base_dyn_inst.hh (7678:f19b6a3a8cec) base_dyn_inst.hh (7720:65d338a8dba4)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 * Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 * Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "arch/utility.hh"
41#include "base/fast_alloc.hh"
42#include "base/trace.hh"
43#include "config/full_system.hh"
44#include "config/the_isa.hh"
45#include "cpu/o3/comm.hh"
46#include "cpu/exetrace.hh"
47#include "cpu/inst_seq.hh"
48#include "cpu/op_class.hh"
49#include "cpu/static_inst.hh"
50#include "cpu/translation.hh"
51#include "mem/packet.hh"
52#include "sim/byteswap.hh"
53#include "sim/system.hh"
54#include "sim/tlb.hh"
55
56/**
57 * @file
58 * Defines a dynamic instruction context.
59 */
60
61// Forward declaration.
62class StaticInstPtr;
63
64template <class Impl>
65class BaseDynInst : public FastAlloc, public RefCounted
66{
67 public:
68 // Typedef for the CPU.
69 typedef typename Impl::CPUType ImplCPU;
70 typedef typename ImplCPU::ImplState ImplState;
71
72 // Logical register index type.
73 typedef TheISA::RegIndex RegIndex;
74 // Integer register type.
75 typedef TheISA::IntReg IntReg;
76 // Floating point register type.
77 typedef TheISA::FloatReg FloatReg;
78
79 // The DynInstPtr type.
80 typedef typename Impl::DynInstPtr DynInstPtr;
81
82 // The list of instructions iterator type.
83 typedef typename std::list<DynInstPtr>::iterator ListIt;
84
85 enum {
86 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
87 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
88 };
89
90 /** The StaticInst used by this BaseDynInst. */
91 StaticInstPtr staticInst;
92
93 ////////////////////////////////////////////
94 //
95 // INSTRUCTION EXECUTION
96 //
97 ////////////////////////////////////////////
98 /** InstRecord that tracks this instructions. */
99 Trace::InstRecord *traceData;
100
101 void demapPage(Addr vaddr, uint64_t asn)
102 {
103 cpu->demapPage(vaddr, asn);
104 }
105 void demapInstPage(Addr vaddr, uint64_t asn)
106 {
107 cpu->demapPage(vaddr, asn);
108 }
109 void demapDataPage(Addr vaddr, uint64_t asn)
110 {
111 cpu->demapPage(vaddr, asn);
112 }
113
114 /**
115 * Does a read to a given address.
116 * @param addr The address to read.
117 * @param data The read's data is written into this parameter.
118 * @param flags The request's flags.
119 * @return Returns any fault due to the read.
120 */
121 template <class T>
122 Fault read(Addr addr, T &data, unsigned flags);
123
124 Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
125
126 /**
127 * Does a write to a given address.
128 * @param data The data to be written.
129 * @param addr The address to write to.
130 * @param flags The request's flags.
131 * @param res The result of the write (for load locked/store conditionals).
132 * @return Returns any fault due to the write.
133 */
134 template <class T>
135 Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
136
137 Fault writeBytes(uint8_t *data, unsigned size,
138 Addr addr, unsigned flags, uint64_t *res);
139
140 /** Splits a request in two if it crosses a dcache block. */
141 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
142 RequestPtr &sreqHigh);
143
144 /** Initiate a DTB address translation. */
145 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
146 RequestPtr sreqHigh, uint64_t *res,
147 BaseTLB::Mode mode);
148
149 /** Finish a DTB address translation. */
150 void finishTranslation(WholeTranslationState *state);
151
152 void prefetch(Addr addr, unsigned flags);
153 void writeHint(Addr addr, int size, unsigned flags);
154 Fault copySrcTranslate(Addr src);
155 Fault copy(Addr dest);
156
157 /** @todo: Consider making this private. */
158 public:
159 /** The sequence number of the instruction. */
160 InstSeqNum seqNum;
161
162 enum Status {
163 IqEntry, /// Instruction is in the IQ
164 RobEntry, /// Instruction is in the ROB
165 LsqEntry, /// Instruction is in the LSQ
166 Completed, /// Instruction has completed
167 ResultReady, /// Instruction has its result
168 CanIssue, /// Instruction can issue and execute
169 Issued, /// Instruction has issued
170 Executed, /// Instruction has executed
171 CanCommit, /// Instruction can commit
172 AtCommit, /// Instruction has reached commit
173 Committed, /// Instruction has committed
174 Squashed, /// Instruction is squashed
175 SquashedInIQ, /// Instruction is squashed in the IQ
176 SquashedInLSQ, /// Instruction is squashed in the LSQ
177 SquashedInROB, /// Instruction is squashed in the ROB
178 RecoverInst, /// Is a recover instruction
179 BlockingInst, /// Is a blocking instruction
180 ThreadsyncWait, /// Is a thread synchronization instruction
181 SerializeBefore, /// Needs to serialize on
182 /// instructions ahead of it
183 SerializeAfter, /// Needs to serialize instructions behind it
184 SerializeHandled, /// Serialization has been handled
185 NumStatus
186 };
187
188 /** The status of this BaseDynInst. Several bits can be set. */
189 std::bitset<NumStatus> status;
190
191 /** The thread this instruction is from. */
192 ThreadID threadNumber;
193
194 /** data address space ID, for loads & stores. */
195 short asid;
196
197 /** How many source registers are ready. */
198 unsigned readyRegs;
199
200 /** Pointer to the Impl's CPU object. */
201 ImplCPU *cpu;
202
203 /** Pointer to the thread state. */
204 ImplState *thread;
205
206 /** The kind of fault this instruction has generated. */
207 Fault fault;
208
209 /** Pointer to the data for the memory access. */
210 uint8_t *memData;
211
212 /** The effective virtual address (lds & stores only). */
213 Addr effAddr;
214
215 /** Is the effective virtual address valid. */
216 bool effAddrValid;
217
218 /** The effective physical address. */
219 Addr physEffAddr;
220
221 /** Effective virtual address for a copy source. */
222 Addr copySrcEffAddr;
223
224 /** Effective physical address for a copy source. */
225 Addr copySrcPhysEffAddr;
226
227 /** The memory request flags (from translation). */
228 unsigned memReqFlags;
229
230 union Result {
231 uint64_t integer;
232// float fp;
233 double dbl;
234 };
235
236 /** The result of the instruction; assumes for now that there's only one
237 * destination register.
238 */
239 Result instResult;
240
241 /** Records changes to result? */
242 bool recordResult;
243
42#include "base/fast_alloc.hh"
43#include "base/trace.hh"
44#include "config/full_system.hh"
45#include "config/the_isa.hh"
46#include "cpu/o3/comm.hh"
47#include "cpu/exetrace.hh"
48#include "cpu/inst_seq.hh"
49#include "cpu/op_class.hh"
50#include "cpu/static_inst.hh"
51#include "cpu/translation.hh"
52#include "mem/packet.hh"
53#include "sim/byteswap.hh"
54#include "sim/system.hh"
55#include "sim/tlb.hh"
56
57/**
58 * @file
59 * Defines a dynamic instruction context.
60 */
61
62// Forward declaration.
63class StaticInstPtr;
64
65template <class Impl>
66class BaseDynInst : public FastAlloc, public RefCounted
67{
68 public:
69 // Typedef for the CPU.
