base_dyn_inst.hh (9044:904ddeecc653) base_dyn_inst.hh (9046:a1104cc13db2)
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51#include <queue>
52
53#include "arch/utility.hh"
54#include "base/trace.hh"
55#include "config/the_isa.hh"
56#include "cpu/checker/cpu.hh"
57#include "cpu/o3/comm.hh"
58#include "cpu/exetrace.hh"
59#include "cpu/inst_seq.hh"
60#include "cpu/op_class.hh"
61#include "cpu/static_inst.hh"
62#include "cpu/translation.hh"
63#include "mem/packet.hh"
64#include "sim/byteswap.hh"
65#include "sim/fault_fwd.hh"
66#include "sim/system.hh"
67#include "sim/tlb.hh"
68
69/**
70 * @file
71 * Defines a dynamic instruction context.
72 */
73
74template <class Impl>
75class BaseDynInst : public RefCounted
76{
77 public:
78 // Typedef for the CPU.
79 typedef typename Impl::CPUType ImplCPU;
80 typedef typename ImplCPU::ImplState ImplState;
81
82 // Logical register index type.
83 typedef TheISA::RegIndex RegIndex;
84 // Integer register type.
85 typedef TheISA::IntReg IntReg;
86 // Floating point register type.
87 typedef TheISA::FloatReg FloatReg;
88
89 // The DynInstPtr type.
90 typedef typename Impl::DynInstPtr DynInstPtr;
91 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
92
93 // The list of instructions iterator type.
94 typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96 enum {
97 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
98 MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
99 };
100
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51#include <queue>
52
53#include "arch/utility.hh"
54#include "base/trace.hh"
55#include "config/the_isa.hh"
56#include "cpu/checker/cpu.hh"
57#include "cpu/o3/comm.hh"
58#include "cpu/exetrace.hh"
59#include "cpu/inst_seq.hh"
60#include "cpu/op_class.hh"
61#include "cpu/static_inst.hh"
62#include "cpu/translation.hh"
63#include "mem/packet.hh"
64#include "sim/byteswap.hh"
65#include "sim/fault_fwd.hh"
66#include "sim/system.hh"
67#include "sim/tlb.hh"
68
69/**
70 * @file
71 * Defines a dynamic instruction context.
72 */
73
74template <class Impl>
75class BaseDynInst : public RefCounted
76{
77 public:
78 // Typedef for the CPU.
79 typedef typename Impl::CPUType ImplCPU;
80 typedef typename ImplCPU::ImplState ImplState;
81
82 // Logical register index type.
83 typedef TheISA::RegIndex RegIndex;
84 // Integer register type.
85 typedef TheISA::IntReg IntReg;
86 // Floating point register type.
87 typedef TheISA::FloatReg FloatReg;
88
89 // The DynInstPtr type.
90 typedef typename Impl::DynInstPtr DynInstPtr;
91 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
92
93 // The list of instructions iterator type.
94 typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96 enum {
97 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
98 MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
99 };
100
101 /** The StaticInst used by this BaseDynInst. */
102 StaticInstPtr staticInst;
103 StaticInstPtr macroop;
101 union Result {
102 uint64_t integer;
103 double dbl;
104 void set(uint64_t i) { integer = i; }
105 void set(double d) { dbl = d; }
106 void get(uint64_t& i) { i = integer; }
107 void get(double& d) { d = dbl; }
108 };
104
109
105 ////////////////////////////////////////////
106 //
107 // INSTRUCTION EXECUTION
108 //
109 ////////////////////////////////////////////
110 /** InstRecord that tracks this instructions. */
111 Trace::InstRecord *traceData;
112
113 void demapPage(Addr vaddr, uint64_t asn)
114 {
115 cpu->demapPage(vaddr, asn);
116 }
117 void demapInstPage(Addr vaddr, uint64_t asn)
118 {
119 cpu->demapPage(vaddr, asn);
120 }
121 void demapDataPage(Addr vaddr, uint64_t asn)
122 {
123 cpu->demapPage(vaddr, asn);
124 }
125
126 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
127
128 Fault writeMem(uint8_t *data, unsigned size,
129 Addr addr, unsigned flags, uint64_t *res);
130
131 /** Splits a request in two if it crosses a dcache block. */
132 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
133 RequestPtr &sreqHigh);
134
135 /** Initiate a DTB address translation. */
136 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
137 RequestPtr sreqHigh, uint64_t *res,
138 BaseTLB::Mode mode);
139
140 /** Finish a DTB address translation. */
141 void finishTranslation(WholeTranslationState *state);
142
143 /** True if the DTB address translation has started. */
144 bool translationStarted;
145
146 /** True if the DTB address translation has completed. */
147 bool translationCompleted;
148
149 /** True if this address was found to match a previous load and they issued
150 * out of order. If that happend, then it's only a problem if an incoming
151 * snoop invalidate modifies the line, in which case we need to squash.
152 * If nothing modified the line the order doesn't matter.
153 */
154 bool possibleLoadViolation;
155
156 /** True if the address hit a external snoop while sitting in the LSQ.
157 * If this is true and a older instruction sees it, this instruction must
158 * reexecute
159 */
160 bool hitExternalSnoop;
161
162 /**
163 * Returns true if the DTB address translation is being delayed due to a hw
164 * page table walk.
165 */
166 bool isTranslationDelayed() const
167 {
168 return (translationStarted && !translationCompleted);
169 }
170
171 /**
172 * Saved memory requests (needed when the DTB address translation is
173 * delayed due to a hw page table walk).
174 */
175 RequestPtr savedReq;
176 RequestPtr savedSreqLow;
177 RequestPtr savedSreqHigh;
178
179 // Need a copy of main request pointer to verify on writes.
180 RequestPtr reqToVerify;
181
182 /** @todo: Consider making this private. */
183 public:
184 /** The sequence number of the instruction. */
185 InstSeqNum seqNum;
186
110 protected:
187 enum Status {
188 IqEntry, /// Instruction is in the IQ
189 RobEntry, /// Instruction is in the ROB
190 LsqEntry, /// Instruction is in the LSQ
191 Completed, /// Instruction has completed
192 ResultReady, /// Instruction has its result
193 CanIssue, /// Instruction can issue and execute
194 Issued, /// Instruction has issued
195 Executed, /// Instruction has executed
196 CanCommit, /// Instruction can commit
197 AtCommit, /// Instruction has reached commit
198 Committed, /// Instruction has committed
199 Squashed, /// Instruction is squashed
200 SquashedInIQ, /// Instruction is squashed in the IQ
201 SquashedInLSQ, /// Instruction is squashed in the LSQ
202 SquashedInROB, /// Instruction is squashed in the ROB
203 RecoverInst, /// Is a recover instruction
204 BlockingInst, /// Is a blocking instruction
205 ThreadsyncWait, /// Is a thread synchronization instruction
206 SerializeBefore, /// Needs to serialize on
207 /// instructions ahead of it
208 SerializeAfter, /// Needs to serialize instructions behind it
209 SerializeHandled, /// Serialization has been handled
210 NumStatus
211 };
212
111 enum Status {
112 IqEntry, /// Instruction is in the IQ
113 RobEntry, /// Instruction is in the ROB
114 LsqEntry, /// Instruction is in the LSQ
115 Completed, /// Instruction has completed
116 ResultReady, /// Instruction has its result
117 CanIssue, /// Instruction can issue and execute
118 Issued, /// Instruction has issued
119 Executed, /// Instruction has executed
120 CanCommit, /// Instruction can commit
121 AtCommit, /// Instruction has reached commit
122 Committed, /// Instruction has committed
123 Squashed, /// Instruction is squashed
124 SquashedInIQ, /// Instruction is squashed in the IQ
125 SquashedInLSQ, /// Instruction is squashed in the LSQ
126 SquashedInROB, /// Instruction is squashed in the ROB
127 RecoverInst, /// Is a recover instruction
128 BlockingInst, /// Is a blocking instruction
129 ThreadsyncWait, /// Is a thread synchronization instruction
130 SerializeBefore, /// Needs to serialize on
131 /// instructions ahead of it
132 SerializeAfter, /// Needs to serialize instructions behind it
133 SerializeHandled, /// Serialization has been handled
134 NumStatus
135 };
136
213 /** The status of this BaseDynInst. Several bits can be set. */
214 std::bitset<NumStatus> status;
137 enum Flags {
138 TranslationStarted,
139 TranslationCompleted,
140 PossibleLoadViolation,
141 HitExternalSnoop,
142 EffAddrValid,
143 RecordResult,
144 Predicate,
145 PredTaken,
146 /** Whether or not the effective address calculation is completed.
