these values.
256 // Right now it only verifies that the instruction data is the
257 // same as what was in the request that got sent to memory; there
258 // is no verification that it is the same as what is in memory.
259 // This is because the LSQ would have to be snooped in the CPU to
260 // verify this data.
261 if (unverifiedReq &&
262 !(unverifiedReq->getFlags() & UNCACHEABLE) &&
263 (!(unverifiedReq->getFlags() & LOCKED) ||
264 ((unverifiedReq->getFlags() & LOCKED) &&
265 unverifiedReq->getScResult() == 1))) {
266 T inst_data;
267/*
268 // This code would work if the LSQ allowed for snooping.
269 Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
270 pkt.dataStatic(&inst_data);
271
272 dcachePort->sendFunctional(pkt);
273
274 delete pkt;
275*/
276 memcpy(&inst_data, unverifiedMemData, sizeof(T));
277
278 if (data != inst_data) {
279 warn("%lli: Store value does not match value in memory! "
280 "Instruction: %#x, memory: %#x",
281 curTick, inst_data, data);
282 handleError();
283 }
284 }
285
286 // Assume the result was the same as the one passed in. This checker
287 // doesn't check if the SC should succeed or fail, it just checks the
288 // value.
289 if (res && unverifiedReq->scResultValid())
290 *res = unverifiedReq->getScResult();
291
292 return NoFault;
293}
294
295
296#ifndef DOXYGEN_SHOULD_SKIP_THIS
297template
298Fault
299CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
300
301template
302Fault
303CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
304
305template
306Fault
307CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
308
309template
310Fault
311CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
312
313#endif //DOXYGEN_SHOULD_SKIP_THIS
314
315template<>
316Fault
317CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
318{
319 return write(*(uint64_t*)&data, addr, flags, res);
320}
321
322template<>
323Fault
324CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
325{
326 return write(*(uint32_t*)&data, addr, flags, res);
327}
328
329template<>
330Fault
331CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
332{
333 return write((uint32_t)data, addr, flags, res);
334}
335
336
337#if FULL_SYSTEM
338Addr
339CheckerCPU::dbg_vtophys(Addr addr)
340{
341 return vtophys(tc, addr);
342}
343#endif // FULL_SYSTEM
344
345bool
346CheckerCPU::translateInstReq(Request *req)
347{
348#if FULL_SYSTEM
349 return (thread->translateInstReq(req) == NoFault);
350#else
351 thread->translateInstReq(req);
352 return true;
353#endif
354}
355
356void
357CheckerCPU::translateDataReadReq(Request *req)
358{
359 thread->translateDataReadReq(req);
360
361 if (req->getVaddr() != unverifiedReq->getVaddr()) {
362 warn("%lli: Request virtual addresses do not match! Inst: %#x, "
363 "checker: %#x",
364 curTick, unverifiedReq->getVaddr(), req->getVaddr());
365 handleError();
366 }
367 req->setPaddr(unverifiedReq->getPaddr());
368
369 if (checkFlags(req)) {
370 warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
371 curTick, unverifiedReq->getFlags(), req->getFlags());
372 handleError();
373 }
374}
375
376void
377CheckerCPU::translateDataWriteReq(Request *req)
378{
379 thread->translateDataWriteReq(req);
380
381 if (req->getVaddr() != unverifiedReq->getVaddr()) {
382 warn("%lli: Request virtual addresses do not match! Inst: %#x, "
383 "checker: %#x",
384 curTick, unverifiedReq->getVaddr(), req->getVaddr());
385 handleError();
386 }
387 req->setPaddr(unverifiedReq->getPaddr());
388
389 if (checkFlags(req)) {
390 warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
391 curTick, unverifiedReq->getFlags(), req->getFlags());
392 handleError();
393 }
394}
395
396bool
397CheckerCPU::checkFlags(Request *req)
398{
399 // Remove any dynamic flags that don't have to do with the request itself.