70 typedef typename Impl::CPUType ImplCPU;
71 typedef typename ImplCPU::ImplState ImplState;
72
73 // Logical register index type.
74 typedef TheISA::RegIndex RegIndex;
75 // Integer register type.
76 typedef TheISA::IntReg IntReg;
77 // Floating point register type.
78 typedef TheISA::FloatReg FloatReg;
79
80 // The DynInstPtr type.
81 typedef typename Impl::DynInstPtr DynInstPtr;
82
83 // The list of instructions iterator type.
84 typedef typename std::list<DynInstPtr>::iterator ListIt;
85
86 enum {
87 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
88 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
89 };
90
91 /** The StaticInst used by this BaseDynInst. */
92 StaticInstPtr staticInst;
93
94 ////////////////////////////////////////////
95 //
96 // INSTRUCTION EXECUTION
97 //
98 ////////////////////////////////////////////
99 /** InstRecord that tracks this instructions. */
100 Trace::InstRecord *traceData;
101
102 void demapPage(Addr vaddr, uint64_t asn)
103 {
104 cpu->demapPage(vaddr, asn);
105 }
106 void demapInstPage(Addr vaddr, uint64_t asn)
107 {
108 cpu->demapPage(vaddr, asn);
109 }
110 void demapDataPage(Addr vaddr, uint64_t asn)
111 {
112 cpu->demapPage(vaddr, asn);
113 }
114
115 /**
116 * Does a read to a given address.
117 * @param addr The address to read.
118 * @param data The read's data is written into this parameter.
119 * @param flags The request's flags.
120 * @return Returns any fault due to the read.
121 */
122 template <class T>
123 Fault read(Addr addr, T &data, unsigned flags);
124
125 Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
126
127 /**
128 * Does a write to a given address.
129 * @param data The data to be written.
130 * @param addr The address to write to.
131 * @param flags The request's flags.
132 * @param res The result of the write (for load locked/store conditionals).
133 * @return Returns any fault due to the write.
134 */
135 template <class T>
136 Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
137
138 Fault writeBytes(uint8_t *data, unsigned size,
139 Addr addr, unsigned flags, uint64_t *res);
140
141 /** Splits a request in two if it crosses a dcache block. */
142 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
143 RequestPtr &sreqHigh);
144
145 /** Initiate a DTB address translation. */
146 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
147 RequestPtr sreqHigh, uint64_t *res,
148 BaseTLB::Mode mode);
149
150 /** Finish a DTB address translation. */
151 void finishTranslation(WholeTranslationState *state);
152
153 void prefetch(Addr addr, unsigned flags);
154 void writeHint(Addr addr, int size, unsigned flags);
155 Fault copySrcTranslate(Addr src);
156 Fault copy(Addr dest);
157
158 /** @todo: Consider making this private. */
159 public:
160 /** The sequence number of the instruction. */
161 InstSeqNum seqNum;
162
163 enum Status {
164 IqEntry, /// Instruction is in the IQ
165 RobEntry, /// Instruction is in the ROB
166 LsqEntry, /// Instruction is in the LSQ
167 Completed, /// Instruction has completed
168 ResultReady, /// Instruction has its result
169 CanIssue, /// Instruction can issue and execute
170 Issued, /// Instruction has issued
171 Executed, /// Instruction has executed
172 CanCommit, /// Instruction can commit
173 AtCommit, /// Instruction has reached commit
174 Committed, /// Instruction has committed
175 Squashed, /// Instruction is squashed
176 SquashedInIQ, /// Instruction is squashed in the IQ
177 SquashedInLSQ, /// Instruction is squashed in the LSQ
178 SquashedInROB, /// Instruction is squashed in the ROB
179 RecoverInst, /// Is a recover instruction
180 BlockingInst, /// Is a blocking instruction
181 ThreadsyncWait, /// Is a thread synchronization instruction
182 SerializeBefore, /// Needs to serialize on
183 /// instructions ahead of it
184 SerializeAfter, /// Needs to serialize instructions behind it
185 SerializeHandled, /// Serialization has been handled
186 NumStatus
187 };
188
189 /** The status of this BaseDynInst. Several bits can be set. */
190 std::bitset<NumStatus> status;
191
192 /** The thread this instruction is from. */
193 ThreadID threadNumber;
194
195 /** data address space ID, for loads & stores. */
196 short asid;
197
198 /** How many source registers are ready. */
199 unsigned readyRegs;
200
201 /** Pointer to the Impl's CPU object. */
202 ImplCPU *cpu;
203
204 /** Pointer to the thread state. */
205 ImplState *thread;
206
207 /** The kind of fault this instruction has generated. */
208 Fault fault;
209
210 /** Pointer to the data for the memory access. */
211 uint8_t *memData;
212
213 /** The effective virtual address (lds & stores only). */
214 Addr effAddr;
215
216 /** Is the effective virtual address valid. */
217 bool effAddrValid;
218
219 /** The effective physical address. */
220 Addr physEffAddr;
221
222 /** Effective virtual address for a copy source. */
223 Addr copySrcEffAddr;
224
225 /** Effective physical address for a copy source. */
226 Addr copySrcPhysEffAddr;
227
228 /** The memory request flags (from translation). */
229 unsigned memReqFlags;
230
231 union Result {
232 uint64_t integer;
233// float fp;
234 double dbl;
235 };
236
237 /** The result of the instruction; assumes for now that there's only one
238 * destination register.
239 */
240 Result instResult;
241
242 /** Records changes to result? */
243 bool recordResult;
244
244 /** PC of this instruction. */
245 Addr PC;
246
247 /** Micro PC of this instruction. */
248 Addr microPC;
249
250 /** Did this instruction execute, or is it predicated false */
251 bool predicate;
252
253 protected:
245 /** Did this instruction execute, or is it predicated false */
246 bool predicate;
247
248 protected:
254 /** Next non-speculative PC. It is not filled in at fetch, but rather
255 * once the target of the branch is truly known (either decode or
256 * execute).
257 */
258 Addr nextPC;
249 /** PC state for this instruction. */
250 TheISA::PCState pc;
259
251
260 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
261 Addr nextNPC;
252 /** Predicted PC state after this instruction. */
253 TheISA::PCState predPC;
262
254
263 /** Next non-speculative micro PC. */
264 Addr nextMicroPC;
265
266 /** Predicted next PC. */
267 Addr predPC;
268
269 /** Predicted next NPC. */
270 Addr predNPC;
271
272 /** Predicted next microPC */
273 Addr predMicroPC;
274
275 /** If this is a branch that was predicted taken */
276 bool predTaken;
277
278 public:
279
280#ifdef DEBUG
281 void dumpSNList();
282#endif
283
284 /** Whether or not the source register is ready.
285 * @todo: Not sure this should be here vs the derived class.
286 */
287 bool _readySrcRegIdx[MaxInstSrcRegs];
288
289 protected:
290 /** Flattened register index of the destination registers of this
291 * instruction.
292 */
293 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
294
295 /** Flattened register index of the source registers of this
296 * instruction.
297 */
298 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
299
300 /** Physical register index of the destination registers of this
301 * instruction.
302 */
303 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
304
305 /** Physical register index of the source registers of this
306 * instruction.
307 */
308 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
309
310 /** Physical register index of the previous producers of the
311 * architected destinations.
312 */
313 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
314
315 public:
316
317 /** Returns the physical register index of the i'th destination
318 * register.