147 * @todo: Consider if this is necessary or not.
148 */
149 EACalcDone,
150 IsUncacheable,
151 ReqMade,
152 MemOpDone,
153 MaxFlags
154 };
215
155
216 /** The thread this instruction is from. */
217 ThreadID threadNumber;
156 public:
157 /** The sequence number of the instruction. */
158 InstSeqNum seqNum;
218
159
219 /** data address space ID, for loads & stores. */
220 short asid;
160 /** The StaticInst used by this BaseDynInst. */
161 StaticInstPtr staticInst;
221
162
222 /** How many source registers are ready. */
223 unsigned readyRegs;
224
225 /** Pointer to the Impl's CPU object. */
226 ImplCPU *cpu;
227
228 /** Pointer to the thread state. */
229 ImplState *thread;
230
231 /** The kind of fault this instruction has generated. */
232 Fault fault;
233
163 /** Pointer to the Impl's CPU object. */
164 ImplCPU *cpu;
165
166 /** Pointer to the thread state. */
167 ImplState *thread;
168
169 /** The kind of fault this instruction has generated. */
170 Fault fault;
171
234 /** Pointer to the data for the memory access. */
235 uint8_t *memData;
172 /** InstRecord that tracks this instructions. */
173 Trace::InstRecord *traceData;
236
174
237 /** The effective virtual address (lds & stores only). */
238 Addr effAddr;
175 protected:
176 /** The result of the instruction; assumes an instruction can have many
177 * destination registers.
178 */
179 std::queue<Result> instResult;
239
180
240 /** The size of the request */
241 Addr effSize;
181 /** PC state for this instruction. */
182 TheISA::PCState pc;
242
183
243 /** Is the effective virtual address valid. */
244 bool effAddrValid;
184 /* An amalgamation of a lot of boolean values into one */
185 std::bitset<MaxFlags> instFlags;
245
186
187 /** The status of this BaseDynInst. Several bits can be set. */
188 std::bitset<NumStatus> status;
189
190 /** Whether or not the source register is ready.
191 * @todo: Not sure this should be here vs the derived class.
192 */
193 std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
194
195 public:
196 /** The thread this instruction is from. */
197 ThreadID threadNumber;
198
199 /** Iterator pointing to this BaseDynInst in the list of all insts. */
200 ListIt instListIt;
201
202 ////////////////////// Branch Data ///////////////
203 /** Predicted PC state after this instruction. */
204 TheISA::PCState predPC;
205
206 /** The Macroop if one exists */
207 StaticInstPtr macroop;
208
209 /** How many source registers are ready. */
210 uint8_t readyRegs;
211
212 public:
213 /////////////////////// Load Store Data //////////////////////
214 /** The effective virtual address (lds & stores only). */
215 Addr effAddr;
216
246 /** The effective physical address. */
247 Addr physEffAddr;
248
249 /** The memory request flags (from translation). */
250 unsigned memReqFlags;
251
217 /** The effective physical address. */
218 Addr physEffAddr;
219
220 /** The memory request flags (from translation). */
221 unsigned memReqFlags;
222
252 union Result {
253 uint64_t integer;
254 double dbl;
255 void set(uint64_t i) { integer = i; }
256 void set(double d) { dbl = d; }
257 void get(uint64_t& i) { i = integer; }
258 void get(double& d) { d = dbl; }
259 };
223 /** data address space ID, for loads & stores. */
224 short asid;
260
225
261 /** The result of the instruction; assumes an instruction can have many
262 * destination registers.
263 */
264 std::queue<Result> instResult;
226 /** The size of the request */
227 uint8_t effSize;
265
228
266 /** Records changes to result? */
267 bool recordResult;
229 /** Pointer to the data for the memory access. */
230 uint8_t *memData;
268
231
269 /** Did this instruction execute, or is it predicated false */
270 bool predicate;
232 /** Load queue index. */
233 int16_t lqIdx;
271
234
272 protected:
273 /** PC state for this instruction. */
274 TheISA::PCState pc;
235 /** Store queue index. */
236 int16_t sqIdx;
275
237
276 /** Predicted PC state after this instruction. */
277 TheISA::PCState predPC;
278
238
279 /** If this is a branch that was predicted taken */
280 bool predTaken;
239 /////////////////////// TLB Miss //////////////////////
240 /**
241 * Saved memory requests (needed when the DTB address translation is
242 * delayed due to a hw page table walk).
243 */
244 RequestPtr savedReq;
245 RequestPtr savedSreqLow;
246 RequestPtr savedSreqHigh;
281
247
282 public:
248 /////////////////////// Checker //////////////////////
249 // Need a copy of main request pointer to verify on writes.
250 RequestPtr reqToVerify;
283
251
284#ifdef DEBUG
285 void dumpSNList();
286#endif
287
288 /** Whether or not the source register is ready.
289 * @todo: Not sure this should be here vs the derived class.
252 private:
253 /** Instruction effective address.
254 * @todo: Consider if this is necessary or not.
290 */
255 */
291 bool _readySrcRegIdx[MaxInstSrcRegs];
256 Addr instEffAddr;
292
293 protected:
294 /** Flattened register index of the destination registers of this
295 * instruction.
296 */
297 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
298
257
258 protected:
259 /** Flattened register index of the destination registers of this
260 * instruction.
261 */
262 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
263
299 /** Flattened register index of the source registers of this
300 * instruction.
301 */
302 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
303
304 /** Physical register index of the destination registers of this
305 * instruction.
306 */
307 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
308
309 /** Physical register index of the source registers of this
310 * instruction.
311 */
312 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
313
314 /** Physical register index of the previous producers of the
315 * architected destinations.
316 */
317 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
318
264 /** Physical register index of the destination registers of this
265 * instruction.
266 */
267 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
268
269 /** Physical register index of the source registers of this
270 * instruction.
271 */
272 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
273
274 /** Physical register index of the previous producers of the
275 * architected destinations.