400 unsigned flags = unverifiedReq->getFlags();
401 unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
402 flags = flags & (mask);
403 if (flags == req->getFlags()) {
404 return false;
405 } else {
406 return true;
407 }
408}
409
410template <class DynInstPtr>
411void
412Checker<DynInstPtr>::tick(DynInstPtr &completed_inst)
413{
414 DynInstPtr inst;
415
416 // Either check this instruction, or add it to a list of
417 // instructions waiting to be checked. Instructions must be
418 // checked in program order, so if a store has committed yet not
419 // completed, there may be some instructions that are waiting
420 // behind it that have completed and must be checked.
421 if (!instList.empty()) {
422 if (youngestSN < completed_inst->seqNum) {
423 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
424 completed_inst->seqNum, completed_inst->readPC());
425 instList.push_back(completed_inst);
426 youngestSN = completed_inst->seqNum;
427 }
428
429 if (!instList.front()->isCompleted()) {
430 return;
431 } else {
432 inst = instList.front();
433 instList.pop_front();
434 }
435 } else {
436 if (!completed_inst->isCompleted()) {
437 if (youngestSN < completed_inst->seqNum) {
438 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
439 completed_inst->seqNum, completed_inst->readPC());
440 instList.push_back(completed_inst);
441 youngestSN = completed_inst->seqNum;
442 }
443 return;
444 } else {
445 if (youngestSN < completed_inst->seqNum) {
446 inst = completed_inst;
447 youngestSN = completed_inst->seqNum;
448 } else {
449 return;
450 }
451 }
452 }
453
454 // Try to check all instructions that are completed, ending if we
455 // run out of instructions to check or if an instruction is not
456 // yet completed.
457 while (1) {
458 DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
459 inst->seqNum, inst->readPC());
460 unverifiedResult.integer = inst->readIntResult();
461 unverifiedReq = inst->req;
462 unverifiedMemData = inst->memData;
463 numCycles++;
464
465 Fault fault = NoFault;
466
467 // maintain $r0 semantics
468 thread->setIntReg(ZeroReg, 0);
469#ifdef TARGET_ALPHA
470 thread->setFloatRegDouble(ZeroReg, 0.0);
471#endif // TARGET_ALPHA
472
473 // Check if any recent PC changes match up with anything we
474 // expect to happen. This is mostly to check if traps or
475 // PC-based events have occurred in both the checker and CPU.
476 if (changedPC) {
477 DPRINTF(Checker, "Changed PC recently to %#x\n",
478 thread->readPC());
479 if (willChangePC) {
480 if (newPC == thread->readPC()) {
481 DPRINTF(Checker, "Changed PC matches expected PC\n");
482 } else {
483 warn("%lli: Changed PC does not match expected PC, "
484 "changed: %#x, expected: %#x",
485 curTick, thread->readPC(), newPC);
486 handleError();
487 }
488 willChangePC = false;
489 }
490 changedPC = false;
491 }
492 if (changedNextPC) {
493 DPRINTF(Checker, "Changed NextPC recently to %#x\n",
494 thread->readNextPC());
495 changedNextPC = false;
496 }
497
498 // Try to fetch the instruction
499
500#if FULL_SYSTEM
501#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
502#else
503#define IFETCH_FLAGS(pc) 0
504#endif
505
506 uint64_t fetch_PC = thread->readPC() & ~3;
507
508 // set up memory request for instruction fetch
509 memReq = new Request(inst->threadNumber, fetch_PC,
510 sizeof(uint32_t),
511 IFETCH_FLAGS(thread->readPC()),
512 fetch_PC, thread->readCpuId(), inst->threadNumber);
513
514 bool succeeded = translateInstReq(memReq);
515
516 if (!succeeded) {
517 if (inst->getFault() == NoFault) {
518 // In this case the instruction was not a dummy
519 // instruction carrying an ITB fault. In the single
520 // threaded case the ITB should still be able to
521 // translate this instruction; in the SMT case it's
522 // possible that its ITB entry was kicked out.