319 */
320 PhysRegIndex renamedDestRegIdx(int idx) const
321 {
322 return _destRegIdx[idx];
323 }
324
325 /** Returns the physical register index of the i'th source register. */
326 PhysRegIndex renamedSrcRegIdx(int idx) const
327 {
328 return _srcRegIdx[idx];
329 }
330
331 /** Returns the flattened register index of the i'th destination
332 * register.
333 */
334 TheISA::RegIndex flattenedDestRegIdx(int idx) const
335 {
336 return _flatDestRegIdx[idx];
337 }
338
339 /** Returns the flattened register index of the i'th source register */
340 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
341 {
342 return _flatSrcRegIdx[idx];
343 }
344
345 /** Returns the physical register index of the previous physical register
346 * that remapped to the same logical register index.
347 */
348 PhysRegIndex prevDestRegIdx(int idx) const
349 {
350 return _prevDestRegIdx[idx];
351 }
352
353 /** Renames a destination register to a physical register. Also records
354 * the previous physical register that the logical register mapped to.
355 */
356 void renameDestReg(int idx,
357 PhysRegIndex renamed_dest,
358 PhysRegIndex previous_rename)
359 {
360 _destRegIdx[idx] = renamed_dest;
361 _prevDestRegIdx[idx] = previous_rename;
362 }
363
364 /** Renames a source logical register to the physical register which
365 * has/will produce that logical register's result.
366 * @todo: add in whether or not the source register is ready.
367 */
368 void renameSrcReg(int idx, PhysRegIndex renamed_src)
369 {
370 _srcRegIdx[idx] = renamed_src;
371 }
372
373 /** Flattens a source architectural register index into a logical index.
374 */
375 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
376 {
377 _flatSrcRegIdx[idx] = flattened_src;
378 }
379
380 /** Flattens a destination architectural register index into a logical
381 * index.
382 */
383 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
384 {
385 _flatDestRegIdx[idx] = flattened_dest;
386 }
387 /** BaseDynInst constructor given a binary instruction.
388 * @param staticInst A StaticInstPtr to the underlying instruction.
255 /** If this is a branch that was predicted taken */
256 bool predTaken;
257
258 public:
259
260#ifdef DEBUG
261 void dumpSNList();
262#endif
263
264 /** Whether or not the source register is ready.
265 * @todo: Not sure this should be here vs the derived class.
266 */
267 bool _readySrcRegIdx[MaxInstSrcRegs];
268
269 protected:
270 /** Flattened register index of the destination registers of this
271 * instruction.
272 */
273 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
274
275 /** Flattened register index of the source registers of this
276 * instruction.
277 */
278 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
279
280 /** Physical register index of the destination registers of this
281 * instruction.
282 */
283 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
284
285 /** Physical register index of the source registers of this
286 * instruction.
287 */
288 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
289
290 /** Physical register index of the previous producers of the
291 * architected destinations.
292 */
293 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
294
295 public:
296
297 /** Returns the physical register index of the i'th destination
298 * register.
299 */
300 PhysRegIndex renamedDestRegIdx(int idx) const
301 {
302 return _destRegIdx[idx];
303 }
304
305 /** Returns the physical register index of the i'th source register. */
306 PhysRegIndex renamedSrcRegIdx(int idx) const
307 {
308 return _srcRegIdx[idx];
309 }
310
311 /** Returns the flattened register index of the i'th destination
312 * register.
313 */
314 TheISA::RegIndex flattenedDestRegIdx(int idx) const
315 {
316 return _flatDestRegIdx[idx];
317 }
318
319 /** Returns the flattened register index of the i'th source register */
320 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
321 {
322 return _flatSrcRegIdx[idx];
323 }
324
325 /** Returns the physical register index of the previous physical register
326 * that remapped to the same logical register index.
327 */
328 PhysRegIndex prevDestRegIdx(int idx) const
329 {
330 return _prevDestRegIdx[idx];
331 }
332
333 /** Renames a destination register to a physical register. Also records
334 * the previous physical register that the logical register mapped to.
335 */
336 void renameDestReg(int idx,
337 PhysRegIndex renamed_dest,
338 PhysRegIndex previous_rename)
339 {
340 _destRegIdx[idx] = renamed_dest;
341 _prevDestRegIdx[idx] = previous_rename;
342 }
343
344 /** Renames a source logical register to the physical register which
345 * has/will produce that logical register's result.
346 * @todo: add in whether or not the source register is ready.
347 */
348 void renameSrcReg(int idx, PhysRegIndex renamed_src)
349 {
350 _srcRegIdx[idx] = renamed_src;
351 }
352
353 /** Flattens a source architectural register index into a logical index.
354 */
355 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
356 {
357 _flatSrcRegIdx[idx] = flattened_src;
358 }
359
360 /** Flattens a destination architectural register index into a logical
361 * index.
362 */
363 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
364 {
365 _flatDestRegIdx[idx] = flattened_dest;
366 }
367 /** BaseDynInst constructor given a binary instruction.
368 * @param staticInst A StaticInstPtr to the underlying instruction.
389 * @param PC The PC of the instruction.
390 * @param pred_PC The predicted next PC.
391 * @param pred_NPC The predicted next NPC.
369 * @param pc The PC state for the instruction.
370 * @param predPC The predicted next PC state for the instruction.
392 * @param seq_num The sequence number of the instruction.
393 * @param cpu Pointer to the instruction's CPU.
394 */
371 * @param seq_num The sequence number of the instruction.
372 * @param cpu Pointer to the instruction's CPU.
373 */
395 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
396 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
397 InstSeqNum seq_num, ImplCPU *cpu);
374 BaseDynInst(StaticInstPtr staticInst, TheISA::PCState pc,
375 TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
398
399 /** BaseDynInst constructor given a binary instruction.
400 * @param inst The binary instruction.
376
377 /** BaseDynInst constructor given a binary instruction.
378 * @param inst The binary instruction.
401 * @param PC The PC of the instruction.
402 * @param pred_PC The predicted next PC.
403 * @param pred_NPC The predicted next NPC.
379 * @param _pc The PC state for the instruction.
380 * @param _predPC The predicted next PC state for the instruction.
404 * @param seq_num The sequence number of the instruction.
405 * @param cpu Pointer to the instruction's CPU.
406 */
381 * @param seq_num The sequence number of the instruction.
382 * @param cpu Pointer to the instruction's CPU.
383 */
407 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
408 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
409 InstSeqNum seq_num, ImplCPU *cpu);
384 BaseDynInst(TheISA::ExtMachInst inst, TheISA::PCState pc,
385 TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
410
411 /** BaseDynInst constructor given a StaticInst pointer.
412 * @param _staticInst The StaticInst for this BaseDynInst.
413 */
414 BaseDynInst(StaticInstPtr &_staticInst);
415
416 /** BaseDynInst destructor. */
417 ~BaseDynInst();
418
419 private:
420 /** Function to initialize variables in the constructors. */
421 void initVars();
422
423 public:
424 /** Dumps out contents of this BaseDynInst. */
425 void dump();
426
427 /** Dumps out contents of this BaseDynInst into given string. */
428 void dump(std::string &outstring);
429
430 /** Read this CPU's ID. */
431 int cpuId() { return cpu->cpuId(); }
432
433 /** Read this context's system-wide ID **/
434 int contextId() { return thread->contextId(); }
435
436 /** Returns the fault type. */
437 Fault getFault() { return fault; }
438
439 /** Checks whether or not this instruction has had its branch target
440 * calculated yet. For now it is not utilized and is hacked to be
441 * always false.