276 */
277 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
278
279
319 public:
280 public:
281 /** Records changes to result? */
282 void recordResult(bool f) { instFlags[RecordResult] = f; }
320
283
284 /** Is the effective virtual address valid. */
285 bool effAddrValid() const { return instFlags[EffAddrValid]; }
286
287 /** Whether or not the memory operation is done. */
288 bool memOpDone() const { return instFlags[MemOpDone]; }
289 void memOpDone(bool f) { instFlags[MemOpDone] = f; }
290
291
292 ////////////////////////////////////////////
293 //
294 // INSTRUCTION EXECUTION
295 //
296 ////////////////////////////////////////////
297
298 void demapPage(Addr vaddr, uint64_t asn)
299 {
300 cpu->demapPage(vaddr, asn);
301 }
302 void demapInstPage(Addr vaddr, uint64_t asn)
303 {
304 cpu->demapPage(vaddr, asn);
305 }
306 void demapDataPage(Addr vaddr, uint64_t asn)
307 {
308 cpu->demapPage(vaddr, asn);
309 }
310
311 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
312
313 Fault writeMem(uint8_t *data, unsigned size,
314 Addr addr, unsigned flags, uint64_t *res);
315
316 /** Splits a request in two if it crosses a dcache block. */
317 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
318 RequestPtr &sreqHigh);
319
320 /** Initiate a DTB address translation. */
321 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
322 RequestPtr sreqHigh, uint64_t *res,
323 BaseTLB::Mode mode);
324
325 /** Finish a DTB address translation. */
326 void finishTranslation(WholeTranslationState *state);
327
328 /** True if the DTB address translation has started. */
329 bool translationStarted() const { return instFlags[TranslationStarted]; }
330 void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
331
332 /** True if the DTB address translation has completed. */
333 bool translationCompleted() const { return instFlags[TranslationCompleted]; }
334 void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
335
336 /** True if this address was found to match a previous load and they issued
337 * out of order. If that happend, then it's only a problem if an incoming
338 * snoop invalidate modifies the line, in which case we need to squash.
339 * If nothing modified the line the order doesn't matter.
340 */
341 bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
342 void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
343
344 /** True if the address hit a external snoop while sitting in the LSQ.
345 * If this is true and a older instruction sees it, this instruction must
346 * reexecute
347 */
348 bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
349 void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
350
351 /**
352 * Returns true if the DTB address translation is being delayed due to a hw
353 * page table walk.
354 */
355 bool isTranslationDelayed() const
356 {
357 return (translationStarted() && !translationCompleted());
358 }
359
360 public:
361#ifdef DEBUG
362 void dumpSNList();
363#endif
364
321 /** Returns the physical register index of the i'th destination
322 * register.
323 */
324 PhysRegIndex renamedDestRegIdx(int idx) const
325 {
326 return _destRegIdx[idx];
327 }
328
329 /** Returns the physical register index of the i'th source register. */
330 PhysRegIndex renamedSrcRegIdx(int idx) const
331 {
365 /** Returns the physical register index of the i'th destination
366 * register.
367 */
368 PhysRegIndex renamedDestRegIdx(int idx) const
369 {
370 return _destRegIdx[idx];
371 }
372
373 /** Returns the physical register index of the i'th source register. */
374 PhysRegIndex renamedSrcRegIdx(int idx) const
375 {
376 assert(TheISA::MaxInstSrcRegs > idx);
332 return _srcRegIdx[idx];
333 }
334
335 /** Returns the flattened register index of the i'th destination
336 * register.
337 */
338 TheISA::RegIndex flattenedDestRegIdx(int idx) const
339 {
340 return _flatDestRegIdx[idx];
341 }
342
377 return _srcRegIdx[idx];
378 }
379
380 /** Returns the flattened register index of the i'th destination
381 * register.
382 */
383 TheISA::RegIndex flattenedDestRegIdx(int idx) const
384 {
385 return _flatDestRegIdx[idx];
386 }
387
343 /** Returns the flattened register index of the i'th source register */
344 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
345 {
346 return _flatSrcRegIdx[idx];
347 }
348
349 /** Returns the physical register index of the previous physical register
350 * that remapped to the same logical register index.
351 */
352 PhysRegIndex prevDestRegIdx(int idx) const
353 {
354 return _prevDestRegIdx[idx];
355 }
356
357 /** Renames a destination register to a physical register. Also records
358 * the previous physical register that the logical register mapped to.
359 */
360 void renameDestReg(int idx,
361 PhysRegIndex renamed_dest,
362 PhysRegIndex previous_rename)
363 {
364 _destRegIdx[idx] = renamed_dest;
365 _prevDestRegIdx[idx] = previous_rename;
366 }
367
368 /** Renames a source logical register to the physical register which
369 * has/will produce that logical register's result.
370 * @todo: add in whether or not the source register is ready.
371 */
372 void renameSrcReg(int idx, PhysRegIndex renamed_src)
373 {
374 _srcRegIdx[idx] = renamed_src;
375 }
376
388 /** Returns the physical register index of the previous physical register
389 * that remapped to the same logical register index.
390 */
391 PhysRegIndex prevDestRegIdx(int idx) const
392 {
393 return _prevDestRegIdx[idx];
394 }
395
396 /** Renames a destination register to a physical register. Also records
397 * the previous physical register that the logical register mapped to.
398 */
399 void renameDestReg(int idx,
400 PhysRegIndex renamed_dest,
401 PhysRegIndex previous_rename)
402 {
403 _destRegIdx[idx] = renamed_dest;
404 _prevDestRegIdx[idx] = previous_rename;
405 }
406
407 /** Renames a source logical register to the physical register which
408 * has/will produce that logical register's result.
409 * @todo: add in whether or not the source register is ready.
410 */
411 void renameSrcReg(int idx, PhysRegIndex renamed_src)
412 {
413 _srcRegIdx[idx] = renamed_src;
414 }
415
377 /** Flattens a source architectural register index into a logical index.
378 */
379 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
380 {
381 _flatSrcRegIdx[idx] = flattened_src;
382 }
383
384 /** Flattens a destination architectural register index into a logical
385 * index.
386 */
387 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
388 {
389 _flatDestRegIdx[idx] = flattened_dest;
390 }
391 /** BaseDynInst constructor given a binary instruction.
392 * @param staticInst A StaticInstPtr to the underlying instruction.
393 * @param pc The PC state for the instruction.
394 * @param predPC The predicted next PC state for the instruction.
395 * @param seq_num The sequence number of the instruction.
396 * @param cpu Pointer to the instruction's CPU.
397 */
398 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
399 TheISA::PCState pc, TheISA::PCState predPC,
400 InstSeqNum seq_num, ImplCPU *cpu);
401
402 /** BaseDynInst constructor given a StaticInst pointer.
403 * @param _staticInst The StaticInst for this BaseDynInst.
404 */
405 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
406
407 /** BaseDynInst destructor. */
408 ~BaseDynInst();
409
410 private:
411 /** Function to initialize variables in the constructors. */
412 void initVars();
413
414 public:
415 /** Dumps out contents of this BaseDynInst. */
416 void dump();
417
418 /** Dumps out contents of this BaseDynInst into given string. */
419 void dump(std::string &outstring);
420
421 /** Read this CPU's ID. */
422 int cpuId() { return cpu->cpuId(); }
423
424 /** Read this CPU's data requestor ID */
425 MasterID masterId() { return cpu->dataMasterId(); }
426
427 /** Read this context's system-wide ID **/
428 int contextId() { return thread->contextId(); }
429
430 /** Returns the fault type. */
431 Fault getFault() { return fault; }
432
433 /** Checks whether or not this instruction has had its branch target
434 * calculated yet. For now it is not utilized and is hacked to be
435 * always false.
436 * @todo: Actually use this instruction.