523 warn("%lli: Instruction PC %#x was not found in the ITB!",
524 curTick, thread->readPC());
525 handleError();
526
527 // go to the next instruction
528 thread->setPC(thread->readNextPC());
529 thread->setNextPC(thread->readNextPC() + sizeof(MachInst));
530
531 return;
532 } else {
533 // The instruction is carrying an ITB fault. Handle
534 // the fault and see if our results match the CPU on
535 // the next tick().
536 fault = inst->getFault();
537 }
538 }
539
540 if (fault == NoFault) {
541 Packet *pkt = new Packet(memReq, Packet::ReadReq,
542 Packet::Broadcast);
543
544 pkt->dataStatic(&machInst);
545
546 icachePort->sendFunctional(pkt);
547
548 delete pkt;
549
550 // keep an instruction count
551 numInst++;
552
553 // decode the instruction
554 machInst = gtoh(machInst);
555 // Checks that the instruction matches what we expected it to be.
556 // Checks both the machine instruction and the PC.
557 validateInst(inst);
558
559 curStaticInst = StaticInst::decode(makeExtMI(machInst,
560 thread->readPC()));
561
562#if FULL_SYSTEM
563 thread->setInst(machInst);
564#endif // FULL_SYSTEM
565
566 fault = inst->getFault();
567 }
568
569 // Discard fetch's memReq.
570 delete memReq;
571 memReq = NULL;
572
573 // Either the instruction was a fault and we should process the fault,
574 // or we should just go ahead execute the instruction. This assumes
575 // that the instruction is properly marked as a fault.
576 if (fault == NoFault) {
577
578 thread->funcExeInst++;
579
580 fault = curStaticInst->execute(this, NULL);
581
582 // Checks to make sure instrution results are correct.
583 validateExecution(inst);
584
585 if (curStaticInst->isLoad()) {
586 ++numLoad;
587 }
588 }
589
590 if (fault != NoFault) {
591#if FULL_SYSTEM
592 fault->invoke(tc);
593 willChangePC = true;
594 newPC = thread->readPC();
595 DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
596#else // !FULL_SYSTEM
597 fatal("fault (%d) detected @ PC 0x%08p", fault, thread->readPC());
598#endif // FULL_SYSTEM
599 } else {
600#if THE_ISA != MIPS_ISA
601 // go to the next instruction
602 thread->setPC(thread->readNextPC());
603 thread->setNextPC(thread->readNextPC() + sizeof(MachInst));
604#else
605 // go to the next instruction
606 thread->setPC(thread->readNextPC());
607 thread->setNextPC(thread->readNextNPC());
608 thread->setNextNPC(thread->readNextNPC() + sizeof(MachInst));
609#endif
610
611 }
612
613#if FULL_SYSTEM
614 // @todo: Determine if these should happen only if the
615 // instruction hasn't faulted. In the SimpleCPU case this may
616 // not be true, but in the O3 or Ozone case this may be true.
617 Addr oldpc;
618 int count = 0;
619 do {
620 oldpc = thread->readPC();
621 system->pcEventQueue.service(tc);
622 count++;
623 } while (oldpc != thread->readPC());
624 if (count > 1) {
625 willChangePC = true;
626 newPC = thread->readPC();
627 DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
628 }
629#endif
630
631 // @todo: Optionally can check all registers. (Or just those
632 // that have been modified).
633 validateState();
634
635 if (memReq) {
636 delete memReq;
637 memReq = NULL;
638 }
639
640 // Continue verifying instructions if there's another completed
641 // instruction waiting to be verified.