442 * @todo: Actually use this instruction.
443 */
444 bool doneTargCalc() { return false; }
445
386
387 /** BaseDynInst constructor given a StaticInst pointer.
388 * @param _staticInst The StaticInst for this BaseDynInst.
389 */
390 BaseDynInst(StaticInstPtr &_staticInst);
391
392 /** BaseDynInst destructor. */
393 ~BaseDynInst();
394
395 private:
396 /** Function to initialize variables in the constructors. */
397 void initVars();
398
399 public:
400 /** Dumps out contents of this BaseDynInst. */
401 void dump();
402
403 /** Dumps out contents of this BaseDynInst into given string. */
404 void dump(std::string &outstring);
405
406 /** Read this CPU's ID. */
407 int cpuId() { return cpu->cpuId(); }
408
409 /** Read this context's system-wide ID **/
410 int contextId() { return thread->contextId(); }
411
412 /** Returns the fault type. */
413 Fault getFault() { return fault; }
414
415 /** Checks whether or not this instruction has had its branch target
416 * calculated yet. For now it is not utilized and is hacked to be
417 * always false.
418 * @todo: Actually use this instruction.
419 */
420 bool doneTargCalc() { return false; }
421
446 /** Returns the next PC. This could be the speculative next PC if it is
447 * called prior to the actual branch target being calculated.
448 */
449 Addr readNextPC() { return nextPC; }
450
451 /** Returns the next NPC. This could be the speculative next NPC if it is
452 * called prior to the actual branch target being calculated.
453 */
454 Addr readNextNPC()
455 {
456#if ISA_HAS_DELAY_SLOT
457 return nextNPC;
458#else
459 return nextPC + sizeof(TheISA::MachInst);
460#endif
461 }
462
463 Addr readNextMicroPC()
464 {
465 return nextMicroPC;
466 }
467
468 /** Set the predicted target of this current instruction. */
422 /** Set the predicted target of this current instruction. */
469 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
470 Addr predicted_MicroPC)
423 void setPredTarg(const TheISA::PCState &_predPC)
471 {
424 {
472 predPC = predicted_PC;
473 predNPC = predicted_NPC;
474 predMicroPC = predicted_MicroPC;
425 predPC = _predPC;
475 }
476
426 }
427
428 const TheISA::PCState &readPredTarg() { return predPC; }
429
477 /** Returns the predicted PC immediately after the branch. */
430 /** Returns the predicted PC immediately after the branch. */
478 Addr readPredPC() { return predPC; }
431 Addr predInstAddr() { return predPC.instAddr(); }
479
480 /** Returns the predicted PC two instructions after the branch */
432
433 /** Returns the predicted PC two instructions after the branch */
481 Addr readPredNPC() { return predNPC; }
434 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
482
483 /** Returns the predicted micro PC after the branch */
435
436 /** Returns the predicted micro PC after the branch */
484 Addr readPredMicroPC() { return predMicroPC; }
437 Addr predMicroPC() { return predPC.microPC(); }
485
486 /** Returns whether the instruction was predicted taken or not. */
487 bool readPredTaken()
488 {
489 return predTaken;
490 }
491
492 void setPredTaken(bool predicted_taken)
493 {
494 predTaken = predicted_taken;
495 }
496
497 /** Returns whether the instruction mispredicted. */
498 bool mispredicted()
499 {
438
439 /** Returns whether the instruction was predicted taken or not. */
440 bool readPredTaken()
441 {
442 return predTaken;
443 }
444
445 void setPredTaken(bool predicted_taken)
446 {
447 predTaken = predicted_taken;
448 }
449
450 /** Returns whether the instruction mispredicted. */
451 bool mispredicted()
452 {
500 return readPredPC() != readNextPC() ||
501 readPredNPC() != readNextNPC() ||
502 readPredMicroPC() != readNextMicroPC();
453 TheISA::PCState tempPC = pc;
454 TheISA::advancePC(tempPC, staticInst);
455 return !(tempPC == predPC);
503 }
504
505 //
506 // Instruction types. Forward checks to StaticInst object.
507 //
508 bool isNop() const { return staticInst->isNop(); }
509 bool isMemRef() const { return staticInst->isMemRef(); }
510 bool isLoad() const { return staticInst->isLoad(); }
511 bool isStore() const { return staticInst->isStore(); }
512 bool isStoreConditional() const
513 { return staticInst->isStoreConditional(); }
514 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
515 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
516 bool isCopy() const { return staticInst->isCopy(); }
517 bool isInteger() const { return staticInst->isInteger(); }
518 bool isFloating() const { return staticInst->isFloating(); }
519 bool isControl() const { return staticInst->isControl(); }
520 bool isCall() const { return staticInst->isCall(); }
521 bool isReturn() const { return staticInst->isReturn(); }
522 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
523 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
524 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
525 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
526 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
527 bool isThreadSync() const { return staticInst->isThreadSync(); }
528 bool isSerializing() const { return staticInst->isSerializing(); }
529 bool isSerializeBefore() const
530 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
531 bool isSerializeAfter() const
532 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
533 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
534 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
535 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
536 bool isQuiesce() const { return staticInst->isQuiesce(); }
537 bool isIprAccess() const { return staticInst->isIprAccess(); }
538 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
539 bool isSyscall() const { return staticInst->isSyscall(); }
540 bool isMacroop() const { return staticInst->isMacroop(); }
541 bool isMicroop() const { return staticInst->isMicroop(); }
542 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
543 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
544 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
545 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
546
547 /** Temporarily sets this instruction as a serialize before instruction. */
548 void setSerializeBefore() { status.set(SerializeBefore); }
549
550 /** Clears the serializeBefore part of this instruction. */
551 void clearSerializeBefore() { status.reset(SerializeBefore); }
552
553 /** Checks if this serializeBefore is only temporarily set. */
554 bool isTempSerializeBefore() { return status[SerializeBefore]; }
555
556 /** Temporarily sets this instruction as a serialize after instruction. */
557 void setSerializeAfter() { status.set(SerializeAfter); }
558
559 /** Clears the serializeAfter part of this instruction.*/
560 void clearSerializeAfter() { status.reset(SerializeAfter); }
561
562 /** Checks if this serializeAfter is only temporarily set. */
563 bool isTempSerializeAfter() { return status[SerializeAfter]; }
564
565 /** Sets the serialization part of this instruction as handled. */
566 void setSerializeHandled() { status.set(SerializeHandled); }
567
568 /** Checks if the serialization part of this instruction has been
569 * handled. This does not apply to the temporary serializing
570 * state; it only applies to this instruction's own permanent
571 * serializing state.
572 */
573 bool isSerializeHandled() { return status[SerializeHandled]; }
574
575 /** Returns the opclass of this instruction. */
576 OpClass opClass() const { return staticInst->opClass(); }
577
578 /** Returns the branch target address. */
456 }
457
458 //
459 // Instruction types. Forward checks to StaticInst object.
460 //
461 bool isNop() const { return staticInst->isNop(); }
462 bool isMemRef() const { return staticInst->isMemRef(); }
463 bool isLoad() const { return staticInst->isLoad(); }
464 bool isStore() const { return staticInst->isStore(); }
465 bool isStoreConditional() const
466 { return staticInst->isStoreConditional(); }
467 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
468 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
469 bool isCopy() const { return staticInst->isCopy(); }
470 bool isInteger() const { return staticInst->isInteger(); }
471 bool isFloating() const { return staticInst->isFloating(); }
472 bool isControl() const { return staticInst->isControl(); }
473 bool isCall() const { return staticInst->isCall(); }
474 bool isReturn() const { return staticInst->isReturn(); }
475 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
476 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
477 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
478 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
479 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
480 bool isThreadSync() const { return staticInst->isThreadSync(); }
481 bool isSerializing() const { return staticInst->isSerializing(); }
482 bool isSerializeBefore() const
483 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
484 bool isSerializeAfter() const
485 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
486 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
487 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
488 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
489 bool isQuiesce() const { return staticInst->isQuiesce(); }
490 bool isIprAccess() const { return staticInst->isIprAccess(); }
491 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
492 bool isSyscall() const { return staticInst->isSyscall(); }
493 bool isMacroop() const { return staticInst->isMacroop(); }
494 bool isMicroop() const { return staticInst->isMicroop(); }
495 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
496 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
497 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
498 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
499
500 /** Temporarily sets this instruction as a serialize before instruction. */
501 void setSerializeBefore() { status.set(SerializeBefore); }
502
503 /** Clears the serializeBefore part of this instruction. */
504 void clearSerializeBefore() { status.reset(SerializeBefore); }
505
506 /** Checks if this serializeBefore is only temporarily set. */
507 bool isTempSerializeBefore() { return status[SerializeBefore]; }
508
509 /** Temporarily sets this instruction as a serialize after instruction. */
510 void setSerializeAfter() { status.set(SerializeAfter); }
511
512 /** Clears the serializeAfter part of this instruction.*/
513 void clearSerializeAfter() { status.reset(SerializeAfter); }
514
515 /** Checks if this serializeAfter is only temporarily set. */
516 bool isTempSerializeAfter() { return status[SerializeAfter]; }
517
518 /** Sets the serialization part of this instruction as handled. */
519 void setSerializeHandled() { status.set(SerializeHandled); }
520
521 /** Checks if the serialization part of this instruction has been
522 * handled. This does not apply to the temporary serializing
523 * state; it only applies to this instruction's own permanent
524 * serializing state.
525 */
526 bool isSerializeHandled() { return status[SerializeHandled]; }
527
528 /** Returns the opclass of this instruction. */
529 OpClass opClass() const { return staticInst->opClass(); }
530
531 /** Returns the branch target address. */
579 Addr branchTarget() const { return staticInst->branchTarget(PC); }
532 TheISA::PCState branchTarget() const
533 { return staticInst->branchTarget(pc); }
580
581 /** Returns the number of source registers. */
582 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
583
584 /** Returns the number of destination registers. */
585 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
586
587 // the following are used to track physical register usage
588 // for machines with separate int & FP reg files
589 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
590 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
591
592 /** Returns the logical register index of the i'th destination register. */
593 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
594
595 /** Returns the logical register index of the i'th source register. */
596 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
597
598 /** Returns the result of an integer instruction. */
599 uint64_t readIntResult() { return instResult.integer; }
600
601 /** Returns the result of a floating point instruction. */
602 float readFloatResult() { return (float)instResult.dbl; }
603
604 /** Returns the result of a floating point (double) instruction. */
605 double readDoubleResult() { return instResult.dbl; }
606
607 /** Records an integer register being set to a value. */
608 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
609 {
610 if (recordResult)
611 instResult.integer = val;
612 }
613
614 /** Records an fp register being set to a value. */
615 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
616 int width)
617 {
618 if (recordResult) {
619 if (width == 32)
620 instResult.dbl = (double)val;
621 else if (width == 64)
622 instResult.dbl = val;
623 else
624 panic("Unsupported width!");
625 }
626 }
627
628 /** Records an fp register being set to a value. */
629 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
630 {
631 if (recordResult)
632 instResult.dbl = (double)val;
633 }
634
635 /** Records an fp register being set to an integer value. */
636 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
637 int width)
638 {
639 if (recordResult)
640 instResult.integer = val;
641 }
642
643 /** Records an fp register being set to an integer value. */
644 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
645 {
646 if (recordResult)
647 instResult.integer = val;
648 }
649
650 /** Records that one of the source registers is ready. */
651 void markSrcRegReady();
652
653 /** Marks a specific register as ready. */
654 void markSrcRegReady(RegIndex src_idx);
655
656 /** Returns if a source register is ready. */
657 bool isReadySrcRegIdx(int idx) const
658 {
659 return this->_readySrcRegIdx[idx];
660 }
661
662 /** Sets this instruction as completed. */
663 void setCompleted() { status.set(Completed); }
664
665 /** Returns whether or not this instruction is completed. */
666 bool isCompleted() const { return status[Completed]; }
667
668 /** Marks the result as ready. */
669 void setResultReady() { status.set(ResultReady); }
670
671 /** Returns whether or not the result is ready. */
672 bool isResultReady() const { return status[ResultReady]; }
673
674 /** Sets this instruction as ready to issue. */
675 void setCanIssue() { status.set(CanIssue); }
676
677 /** Returns whether or not this instruction is ready to issue. */
678 bool readyToIssue() const { return status[CanIssue]; }
679
680 /** Clears this instruction being able to issue. */
681 void clearCanIssue() { status.reset(CanIssue); }
682
683 /** Sets this instruction as issued from the IQ. */
684 void setIssued() { status.set(Issued); }
685
686 /** Returns whether or not this instruction has issued. */
687 bool isIssued() const { return status[Issued]; }
688
689 /** Clears this instruction as being issued. */
690 void clearIssued() { status.reset(Issued); }
691
692 /** Sets this instruction as executed. */
693 void setExecuted() { status.set(Executed); }
694
695 /** Returns whether or not this instruction has executed. */
696 bool isExecuted() const { return status[Executed]; }
697
698 /** Sets this instruction as ready to commit. */
699 void setCanCommit() { status.set(CanCommit); }
700
701 /** Clears this instruction as being ready to commit. */
702 void clearCanCommit() { status.reset(CanCommit); }
703
704 /** Returns whether or not this instruction is ready to commit. */
705 bool readyToCommit() const { return status[CanCommit]; }
706
707 void setAtCommit() { status.set(AtCommit); }
708
709 bool isAtCommit() { return status[AtCommit]; }
710
711 /** Sets this instruction as committed. */
712 void setCommitted() { status.set(Committed); }
713
714 /** Returns whether or not this instruction is committed. */
715 bool isCommitted() const { return status[Committed]; }
716
717 /** Sets this instruction as squashed. */
718 void setSquashed() { status.set(Squashed); }
719
720 /** Returns whether or not this instruction is squashed. */
721 bool isSquashed() const { return status[Squashed]; }
722
723 //Instruction Queue Entry
724 //-----------------------
725 /** Sets this instruction as a entry the IQ. */
726 void setInIQ() { status.set(IqEntry); }
727
728 /** Sets this instruction as a entry the IQ. */
729 void clearInIQ() { status.reset(IqEntry); }
730
731 /** Returns whether or not this instruction has issued. */
732 bool isInIQ() const { return status[IqEntry]; }
733
734 /** Sets this instruction as squashed in the IQ. */
735 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
736
737 /** Returns whether or not this instruction is squashed in the IQ. */
738 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
739
740
741 //Load / Store Queue Functions
742 //-----------------------
743 /** Sets this instruction as a entry the LSQ. */
744 void setInLSQ() { status.set(LsqEntry); }
745
746 /** Sets this instruction as a entry the LSQ. */
747 void removeInLSQ() { status.reset(LsqEntry); }
748
749 /** Returns whether or not this instruction is in the LSQ. */
750 bool isInLSQ() const { return status[LsqEntry]; }
751
752 /** Sets this instruction as squashed in the LSQ. */
753 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
754
755 /** Returns whether or not this instruction is squashed in the LSQ. */
756 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
757
758
759 //Reorder Buffer Functions
760 //-----------------------
761 /** Sets this instruction as a entry the ROB. */
762 void setInROB() { status.set(RobEntry); }
763
764 /** Sets this instruction as a entry the ROB. */
765 void clearInROB() { status.reset(RobEntry); }
766
767 /** Returns whether or not this instruction is in the ROB. */
768 bool isInROB() const { return status[RobEntry]; }
769
770 /** Sets this instruction as squashed in the ROB. */
771 void setSquashedInROB() { status.set(SquashedInROB); }
772
773 /** Returns whether or not this instruction is squashed in the ROB. */
774 bool isSquashedInROB() const { return status[SquashedInROB]; }
775
534
535 /** Returns the number of source registers. */
536 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
537
538 /** Returns the number of destination registers. */
539 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
540
541 // the following are used to track physical register usage
542 // for machines with separate int & FP reg files
543 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
544 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
545
546 /** Returns the logical register index of the i'th destination register. */
547 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
548
549 /** Returns the logical register index of the i'th source register. */
550 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
551
552 /** Returns the result of an integer instruction. */
553 uint64_t readIntResult() { return instResult.integer; }
554
555 /** Returns the result of a floating point instruction. */
556 float readFloatResult() { return (float)instResult.dbl; }
557
558 /** Returns the result of a floating point (double) instruction. */
559 double readDoubleResult() { return instResult.dbl; }
560
561 /** Records an integer register being set to a value. */
562 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
563 {
564 if (recordResult)
565 instResult.integer = val;
566 }
567
568 /** Records an fp register being set to a value. */
569 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
570 int width)
571 {
572 if (recordResult) {
573 if (width == 32)
574 instResult.dbl = (double)val;
575 else if (width == 64)
576 instResult.dbl = val;
577 else
578 panic("Unsupported width!");
579 }
580 }
581
582 /** Records an fp register being set to a value. */
583 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
584 {
585 if (recordResult)
586 instResult.dbl = (double)val;
587 }
588
589 /** Records an fp register being set to an integer value. */
590 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
591 int width)
592 {
593 if (recordResult)
594 instResult.integer = val;
595 }
596
597 /** Records an fp register being set to an integer value. */
598 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
599 {
600 if (recordResult)
601 instResult.integer = val;
602 }
603
604 /** Records that one of the source registers is ready. */
605 void markSrcRegReady();
606
607 /** Marks a specific register as ready. */
608 void markSrcRegReady(RegIndex src_idx);
609
610 /** Returns if a source register is ready. */
611 bool isReadySrcRegIdx(int idx) const
612 {
613 return this->_readySrcRegIdx[idx];
614 }
615
616 /** Sets this instruction as completed. */
617 void setCompleted() { status.set(Completed); }
618
619 /** Returns whether or not this instruction is completed. */
620 bool isCompleted() const { return status[Completed]; }
621
622 /** Marks the result as ready. */
623 void setResultReady() { status.set(ResultReady); }
624
625 /** Returns whether or not the result is ready. */
626 bool isResultReady() const { return status[ResultReady]; }
627
628 /** Sets this instruction as ready to issue. */
629 void setCanIssue() { status.set(CanIssue); }
630
631 /** Returns whether or not this instruction is ready to issue. */
632 bool readyToIssue() const { return status[CanIssue]; }
633
634 /** Clears this instruction being able to issue. */
635 void clearCanIssue() { status.reset(CanIssue); }
636
637 /** Sets this instruction as issued from the IQ. */
638 void setIssued() { status.set(Issued); }
639
640 /** Returns whether or not this instruction has issued. */
641 bool isIssued() const { return status[Issued]; }
642
643 /** Clears this instruction as being issued. */
644 void clearIssued() { status.reset(Issued); }
645
646 /** Sets this instruction as executed. */
647 void setExecuted() { status.set(Executed); }
648
649 /** Returns whether or not this instruction has executed. */
650 bool isExecuted() const { return status[Executed]; }
651
652 /** Sets this instruction as ready to commit. */
653 void setCanCommit() { status.set(CanCommit); }
654
655 /** Clears this instruction as being ready to commit. */
656 void clearCanCommit() { status.reset(CanCommit); }
657
658 /** Returns whether or not this instruction is ready to commit. */
659 bool readyToCommit() const { return status[CanCommit]; }
660
661 void setAtCommit() { status.set(AtCommit); }
662
663 bool isAtCommit() { return status[AtCommit]; }
664
665 /** Sets this instruction as committed. */
666 void setCommitted() { status.set(Committed); }
667
668 /** Returns whether or not this instruction is committed. */
669 bool isCommitted() const { return status[Committed]; }
670
671 /** Sets this instruction as squashed. */
672 void setSquashed() { status.set(Squashed); }
673
674 /** Returns whether or not this instruction is squashed. */
675 bool isSquashed() const { return status[Squashed]; }
676
677 //Instruction Queue Entry
678 //-----------------------
679 /** Sets this instruction as a entry the IQ. */
680 void setInIQ() { status.set(IqEntry); }
681
682 /** Sets this instruction as a entry the IQ. */
683 void clearInIQ() { status.reset(IqEntry); }
684
685 /** Returns whether or not this instruction has issued. */
686 bool isInIQ() const { return status[IqEntry]; }
687
688 /** Sets this instruction as squashed in the IQ. */
689 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
690
691 /** Returns whether or not this instruction is squashed in the IQ. */
692 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
693
694
695 //Load / Store Queue Functions
696 //-----------------------
697 /** Sets this instruction as a entry the LSQ. */
698 void setInLSQ() { status.set(LsqEntry); }
699
700 /** Sets this instruction as a entry the LSQ. */
701 void removeInLSQ() { status.reset(LsqEntry); }
702
703 /** Returns whether or not this instruction is in the LSQ. */
704 bool isInLSQ() const { return status[LsqEntry]; }
705
706 /** Sets this instruction as squashed in the LSQ. */
707 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
708
709 /** Returns whether or not this instruction is squashed in the LSQ. */
710 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
711
712
713 //Reorder Buffer Functions
714 //-----------------------
715 /** Sets this instruction as a entry the ROB. */
716 void setInROB() { status.set(RobEntry); }
717
718 /** Sets this instruction as a entry the ROB. */
719 void clearInROB() { status.reset(RobEntry); }
720
721 /** Returns whether or not this instruction is in the ROB. */
722 bool isInROB() const { return status[RobEntry]; }
723
724 /** Sets this instruction as squashed in the ROB. */
725 void setSquashedInROB() { status.set(SquashedInROB); }
726
727 /** Returns whether or not this instruction is squashed in the ROB. */
728 bool isSquashedInROB() const { return status[SquashedInROB]; }
729
776 /** Read the PC of this instruction. */
777 const Addr readPC() const { return PC; }
730 /** Read the PC state of this instruction. */
731 const TheISA::PCState pcState() const { return pc; }
778
732
779 /**Read the micro PC of this instruction. */
780 const Addr readMicroPC() const { return microPC; }
733 /** Set the PC state of this instruction. */
734 const void pcState(const TheISA::PCState &val) { pc = val; }
781
735
782 /** Set the next PC of this instruction (its actual target). */
783 void setNextPC(Addr val)
784 {
785 nextPC = val;
786 }
736 /** Read the PC of this instruction. */
737 const Addr instAddr() const { return pc.instAddr(); }
787
738
788 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
789 void setNextNPC(Addr val)
790 {
791#if ISA_HAS_DELAY_SLOT
792 nextNPC = val;
793#endif
794 }
739 /** Read the PC of the next instruction. */
740 const Addr nextInstAddr() const { return pc.nextInstAddr(); }
795
741
796 void setNextMicroPC(Addr val)
797 {
798 nextMicroPC = val;
799 }
742 /**Read the micro PC of this instruction. */
743 const Addr microPC() const { return pc.microPC(); }
800
801 bool readPredicate()
802 {
803 return predicate;
804 }
805
806 void setPredicate(bool val)
807 {
808 predicate = val;
809
810 if (traceData) {
811 traceData->setPredicate(val);
812 }
813 }
814
815 /** Sets the ASID. */
816 void setASID(short addr_space_id) { asid = addr_space_id; }
817
818 /** Sets the thread id. */
819 void setTid(ThreadID tid) { threadNumber = tid; }
820
821 /** Sets the pointer to the thread state. */
822 void setThreadState(ImplState *state) { thread = state; }
823
824 /** Returns the thread context. */
825 ThreadContext *tcBase() { return thread->getTC(); }
826
827 private:
828 /** Instruction effective address.
829 * @todo: Consider if this is necessary or not.
830 */
831 Addr instEffAddr;
832
833 /** Whether or not the effective address calculation is completed.
834 * @todo: Consider if this is necessary or not.
835 */
836 bool eaCalcDone;
837
838 /** Is this instruction's memory access uncacheable. */
839 bool isUncacheable;
840
841 /** Has this instruction generated a memory request. */
842 bool reqMade;
843
844 public:
845 /** Sets the effective address. */
846 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
847
848 /** Returns the effective address. */
849 const Addr &getEA() const { return instEffAddr; }
850
851 /** Returns whether or not the eff. addr. calculation has been completed. */
852 bool doneEACalc() { return eaCalcDone; }
853
854 /** Returns whether or not the eff. addr. source registers are ready. */
855 bool eaSrcsReady();
856
857 /** Whether or not the memory operation is done. */
858 bool memOpDone;
859
860 /** Is this instruction's memory access uncacheable. */
861 bool uncacheable() { return isUncacheable; }
862
863 /** Has this instruction generated a memory request. */
864 bool hasRequest() { return reqMade; }
865
866 public:
867 /** Load queue index. */
868 int16_t lqIdx;
869
870 /** Store queue index. */
871 int16_t sqIdx;
872
873 /** Iterator pointing to this BaseDynInst in the list of all insts. */
874 ListIt instListIt;
875
876 /** Returns iterator to this instruction in the list of all insts. */
877 ListIt &getInstListIt() { return instListIt; }
878
879 /** Sets iterator for this instruction in the list of all insts. */
880 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
881
882 public:
883 /** Returns the number of consecutive store conditional failures. */
884 unsigned readStCondFailures()
885 { return thread->storeCondFailures; }
886
887 /** Sets the number of consecutive store conditional failures. */
888 void setStCondFailures(unsigned sc_failures)
889 { thread->storeCondFailures = sc_failures; }
890};
891
892template<class Impl>
893Fault
894BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
895 unsigned size, unsigned flags)
896{
897 reqMade = true;
744
745 bool readPredicate()
746 {
747 return predicate;
748 }
749
750 void setPredicate(bool val)
751 {
752 predicate = val;
753
754 if (traceData) {
755 traceData->setPredicate(val);
756 }
757 }
758
759 /** Sets the ASID. */
760 void setASID(short addr_space_id) { asid = addr_space_id; }
761
762 /** Sets the thread id. */
763 void setTid(ThreadID tid) { threadNumber = tid; }
764
765 /** Sets the pointer to the thread state. */
766 void setThreadState(ImplState *state) { thread = state; }
767
768 /** Returns the thread context. */
769 ThreadContext *tcBase() { return thread->getTC(); }
770
771 private:
772 /** Instruction effective address.
773 * @todo: Consider if this is necessary or not.
774 */
775 Addr instEffAddr;
776
777 /** Whether or not the effective address calculation is completed.
778 * @todo: Consider if this is necessary or not.
779 */
780 bool eaCalcDone;
781
782 /** Is this instruction's memory access uncacheable. */
783 bool isUncacheable;
784
785 /** Has this instruction generated a memory request. */
786 bool reqMade;
787
788 public:
789 /** Sets the effective address. */
790 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
791
792 /** Returns the effective address. */
793 const Addr &getEA() const { return instEffAddr; }
794
795 /** Returns whether or not the eff. addr. calculation has been completed. */
796 bool doneEACalc() { return eaCalcDone; }
797
798 /** Returns whether or not the eff. addr. source registers are ready. */
799 bool eaSrcsReady();
800
801 /** Whether or not the memory operation is done. */
802 bool memOpDone;
803
804 /** Is this instruction's memory access uncacheable. */
805 bool uncacheable() { return isUncacheable; }
806
807 /** Has this instruction generated a memory request. */
808 bool hasRequest() { return reqMade; }
809
810 public:
811 /** Load queue index. */
812 int16_t lqIdx;
813
814 /** Store queue index. */
815 int16_t sqIdx;
816
817 /** Iterator pointing to this BaseDynInst in the list of all insts. */
818 ListIt instListIt;
819
820 /** Returns iterator to this instruction in the list of all insts. */
821 ListIt &getInstListIt() { return instListIt; }
822
823 /** Sets iterator for this instruction in the list of all insts. */
824 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
825
826 public:
827 /** Returns the number of consecutive store conditional failures. */
828 unsigned readStCondFailures()
829 { return thread->storeCondFailures; }
830
831 /** Sets the number of consecutive store conditional failures. */
832 void setStCondFailures(unsigned sc_failures)
833 { thread->storeCondFailures = sc_failures; }
834};
835
836template<class Impl>
837Fault
838BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
839 unsigned size, unsigned flags)
840{
841 reqMade = true;
898 Request *req = new Request(asid, addr, size, flags, this->PC,
842 Request *req = new Request(asid, addr, size, flags, this->pc.instAddr(),
899 thread->contextId(), threadNumber);
900
901 Request *sreqLow = NULL;
902 Request *sreqHigh = NULL;
903
904 // Only split the request if the ISA supports unaligned accesses.
905 if (TheISA::HasUnalignedMemAcc) {
906 splitRequest(req, sreqLow, sreqHigh);
907 }
908 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
909
910 if (fault == NoFault) {
911 effAddr = req->getVaddr();
912 effAddrValid = true;
913 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
914 } else {
915 // Commit will have to clean up whatever happened. Set this
916 // instruction as executed.
917 this->setExecuted();
918 }
919
920 if (fault != NoFault) {
921 // Return a fixed value to keep simulation deterministic even
922 // along misspeculated paths.
923 bzero(data, size);
924 }
925
926 if (traceData) {
927 traceData->setAddr(addr);
928 }
929
930 return fault;
931}
932
933template<class Impl>
934template<class T>
935inline Fault
936BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
937{
938 Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
939
940 data = TheISA::gtoh(data);
941
942 if (traceData) {
943 traceData->setData(data);
944 }
945
946 return fault;
947}
948
949template<class Impl>
950Fault
951BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
952 Addr addr, unsigned flags, uint64_t *res)
953{
954 if (traceData) {
955 traceData->setAddr(addr);
956 }
957
958 reqMade = true;
843 thread->contextId(), threadNumber);
844
845 Request *sreqLow = NULL;
846 Request *sreqHigh = NULL;
847
848 // Only split the request if the ISA supports unaligned accesses.
849 if (TheISA::HasUnalignedMemAcc) {
850 splitRequest(req, sreqLow, sreqHigh);
851 }
852 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
853
854 if (fault == NoFault) {
855 effAddr = req->getVaddr();
856 effAddrValid = true;
857 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
858 } else {
859 // Commit will have to clean up whatever happened. Set this
860 // instruction as executed.
861 this->setExecuted();
862 }
863
864 if (fault != NoFault) {
865 // Return a fixed value to keep simulation deterministic even
866 // along misspeculated paths.
867 bzero(data, size);
868 }
869
870 if (traceData) {
871 traceData->setAddr(addr);
872 }
873
874 return fault;
875}
876
877template<class Impl>
878template<class T>
879inline Fault
880BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
881{
882 Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
883
884 data = TheISA::gtoh(data);
885
886 if (traceData) {
887 traceData->setData(data);
888 }
889
890 return fault;
891}
892
893template<class Impl>
894Fault
895BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
896 Addr addr, unsigned flags, uint64_t *res)
897{
898 if (traceData) {
899 traceData->setAddr(addr);
900 }
901
902 reqMade = true;
959 Request *req = new Request(asid, addr, size, flags, this->PC,
903 Request *req = new Request(asid, addr, size, flags, this->pc.instAddr(),
960 thread->contextId(), threadNumber);
961
962 Request *sreqLow = NULL;
963 Request *sreqHigh = NULL;
964
965 // Only split the request if the ISA supports unaligned accesses.
966 if (TheISA::HasUnalignedMemAcc) {
967 splitRequest(req, sreqLow, sreqHigh);
968 }
969 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
970
971 if (fault == NoFault) {
972 effAddr = req->getVaddr();
973 effAddrValid = true;
974 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
975 }
976
977 return fault;
978}
979
980template<class Impl>
981template<class T>
982inline Fault
983BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
984{
985 if (traceData) {
986 traceData->setData(data);
987 }
988 data = TheISA::htog(data);
989 return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
990}
991
992template<class Impl>
993inline void
994BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
995 RequestPtr &sreqHigh)
996{
997 // Check to see if the request crosses the next level block boundary.
998 unsigned block_size = cpu->getDcachePort()->peerBlockSize();
999 Addr addr = req->getVaddr();
1000 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
1001 assert(split_addr <= addr || split_addr - addr < block_size);
1002
1003 // Spans two blocks.
1004 if (split_addr > addr) {
1005 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1006 }
1007}
1008
1009template<class Impl>
1010inline void
1011BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1012 RequestPtr sreqHigh, uint64_t *res,
1013 BaseTLB::Mode mode)
1014{
1015 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1016 WholeTranslationState *state =
1017 new WholeTranslationState(req, NULL, res, mode);
1018
1019 // One translation if the request isn't split.
1020 DataTranslation<BaseDynInst<Impl> > *trans =
1021 new DataTranslation<BaseDynInst<Impl> >(this, state);
1022 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1023 } else {
1024 WholeTranslationState *state =
1025 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1026
1027 // Two translations when the request is split.
1028 DataTranslation<BaseDynInst<Impl> > *stransLow =
1029 new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1030 DataTranslation<BaseDynInst<Impl> > *stransHigh =
1031 new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1032
1033 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1034 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1035 }
1036}
1037
1038template<class Impl>
1039inline void
1040BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1041{
1042 fault = state->getFault();
1043
1044 if (state->isUncacheable())
1045 isUncacheable = true;
1046
1047 if (fault == NoFault) {
1048 physEffAddr = state->getPaddr();
1049 memReqFlags = state->getFlags();
1050
1051 if (state->mainReq->isCondSwap()) {
1052 assert(state->res);
1053 state->mainReq->setExtraData(*state->res);
1054 }
1055
1056 } else {
1057 state->deleteReqs();
1058 }
1059 delete state;
1060}
1061
1062#endif // __CPU_BASE_DYN_INST_HH__
904 thread->contextId(), threadNumber);
905
906 Request *sreqLow = NULL;
907 Request *sreqHigh = NULL;
908
909 // Only split the request if the ISA supports unaligned accesses.
910 if (TheISA::HasUnalignedMemAcc) {
911 splitRequest(req, sreqLow, sreqHigh);
912 }
913 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
914
915 if (fault == NoFault) {
916 effAddr = req->getVaddr();
917 effAddrValid = true;
918 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
919 }
920
921 return fault;
922}
923
924template<class Impl>
925template<class T>
926inline Fault
927BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
928{
929 if (traceData) {
930 traceData->setData(data);
931 }
932 data = TheISA::htog(data);
933 return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
934}
935
936template<class Impl>
937inline void
938BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
939 RequestPtr &sreqHigh)
940{
941 // Check to see if the request crosses the next level block boundary.
942 unsigned block_size = cpu->getDcachePort()->peerBlockSize();
943 Addr addr = req->getVaddr();
944 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
945 assert(split_addr <= addr || split_addr - addr < block_size);
946
947 // Spans two blocks.
948 if (split_addr > addr) {
949 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
950 }
951}
952
953template<class Impl>
954inline void
955BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
956 RequestPtr sreqHigh, uint64_t *res,
957 BaseTLB::Mode mode)
958{
959 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
960 WholeTranslationState *state =
961 new WholeTranslationState(req, NULL, res, mode);
962
963 // One translation if the request isn't split.
964 DataTranslation<BaseDynInst<Impl> > *trans =
965 new DataTranslation<BaseDynInst<Impl> >(this, state);
966 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
967 } else {
968 WholeTranslationState *state =
969 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
970
971 // Two translations when the request is split.
972 DataTranslation<BaseDynInst<Impl> > *stransLow =
973 new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
974 DataTranslation<BaseDynInst<Impl> > *stransHigh =
975 new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
976
977 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
978 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
979 }
980}
981
982template<class Impl>
983inline void
984BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
985{
986 fault = state->getFault();
987
988 if (state->isUncacheable())
989 isUncacheable = true;
990
991 if (fault == NoFault) {
992 physEffAddr = state->getPaddr();
993 memReqFlags = state->getFlags();
994
995 if (state->mainReq->isCondSwap()) {
996 assert(state->res);
997 state->mainReq->setExtraData(*state->res);
998 }
999
1000 } else {
1001 state->deleteReqs();
1002 }
1003 delete state;
1004}
1005
1006#endif // __CPU_BASE_DYN_INST_HH__