437 */
438 bool doneTargCalc() { return false; }
439
440 /** Set the predicted target of this current instruction. */
441 void setPredTarg(const TheISA::PCState &_predPC)
442 {
443 predPC = _predPC;
444 }
445
446 const TheISA::PCState &readPredTarg() { return predPC; }
447
448 /** Returns the predicted PC immediately after the branch. */
449 Addr predInstAddr() { return predPC.instAddr(); }
450
451 /** Returns the predicted PC two instructions after the branch */
452 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
453
454 /** Returns the predicted micro PC after the branch */
455 Addr predMicroPC() { return predPC.microPC(); }
456
457 /** Returns whether the instruction was predicted taken or not. */
458 bool readPredTaken()
459 {
416 /** Flattens a destination architectural register index into a logical
417 * index.
418 */
419 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
420 {
421 _flatDestRegIdx[idx] = flattened_dest;
422 }
423 /** BaseDynInst constructor given a binary instruction.
424 * @param staticInst A StaticInstPtr to the underlying instruction.
425 * @param pc The PC state for the instruction.
426 * @param predPC The predicted next PC state for the instruction.
427 * @param seq_num The sequence number of the instruction.
428 * @param cpu Pointer to the instruction's CPU.
429 */
430 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
431 TheISA::PCState pc, TheISA::PCState predPC,
432 InstSeqNum seq_num, ImplCPU *cpu);
433
434 /** BaseDynInst constructor given a StaticInst pointer.
435 * @param _staticInst The StaticInst for this BaseDynInst.
436 */
437 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
438
439 /** BaseDynInst destructor. */
440 ~BaseDynInst();
441
442 private:
443 /** Function to initialize variables in the constructors. */
444 void initVars();
445
446 public:
447 /** Dumps out contents of this BaseDynInst. */
448 void dump();
449
450 /** Dumps out contents of this BaseDynInst into given string. */
451 void dump(std::string &outstring);
452
453 /** Read this CPU's ID. */
454 int cpuId() { return cpu->cpuId(); }
455
456 /** Read this CPU's data requestor ID */
457 MasterID masterId() { return cpu->dataMasterId(); }
458
459 /** Read this context's system-wide ID **/
460 int contextId() { return thread->contextId(); }
461
462 /** Returns the fault type. */
463 Fault getFault() { return fault; }
464
465 /** Checks whether or not this instruction has had its branch target
466 * calculated yet. For now it is not utilized and is hacked to be
467 * always false.
468 * @todo: Actually use this instruction.
469 */
470 bool doneTargCalc() { return false; }
471
472 /** Set the predicted target of this current instruction. */
473 void setPredTarg(const TheISA::PCState &_predPC)
474 {
475 predPC = _predPC;
476 }
477
478 const TheISA::PCState &readPredTarg() { return predPC; }
479
480 /** Returns the predicted PC immediately after the branch. */
481 Addr predInstAddr() { return predPC.instAddr(); }
482
483 /** Returns the predicted PC two instructions after the branch */
484 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
485
486 /** Returns the predicted micro PC after the branch */
487 Addr predMicroPC() { return predPC.microPC(); }
488
489 /** Returns whether the instruction was predicted taken or not. */
490 bool readPredTaken()
491 {
460 return predTaken;
492 return instFlags[PredTaken];
461 }
462
463 void setPredTaken(bool predicted_taken)
464 {
493 }
494
495 void setPredTaken(bool predicted_taken)
496 {
465 predTaken = predicted_taken;
497 instFlags[PredTaken] = predicted_taken;
466 }
467
468 /** Returns whether the instruction mispredicted. */
469 bool mispredicted()
470 {
471 TheISA::PCState tempPC = pc;
472 TheISA::advancePC(tempPC, staticInst);
473 return !(tempPC == predPC);
474 }
475
476 //
477 // Instruction types. Forward checks to StaticInst object.
478 //
479 bool isNop() const { return staticInst->isNop(); }
480 bool isMemRef() const { return staticInst->isMemRef(); }
481 bool isLoad() const { return staticInst->isLoad(); }
482 bool isStore() const { return staticInst->isStore(); }
483 bool isStoreConditional() const
484 { return staticInst->isStoreConditional(); }
485 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
486 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
487 bool isInteger() const { return staticInst->isInteger(); }
488 bool isFloating() const { return staticInst->isFloating(); }
489 bool isControl() const { return staticInst->isControl(); }
490 bool isCall() const { return staticInst->isCall(); }
491 bool isReturn() const { return staticInst->isReturn(); }
492 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
493 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
494 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
495 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
496 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
497 bool isThreadSync() const { return staticInst->isThreadSync(); }
498 bool isSerializing() const { return staticInst->isSerializing(); }
499 bool isSerializeBefore() const
500 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
501 bool isSerializeAfter() const
502 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
503 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
504 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
505 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
506 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
507 bool isQuiesce() const { return staticInst->isQuiesce(); }
508 bool isIprAccess() const { return staticInst->isIprAccess(); }
509 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
510 bool isSyscall() const { return staticInst->isSyscall(); }
511 bool isMacroop() const { return staticInst->isMacroop(); }
512 bool isMicroop() const { return staticInst->isMicroop(); }
513 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
514 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
515 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
516 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
517
518 /** Temporarily sets this instruction as a serialize before instruction. */
519 void setSerializeBefore() { status.set(SerializeBefore); }
520
521 /** Clears the serializeBefore part of this instruction. */
522 void clearSerializeBefore() { status.reset(SerializeBefore); }
523
524 /** Checks if this serializeBefore is only temporarily set. */
525 bool isTempSerializeBefore() { return status[SerializeBefore]; }
526
527 /** Temporarily sets this instruction as a serialize after instruction. */
528 void setSerializeAfter() { status.set(SerializeAfter); }
529
530 /** Clears the serializeAfter part of this instruction.*/
531 void clearSerializeAfter() { status.reset(SerializeAfter); }
532
533 /** Checks if this serializeAfter is only temporarily set. */
534 bool isTempSerializeAfter() { return status[SerializeAfter]; }
535
536 /** Sets the serialization part of this instruction as handled. */
537 void setSerializeHandled() { status.set(SerializeHandled); }
538
539 /** Checks if the serialization part of this instruction has been
540 * handled. This does not apply to the temporary serializing
541 * state; it only applies to this instruction's own permanent
542 * serializing state.
543 */
544 bool isSerializeHandled() { return status[SerializeHandled]; }
545
546 /** Returns the opclass of this instruction. */
547 OpClass opClass() const { return staticInst->opClass(); }
548
549 /** Returns the branch target address. */
550 TheISA::PCState branchTarget() const
551 { return staticInst->branchTarget(pc); }
552
553 /** Returns the number of source registers. */
554 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
555
556 /** Returns the number of destination registers. */
557 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
558
559 // the following are used to track physical register usage
560 // for machines with separate int & FP reg files
561 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
562 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
563
564 /** Returns the logical register index of the i'th destination register. */
565 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
566
567 /** Returns the logical register index of the i'th source register. */
568 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
569
570 /** Pops a result off the instResult queue */
571 template <class T>
572 void popResult(T& t)
573 {
574 if (!instResult.empty()) {
575 instResult.front().get(t);
576 instResult.pop();
577 }
578 }
579
580 /** Read the most recent result stored by this instruction */
581 template <class T>
582 void readResult(T& t)
583 {
584 instResult.back().get(t);
585 }
586
587 /** Pushes a result onto the instResult queue */
588 template <class T>
589 void setResult(T t)
590 {
498 }
499
500 /** Returns whether the instruction mispredicted. */
501 bool mispredicted()
502 {
503 TheISA::PCState tempPC = pc;
504 TheISA::advancePC(tempPC, staticInst);
505 return !(tempPC == predPC);
506 }
507
508 //
509 // Instruction types. Forward checks to StaticInst object.
510 //
511 bool isNop() const { return staticInst->isNop(); }
512 bool isMemRef() const { return staticInst->isMemRef(); }
513 bool isLoad() const { return staticInst->isLoad(); }
514 bool isStore() const { return staticInst->isStore(); }
515 bool isStoreConditional() const
516 { return staticInst->isStoreConditional(); }
517 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
518 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
519 bool isInteger() const { return staticInst->isInteger(); }
520 bool isFloating() const { return staticInst->isFloating(); }
521 bool isControl() const { return staticInst->isControl(); }
522 bool isCall() const { return staticInst->isCall(); }
523 bool isReturn() const { return staticInst->isReturn(); }
524 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
525 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
526 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
527 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
528 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
529 bool isThreadSync() const { return staticInst->isThreadSync(); }
530 bool isSerializing() const { return staticInst->isSerializing(); }
531 bool isSerializeBefore() const
532 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
533 bool isSerializeAfter() const
534 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
535 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
536 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
537 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
538 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
539 bool isQuiesce() const { return staticInst->isQuiesce(); }
540 bool isIprAccess() const { return staticInst->isIprAccess(); }
541 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
542 bool isSyscall() const { return staticInst->isSyscall(); }
543 bool isMacroop() const { return staticInst->isMacroop(); }
544 bool isMicroop() const { return staticInst->isMicroop(); }
545 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
546 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
547 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
548 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
549
550 /** Temporarily sets this instruction as a serialize before instruction. */
551 void setSerializeBefore() { status.set(SerializeBefore); }
552
553 /** Clears the serializeBefore part of this instruction. */
554 void clearSerializeBefore() { status.reset(SerializeBefore); }
555
556 /** Checks if this serializeBefore is only temporarily set. */
557 bool isTempSerializeBefore() { return status[SerializeBefore]; }
558
559 /** Temporarily sets this instruction as a serialize after instruction. */
560 void setSerializeAfter() { status.set(SerializeAfter); }
561
562 /** Clears the serializeAfter part of this instruction.*/
563 void clearSerializeAfter() { status.reset(SerializeAfter); }
564
565 /** Checks if this serializeAfter is only temporarily set. */
566 bool isTempSerializeAfter() { return status[SerializeAfter]; }
567
568 /** Sets the serialization part of this instruction as handled. */
569 void setSerializeHandled() { status.set(SerializeHandled); }
570
571 /** Checks if the serialization part of this instruction has been
572 * handled. This does not apply to the temporary serializing
573 * state; it only applies to this instruction's own permanent
574 * serializing state.
575 */
576 bool isSerializeHandled() { return status[SerializeHandled]; }
577
578 /** Returns the opclass of this instruction. */
579 OpClass opClass() const { return staticInst->opClass(); }
580
581 /** Returns the branch target address. */
582 TheISA::PCState branchTarget() const
583 { return staticInst->branchTarget(pc); }
584
585 /** Returns the number of source registers. */
586 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
587
588 /** Returns the number of destination registers. */
589 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
590
591 // the following are used to track physical register usage
592 // for machines with separate int & FP reg files
593 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
594 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
595
596 /** Returns the logical register index of the i'th destination register. */
597 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
598
599 /** Returns the logical register index of the i'th source register. */
600 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
601
602 /** Pops a result off the instResult queue */
603 template <class T>
604 void popResult(T& t)
605 {
606 if (!instResult.empty()) {
607 instResult.front().get(t);
608 instResult.pop();
609 }
610 }
611
612 /** Read the most recent result stored by this instruction */
613 template <class T>
614 void readResult(T& t)
615 {
616 instResult.back().get(t);
617 }
618
619 /** Pushes a result onto the instResult queue */
620 template <class T>
621 void setResult(T t)
622 {
591 if (recordResult) {
623 if (instFlags[RecordResult]) {
592 Result instRes;
593 instRes.set(t);
594 instResult.push(instRes);
595 }
596 }
597
598 /** Records an integer register being set to a value. */
599 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
600 {
601 setResult<uint64_t>(val);
602 }
603
604 /** Records an fp register being set to a value. */
605 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
606 int width)
607 {
608 if (width == 32 || width == 64) {
609 setResult<double>(val);
610 } else {
611 panic("Unsupported width!");
612 }
613 }
614
615 /** Records an fp register being set to a value. */
616 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
617 {
618 setResult<double>(val);
619 }
620
621 /** Records an fp register being set to an integer value. */
622 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
623 int width)
624 {
625 setResult<uint64_t>(val);
626 }
627
628 /** Records an fp register being set to an integer value. */
629 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
630 {
631 setResult<uint64_t>(val);
632 }
633
634 /** Records that one of the source registers is ready. */
635 void markSrcRegReady();
636
637 /** Marks a specific register as ready. */
638 void markSrcRegReady(RegIndex src_idx);
639
640 /** Returns if a source register is ready. */
641 bool isReadySrcRegIdx(int idx) const
642 {
643 return this->_readySrcRegIdx[idx];
644 }
645
646 /** Sets this instruction as completed. */
647 void setCompleted() { status.set(Completed); }
648
649 /** Returns whether or not this instruction is completed. */
650 bool isCompleted() const { return status[Completed]; }
651
652 /** Marks the result as ready. */
653 void setResultReady() { status.set(ResultReady); }
654
655 /** Returns whether or not the result is ready. */
656 bool isResultReady() const { return status[ResultReady]; }
657
658 /** Sets this instruction as ready to issue. */
659 void setCanIssue() { status.set(CanIssue); }
660
661 /** Returns whether or not this instruction is ready to issue. */
662 bool readyToIssue() const { return status[CanIssue]; }
663
664 /** Clears this instruction being able to issue. */
665 void clearCanIssue() { status.reset(CanIssue); }
666
667 /** Sets this instruction as issued from the IQ. */
668 void setIssued() { status.set(Issued); }
669
670 /** Returns whether or not this instruction has issued. */
671 bool isIssued() const { return status[Issued]; }
672
673 /** Clears this instruction as being issued. */
674 void clearIssued() { status.reset(Issued); }
675
676 /** Sets this instruction as executed. */
677 void setExecuted() { status.set(Executed); }
678
679 /** Returns whether or not this instruction has executed. */
680 bool isExecuted() const { return status[Executed]; }
681
682 /** Sets this instruction as ready to commit. */
683 void setCanCommit() { status.set(CanCommit); }
684
685 /** Clears this instruction as being ready to commit. */
686 void clearCanCommit() { status.reset(CanCommit); }
687
688 /** Returns whether or not this instruction is ready to commit. */
689 bool readyToCommit() const { return status[CanCommit]; }
690
691 void setAtCommit() { status.set(AtCommit); }
692
693 bool isAtCommit() { return status[AtCommit]; }
694
695 /** Sets this instruction as committed. */
696 void setCommitted() { status.set(Committed); }
697
698 /** Returns whether or not this instruction is committed. */
699 bool isCommitted() const { return status[Committed]; }
700
701 /** Sets this instruction as squashed. */
702 void setSquashed() { status.set(Squashed); }
703
704 /** Returns whether or not this instruction is squashed. */
705 bool isSquashed() const { return status[Squashed]; }
706
707 //Instruction Queue Entry
708 //-----------------------
709 /** Sets this instruction as a entry the IQ. */
710 void setInIQ() { status.set(IqEntry); }
711
712 /** Sets this instruction as a entry the IQ. */
713 void clearInIQ() { status.reset(IqEntry); }
714
715 /** Returns whether or not this instruction has issued. */
716 bool isInIQ() const { return status[IqEntry]; }
717
718 /** Sets this instruction as squashed in the IQ. */
719 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
720
721 /** Returns whether or not this instruction is squashed in the IQ. */
722 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
723
724
725 //Load / Store Queue Functions
726 //-----------------------
727 /** Sets this instruction as a entry the LSQ. */
728 void setInLSQ() { status.set(LsqEntry); }
729
730 /** Sets this instruction as a entry the LSQ. */
731 void removeInLSQ() { status.reset(LsqEntry); }
732
733 /** Returns whether or not this instruction is in the LSQ. */
734 bool isInLSQ() const { return status[LsqEntry]; }
735
736 /** Sets this instruction as squashed in the LSQ. */
737 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
738
739 /** Returns whether or not this instruction is squashed in the LSQ. */
740 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
741
742
743 //Reorder Buffer Functions
744 //-----------------------
745 /** Sets this instruction as a entry the ROB. */
746 void setInROB() { status.set(RobEntry); }
747
748 /** Sets this instruction as a entry the ROB. */
749 void clearInROB() { status.reset(RobEntry); }
750
751 /** Returns whether or not this instruction is in the ROB. */
752 bool isInROB() const { return status[RobEntry]; }
753
754 /** Sets this instruction as squashed in the ROB. */
755 void setSquashedInROB() { status.set(SquashedInROB); }
756
757 /** Returns whether or not this instruction is squashed in the ROB. */
758 bool isSquashedInROB() const { return status[SquashedInROB]; }
759
760 /** Read the PC state of this instruction. */
761 const TheISA::PCState pcState() const { return pc; }
762
763 /** Set the PC state of this instruction. */
764 const void pcState(const TheISA::PCState &val) { pc = val; }
765
766 /** Read the PC of this instruction. */
767 const Addr instAddr() const { return pc.instAddr(); }
768
769 /** Read the PC of the next instruction. */
770 const Addr nextInstAddr() const { return pc.nextInstAddr(); }
771
772 /**Read the micro PC of this instruction. */
773 const Addr microPC() const { return pc.microPC(); }
774
775 bool readPredicate()
776 {
624 Result instRes;
625 instRes.set(t);
626 instResult.push(instRes);
627 }
628 }
629
630 /** Records an integer register being set to a value. */
631 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
632 {
633 setResult<uint64_t>(val);
634 }
635
636 /** Records an fp register being set to a value. */
637 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
638 int width)
639 {
640 if (width == 32 || width == 64) {
641 setResult<double>(val);
642 } else {
643 panic("Unsupported width!");
644 }
645 }
646
647 /** Records an fp register being set to a value. */
648 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
649 {
650 setResult<double>(val);
651 }
652
653 /** Records an fp register being set to an integer value. */
654 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
655 int width)
656 {
657 setResult<uint64_t>(val);
658 }
659
660 /** Records an fp register being set to an integer value. */
661 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
662 {
663 setResult<uint64_t>(val);
664 }
665
666 /** Records that one of the source registers is ready. */
667 void markSrcRegReady();
668
669 /** Marks a specific register as ready. */
670 void markSrcRegReady(RegIndex src_idx);
671
672 /** Returns if a source register is ready. */
673 bool isReadySrcRegIdx(int idx) const
674 {
675 return this->_readySrcRegIdx[idx];
676 }
677
678 /** Sets this instruction as completed. */
679 void setCompleted() { status.set(Completed); }
680
681 /** Returns whether or not this instruction is completed. */
682 bool isCompleted() const { return status[Completed]; }
683
684 /** Marks the result as ready. */
685 void setResultReady() { status.set(ResultReady); }
686
687 /** Returns whether or not the result is ready. */
688 bool isResultReady() const { return status[ResultReady]; }
689
690 /** Sets this instruction as ready to issue. */
691 void setCanIssue() { status.set(CanIssue); }
692
693 /** Returns whether or not this instruction is ready to issue. */
694 bool readyToIssue() const { return status[CanIssue]; }
695
696 /** Clears this instruction being able to issue. */
697 void clearCanIssue() { status.reset(CanIssue); }
698
699 /** Sets this instruction as issued from the IQ. */
700 void setIssued() { status.set(Issued); }
701
702 /** Returns whether or not this instruction has issued. */
703 bool isIssued() const { return status[Issued]; }
704
705 /** Clears this instruction as being issued. */
706 void clearIssued() { status.reset(Issued); }
707
708 /** Sets this instruction as executed. */
709 void setExecuted() { status.set(Executed); }
710
711 /** Returns whether or not this instruction has executed. */
712 bool isExecuted() const { return status[Executed]; }
713
714 /** Sets this instruction as ready to commit. */
715 void setCanCommit() { status.set(CanCommit); }
716
717 /** Clears this instruction as being ready to commit. */
718 void clearCanCommit() { status.reset(CanCommit); }
719
720 /** Returns whether or not this instruction is ready to commit. */
721 bool readyToCommit() const { return status[CanCommit]; }
722
723 void setAtCommit() { status.set(AtCommit); }
724
725 bool isAtCommit() { return status[AtCommit]; }
726
727 /** Sets this instruction as committed. */
728 void setCommitted() { status.set(Committed); }
729
730 /** Returns whether or not this instruction is committed. */
731 bool isCommitted() const { return status[Committed]; }
732
733 /** Sets this instruction as squashed. */
734 void setSquashed() { status.set(Squashed); }
735
736 /** Returns whether or not this instruction is squashed. */
737 bool isSquashed() const { return status[Squashed]; }
738
739 //Instruction Queue Entry
740 //-----------------------
741 /** Sets this instruction as a entry the IQ. */
742 void setInIQ() { status.set(IqEntry); }
743
744 /** Sets this instruction as a entry the IQ. */
745 void clearInIQ() { status.reset(IqEntry); }
746
747 /** Returns whether or not this instruction has issued. */
748 bool isInIQ() const { return status[IqEntry]; }
749
750 /** Sets this instruction as squashed in the IQ. */
751 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
752
753 /** Returns whether or not this instruction is squashed in the IQ. */
754 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
755
756
757 //Load / Store Queue Functions
758 //-----------------------
759 /** Sets this instruction as a entry the LSQ. */
760 void setInLSQ() { status.set(LsqEntry); }
761
762 /** Sets this instruction as a entry the LSQ. */
763 void removeInLSQ() { status.reset(LsqEntry); }
764
765 /** Returns whether or not this instruction is in the LSQ. */
766 bool isInLSQ() const { return status[LsqEntry]; }
767
768 /** Sets this instruction as squashed in the LSQ. */
769 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
770
771 /** Returns whether or not this instruction is squashed in the LSQ. */
772 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
773
774
775 //Reorder Buffer Functions
776 //-----------------------
777 /** Sets this instruction as a entry the ROB. */
778 void setInROB() { status.set(RobEntry); }
779
780 /** Sets this instruction as a entry the ROB. */
781 void clearInROB() { status.reset(RobEntry); }
782
783 /** Returns whether or not this instruction is in the ROB. */
784 bool isInROB() const { return status[RobEntry]; }
785
786 /** Sets this instruction as squashed in the ROB. */
787 void setSquashedInROB() { status.set(SquashedInROB); }
788
789 /** Returns whether or not this instruction is squashed in the ROB. */
790 bool isSquashedInROB() const { return status[SquashedInROB]; }
791
792 /** Read the PC state of this instruction. */
793 const TheISA::PCState pcState() const { return pc; }
794
795 /** Set the PC state of this instruction. */
796 const void pcState(const TheISA::PCState &val) { pc = val; }
797
798 /** Read the PC of this instruction. */
799 const Addr instAddr() const { return pc.instAddr(); }
800
801 /** Read the PC of the next instruction. */
802 const Addr nextInstAddr() const { return pc.nextInstAddr(); }
803
804 /**Read the micro PC of this instruction. */
805 const Addr microPC() const { return pc.microPC(); }
806
807 bool readPredicate()
808 {
777 return predicate;
809 return instFlags[Predicate];
778 }
779
780 void setPredicate(bool val)
781 {
810 }
811
812 void setPredicate(bool val)
813 {
782 predicate = val;
814 instFlags[Predicate] = val;
783
784 if (traceData) {
785 traceData->setPredicate(val);
786 }
787 }
788
789 /** Sets the ASID. */
790 void setASID(short addr_space_id) { asid = addr_space_id; }
791
792 /** Sets the thread id. */
793 void setTid(ThreadID tid) { threadNumber = tid; }
794
795 /** Sets the pointer to the thread state. */
796 void setThreadState(ImplState *state) { thread = state; }
797
798 /** Returns the thread context. */
799 ThreadContext *tcBase() { return thread->getTC(); }
800
815
816 if (traceData) {
817 traceData->setPredicate(val);
818 }
819 }
820
821 /** Sets the ASID. */
822 void setASID(short addr_space_id) { asid = addr_space_id; }
823
824 /** Sets the thread id. */
825 void setTid(ThreadID tid) { threadNumber = tid; }
826
827 /** Sets the pointer to the thread state. */
828 void setThreadState(ImplState *state) { thread = state; }
829
830 /** Returns the thread context. */
831 ThreadContext *tcBase() { return thread->getTC(); }
832
801 private:
802 /** Instruction effective address.
803 * @todo: Consider if this is necessary or not.
804 */
805 Addr instEffAddr;
806
807 /** Whether or not the effective address calculation is completed.
808 * @todo: Consider if this is necessary or not.
809 */
810 bool eaCalcDone;
811
812 /** Is this instruction's memory access uncacheable. */
813 bool isUncacheable;
814
815 /** Has this instruction generated a memory request. */
816 bool reqMade;
817
818 public:
819 /** Sets the effective address. */
833 public:
834 /** Sets the effective address. */
820 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
835 void setEA(Addr &ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
821
822 /** Returns the effective address. */
823 const Addr &getEA() const { return instEffAddr; }
824
825 /** Returns whether or not the eff. addr. calculation has been completed. */
836
837 /** Returns the effective address. */
838 const Addr &getEA() const { return instEffAddr; }
839
840 /** Returns whether or not the eff. addr. calculation has been completed. */
826 bool doneEACalc() { return eaCalcDone; }
841 bool doneEACalc() { return instFlags[EACalcDone]; }
827
828 /** Returns whether or not the eff. addr. source registers are ready. */
829 bool eaSrcsReady();
830
842
843 /** Returns whether or not the eff. addr. source registers are ready. */
844 bool eaSrcsReady();
845
831 /** Whether or not the memory operation is done. */
832 bool memOpDone;
833
834 /** Is this instruction's memory access uncacheable. */
846 /** Is this instruction's memory access uncacheable. */
835 bool uncacheable() { return isUncacheable; }
847 bool uncacheable() { return instFlags[IsUncacheable]; }
836
837 /** Has this instruction generated a memory request. */
848
849 /** Has this instruction generated a memory request. */
838 bool hasRequest() { return reqMade; }
850 bool hasRequest() { return instFlags[ReqMade]; }
839
851
840 public:
841 /** Load queue index. */
842 int16_t lqIdx;
843
844 /** Store queue index. */
845 int16_t sqIdx;
846
847 /** Iterator pointing to this BaseDynInst in the list of all insts. */
848 ListIt instListIt;
849
850 /** Returns iterator to this instruction in the list of all insts. */
851 ListIt &getInstListIt() { return instListIt; }
852
853 /** Sets iterator for this instruction in the list of all insts. */
854 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
855
856 public:
857 /** Returns the number of consecutive store conditional failures. */
858 unsigned readStCondFailures()
859 { return thread->storeCondFailures; }
860
861 /** Sets the number of consecutive store conditional failures. */
862 void setStCondFailures(unsigned sc_failures)
863 { thread->storeCondFailures = sc_failures; }
864};
865
866template<class Impl>
867Fault
868BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
869 unsigned size, unsigned flags)
870{
852 /** Returns iterator to this instruction in the list of all insts. */
853 ListIt &getInstListIt() { return instListIt; }
854
855 /** Sets iterator for this instruction in the list of all insts. */
856 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
857
858 public:
859 /** Returns the number of consecutive store conditional failures. */
860 unsigned readStCondFailures()
861 { return thread->storeCondFailures; }
862
863 /** Sets the number of consecutive store conditional failures. */
864 void setStCondFailures(unsigned sc_failures)
865 { thread->storeCondFailures = sc_failures; }
866};
867
868template<class Impl>
869Fault
870BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
871 unsigned size, unsigned flags)
872{
871 reqMade = true;
873 instFlags[ReqMade] = true;
872 Request *req = NULL;
873 Request *sreqLow = NULL;
874 Request *sreqHigh = NULL;
875
874 Request *req = NULL;
875 Request *sreqLow = NULL;
876 Request *sreqHigh = NULL;
877
876 if (reqMade && translationStarted) {
878 if (instFlags[ReqMade] && translationStarted()) {
877 req = savedReq;
878 sreqLow = savedSreqLow;
879 sreqHigh = savedSreqHigh;
880 } else {
881 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
882 thread->contextId(), threadNumber);
883
884 // Only split the request if the ISA supports unaligned accesses.
885 if (TheISA::HasUnalignedMemAcc) {
886 splitRequest(req, sreqLow, sreqHigh);
887 }
888 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
889 }
890
879 req = savedReq;
880 sreqLow = savedSreqLow;
881 sreqHigh = savedSreqHigh;
882 } else {
883 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
884 thread->contextId(), threadNumber);
885
886 // Only split the request if the ISA supports unaligned accesses.
887 if (TheISA::HasUnalignedMemAcc) {
888 splitRequest(req, sreqLow, sreqHigh);
889 }
890 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
891 }
892
891 if (translationCompleted) {
893 if (translationCompleted()) {
892 if (fault == NoFault) {
893 effAddr = req->getVaddr();
894 effSize = size;
894 if (fault == NoFault) {
895 effAddr = req->getVaddr();
896 effSize = size;
895 effAddrValid = true;
897 instFlags[EffAddrValid] = true;
896
897 if (cpu->checker) {
898 if (reqToVerify != NULL) {
899 delete reqToVerify;
900 }
901 reqToVerify = new Request(*req);
902 }
903 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
904 } else {
905 // Commit will have to clean up whatever happened. Set this
906 // instruction as executed.
907 this->setExecuted();
908 }
909
910 if (fault != NoFault) {
911 // Return a fixed value to keep simulation deterministic even
912 // along misspeculated paths.
913 if (data)
914 bzero(data, size);
915 }
916 }
917
918 if (traceData) {
919 traceData->setAddr(addr);
920 }
921
922 return fault;
923}
924
925template<class Impl>
926Fault
927BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
928 Addr addr, unsigned flags, uint64_t *res)
929{
930 if (traceData) {
931 traceData->setAddr(addr);
932 }
933
898
899 if (cpu->checker) {
900 if (reqToVerify != NULL) {
901 delete reqToVerify;
902 }
903 reqToVerify = new Request(*req);
904 }
905 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
906 } else {
907 // Commit will have to clean up whatever happened. Set this
908 // instruction as executed.
909 this->setExecuted();
910 }
911
912 if (fault != NoFault) {
913 // Return a fixed value to keep simulation deterministic even
914 // along misspeculated paths.
915 if (data)
916 bzero(data, size);
917 }
918 }
919
920 if (traceData) {
921 traceData->setAddr(addr);
922 }
923
924 return fault;
925}
926
927template<class Impl>
928Fault
929BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
930 Addr addr, unsigned flags, uint64_t *res)
931{
932 if (traceData) {
933 traceData->setAddr(addr);
934 }
935
934 reqMade = true;
936 instFlags[ReqMade] = true;
935 Request *req = NULL;
936 Request *sreqLow = NULL;
937 Request *sreqHigh = NULL;
938
937 Request *req = NULL;
938 Request *sreqLow = NULL;
939 Request *sreqHigh = NULL;
940
939 if (reqMade && translationStarted) {
941 if (instFlags[ReqMade] && translationStarted()) {
940 req = savedReq;
941 sreqLow = savedSreqLow;
942 sreqHigh = savedSreqHigh;
943 } else {
944 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
945 thread->contextId(), threadNumber);
946
947 // Only split the request if the ISA supports unaligned accesses.
948 if (TheISA::HasUnalignedMemAcc) {
949 splitRequest(req, sreqLow, sreqHigh);
950 }
951 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
952 }
953
942 req = savedReq;
943 sreqLow = savedSreqLow;
944 sreqHigh = savedSreqHigh;
945 } else {
946 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
947 thread->contextId(), threadNumber);
948
949 // Only split the request if the ISA supports unaligned accesses.
950 if (TheISA::HasUnalignedMemAcc) {
951 splitRequest(req, sreqLow, sreqHigh);
952 }
953 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
954 }
955
954 if (fault == NoFault && translationCompleted) {
956 if (fault == NoFault && translationCompleted()) {
955 effAddr = req->getVaddr();
956 effSize = size;
957 effAddr = req->getVaddr();
958 effSize = size;
957 effAddrValid = true;
959 instFlags[EffAddrValid] = true;
958
959 if (cpu->checker) {
960 if (reqToVerify != NULL) {
961 delete reqToVerify;
962 }
963 reqToVerify = new Request(*req);
964 }
965 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
966 }
967
968 return fault;
969}
970
971template<class Impl>
972inline void
973BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
974 RequestPtr &sreqHigh)
975{
976 // Check to see if the request crosses the next level block boundary.
977 unsigned block_size = cpu->getDataPort().peerBlockSize();
978 Addr addr = req->getVaddr();
979 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
980 assert(split_addr <= addr || split_addr - addr < block_size);
981
982 // Spans two blocks.
983 if (split_addr > addr) {
984 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
985 }
986}
987
988template<class Impl>
989inline void
990BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
991 RequestPtr sreqHigh, uint64_t *res,
992 BaseTLB::Mode mode)
993{
960
961 if (cpu->checker) {
962 if (reqToVerify != NULL) {
963 delete reqToVerify;
964 }
965 reqToVerify = new Request(*req);
966 }
967 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
968 }
969
970 return fault;
971}
972
973template<class Impl>
974inline void
975BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
976 RequestPtr &sreqHigh)
977{
978 // Check to see if the request crosses the next level block boundary.
979 unsigned block_size = cpu->getDataPort().peerBlockSize();
980 Addr addr = req->getVaddr();
981 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
982 assert(split_addr <= addr || split_addr - addr < block_size);
983
984 // Spans two blocks.
985 if (split_addr > addr) {
986 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
987 }
988}
989
990template<class Impl>
991inline void
992BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
993 RequestPtr sreqHigh, uint64_t *res,
994 BaseTLB::Mode mode)
995{
994 translationStarted = true;
996 translationStarted(true);
995
996 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
997 WholeTranslationState *state =
998 new WholeTranslationState(req, NULL, res, mode);
999
1000 // One translation if the request isn't split.
1001 DataTranslation<BaseDynInstPtr> *trans =
1002 new DataTranslation<BaseDynInstPtr>(this, state);
1003 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
997
998 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
999 WholeTranslationState *state =
1000 new WholeTranslationState(req, NULL, res, mode);
1001
1002 // One translation if the request isn't split.
1003 DataTranslation<BaseDynInstPtr> *trans =
1004 new DataTranslation<BaseDynInstPtr>(this, state);
1005 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1004 if (!translationCompleted) {
1006 if (!translationCompleted()) {
1005 // Save memory requests.
1006 savedReq = state->mainReq;
1007 savedSreqLow = state->sreqLow;
1008 savedSreqHigh = state->sreqHigh;
1009 }
1010 } else {
1011 WholeTranslationState *state =
1012 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1013
1014 // Two translations when the request is split.
1015 DataTranslation<BaseDynInstPtr> *stransLow =
1016 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1017 DataTranslation<BaseDynInstPtr> *stransHigh =
1018 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1019
1020 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1021 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1007 // Save memory requests.
1008 savedReq = state->mainReq;
1009 savedSreqLow = state->sreqLow;
1010 savedSreqHigh = state->sreqHigh;
1011 }
1012 } else {
1013 WholeTranslationState *state =
1014 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1015
1016 // Two translations when the request is split.
1017 DataTranslation<BaseDynInstPtr> *stransLow =
1018 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1019 DataTranslation<BaseDynInstPtr> *stransHigh =
1020 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1021
1022 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1023 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1022 if (!translationCompleted) {
1024 if (!translationCompleted()) {
1023 // Save memory requests.
1024 savedReq = state->mainReq;
1025 savedSreqLow = state->sreqLow;
1026 savedSreqHigh = state->sreqHigh;
1027 }
1028 }
1029}
1030
1031template<class Impl>
1032inline void
1033BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1034{
1035 fault = state->getFault();
1036
1025 // Save memory requests.
1026 savedReq = state->mainReq;
1027 savedSreqLow = state->sreqLow;
1028 savedSreqHigh = state->sreqHigh;
1029 }
1030 }
1031}
1032
1033template<class Impl>
1034inline void
1035BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1036{
1037 fault = state->getFault();
1038
1037 if (state->isUncacheable())
1038 isUncacheable = true;
1039 instFlags[IsUncacheable] = state->isUncacheable();
1039
1040 if (fault == NoFault) {
1041 physEffAddr = state->getPaddr();
1042 memReqFlags = state->getFlags();
1043
1044 if (state->mainReq->isCondSwap()) {
1045 assert(state->res);
1046 state->mainReq->setExtraData(*state->res);
1047 }
1048
1049 } else {
1050 state->deleteReqs();
1051 }
1052 delete state;
1053
1040
1041 if (fault == NoFault) {
1042 physEffAddr = state->getPaddr();
1043 memReqFlags = state->getFlags();
1044
1045 if (state->mainReq->isCondSwap()) {
1046 assert(state->res);
1047 state->mainReq->setExtraData(*state->res);
1048 }
1049
1050 } else {
1051 state->deleteReqs();
1052 }
1053 delete state;
1054
1054 translationCompleted = true;
1055 translationCompleted(true);
1055}
1056
1057#endif // __CPU_BASE_DYN_INST_HH__
1056}
1057
1058#endif // __CPU_BASE_DYN_INST_HH__