642 if (instList.empty()) {
643 break;
644 } else if (instList.front()->isCompleted()) {
645 inst = instList.front();
646 instList.pop_front();
647 } else {
648 break;
649 }
650 }
651}
652
653template <class DynInstPtr>
654void
655Checker<DynInstPtr>::switchOut(Sampler *s)
656{
657 instList.clear();
658}
659
660template <class DynInstPtr>
661void
662Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
663{
664}
665
666template <class DynInstPtr>
667void
668Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
669{
670 if (inst->readPC() != thread->readPC()) {
671 warn("%lli: PCs do not match! Inst: %#x, checker: %#x",
672 curTick, inst->readPC(), thread->readPC());
673 if (changedPC) {
674 warn("%lli: Changed PCs recently, may not be an error",
675 curTick);
676 } else {
677 handleError();
678 }
679 }
680
681 MachInst mi = static_cast<MachInst>(inst->staticInst->machInst);
682
683 if (mi != machInst) {
684 warn("%lli: Binary instructions do not match! Inst: %#x, "
685 "checker: %#x",
686 curTick, mi, machInst);
687 handleError();
688 }
689}
690
691template <class DynInstPtr>
692void
693Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
694{
695 if (inst->numDestRegs()) {
696 // @todo: Support more destination registers.
697 if (inst->isUnverifiable()) {
698 // Unverifiable instructions assume they were executed
699 // properly by the CPU. Grab the result from the
700 // instruction and write it to the register.
701 RegIndex idx = inst->destRegIdx(0);
702 if (idx < TheISA::FP_Base_DepTag) {
703 thread->setIntReg(idx, inst->readIntResult());
704 } else if (idx < TheISA::Fpcr_DepTag) {
705 thread->setFloatRegBits(idx, inst->readIntResult());
706 } else {
707 thread->setMiscReg(idx, inst->readIntResult());
708 }
709 } else if (result.integer != inst->readIntResult()) {
710 warn("%lli: Instruction results do not match! (Values may not "
711 "actually be integers) Inst: %#x, checker: %#x",
712 curTick, inst->readIntResult(), result.integer);
713 handleError();
714 }
715 }
716
717 if (inst->readNextPC() != thread->readNextPC()) {
718 warn("%lli: Instruction next PCs do not match! Inst: %#x, "
719 "checker: %#x",
720 curTick, inst->readNextPC(), thread->readNextPC());
721 handleError();
722 }
723
724 // Checking side effect registers can be difficult if they are not
725 // checked simultaneously with the execution of the instruction.
726 // This is because other valid instructions may have modified
727 // these registers in the meantime, and their values are not
728 // stored within the DynInst.
729 while (!miscRegIdxs.empty()) {
730 int misc_reg_idx = miscRegIdxs.front();
731 miscRegIdxs.pop();
732
733 if (inst->tcBase()->readMiscReg(misc_reg_idx) !=
734 thread->readMiscReg(misc_reg_idx)) {
735 warn("%lli: Misc reg idx %i (side effect) does not match! "
736 "Inst: %#x, checker: %#x",
737 curTick, misc_reg_idx,
738 inst->tcBase()->readMiscReg(misc_reg_idx),
739 thread->readMiscReg(misc_reg_idx));
740 handleError();
741 }
742 }
743}
744
745template <class DynInstPtr>
746void
747Checker<DynInstPtr>::validateState()
748{
749}
750
751template <class DynInstPtr>
752void
753Checker<DynInstPtr>::dumpInsts()
754{
755 int num = 0;
756
757 InstListIt inst_list_it = --(instList.end());
758
759 cprintf("Inst list size: %i\n", instList.size());
760
761 while (inst_list_it != instList.end())
762 {
763 cprintf("Instruction:%i\n",
764 num);
765
766 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
767 "Completed:%i\n",
768 (*inst_list_it)->readPC(),
769 (*inst_list_it)->seqNum,
770 (*inst_list_it)->threadNumber,
771 (*inst_list_it)->isCompleted());
772
773 cprintf("\n");
774
775 inst_list_it--;
776 ++num;
777 }
778
779}
780
781//template
782//class Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >;
783
784template
785class Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >;