base_dyn_inst.hh (7577:056a88043835) base_dyn_inst.hh (7597:063f160e8b50)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 * Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "base/fast_alloc.hh"
42#include "base/trace.hh"
43#include "config/full_system.hh"
44#include "config/the_isa.hh"
45#include "cpu/o3/comm.hh"
46#include "cpu/exetrace.hh"
47#include "cpu/inst_seq.hh"
48#include "cpu/op_class.hh"
49#include "cpu/static_inst.hh"
50#include "cpu/translation.hh"
51#include "mem/packet.hh"
52#include "sim/system.hh"
53#include "sim/tlb.hh"
54
55/**
56 * @file
57 * Defines a dynamic instruction context.
58 */
59
60// Forward declaration.
61class StaticInstPtr;
62
63template <class Impl>
64class BaseDynInst : public FastAlloc, public RefCounted
65{
66 public:
67 // Typedef for the CPU.
68 typedef typename Impl::CPUType ImplCPU;
69 typedef typename ImplCPU::ImplState ImplState;
70
71 // Logical register index type.
72 typedef TheISA::RegIndex RegIndex;
73 // Integer register type.
74 typedef TheISA::IntReg IntReg;
75 // Floating point register type.
76 typedef TheISA::FloatReg FloatReg;
77
78 // The DynInstPtr type.
79 typedef typename Impl::DynInstPtr DynInstPtr;
80
81 // The list of instructions iterator type.
82 typedef typename std::list<DynInstPtr>::iterator ListIt;
83
84 enum {
85 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
86 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
87 };
88
89 /** The StaticInst used by this BaseDynInst. */
90 StaticInstPtr staticInst;
91
92 ////////////////////////////////////////////
93 //
94 // INSTRUCTION EXECUTION
95 //
96 ////////////////////////////////////////////
97 /** InstRecord that tracks this instructions. */
98 Trace::InstRecord *traceData;
99
100 void demapPage(Addr vaddr, uint64_t asn)
101 {
102 cpu->demapPage(vaddr, asn);
103 }
104 void demapInstPage(Addr vaddr, uint64_t asn)
105 {
106 cpu->demapPage(vaddr, asn);
107 }
108 void demapDataPage(Addr vaddr, uint64_t asn)
109 {
110 cpu->demapPage(vaddr, asn);
111 }
112
113 /**
114 * Does a read to a given address.
115 * @param addr The address to read.
116 * @param data The read's data is written into this parameter.
117 * @param flags The request's flags.
118 * @return Returns any fault due to the read.
119 */
120 template <class T>
121 Fault read(Addr addr, T &data, unsigned flags);
122
123 Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
124
125 /**
126 * Does a write to a given address.
127 * @param data The data to be written.
128 * @param addr The address to write to.
129 * @param flags The request's flags.
130 * @param res The result of the write (for load locked/store conditionals).
131 * @return Returns any fault due to the write.
132 */
133 template <class T>
134 Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
135
136 Fault writeBytes(uint8_t *data, unsigned size,
137 Addr addr, unsigned flags, uint64_t *res);
138
139 /** Splits a request in two if it crosses a dcache block. */
140 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
141 RequestPtr &sreqHigh);
142
143 /** Initiate a DTB address translation. */
144 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
145 RequestPtr sreqHigh, uint64_t *res,
146 BaseTLB::Mode mode);
147
148 /** Finish a DTB address translation. */
149 void finishTranslation(WholeTranslationState *state);
150
151 void prefetch(Addr addr, unsigned flags);
152 void writeHint(Addr addr, int size, unsigned flags);
153 Fault copySrcTranslate(Addr src);
154 Fault copy(Addr dest);
155
156 /** @todo: Consider making this private. */
157 public:
158 /** The sequence number of the instruction. */
159 InstSeqNum seqNum;
160
161 enum Status {
162 IqEntry, /// Instruction is in the IQ
163 RobEntry, /// Instruction is in the ROB
164 LsqEntry, /// Instruction is in the LSQ
165 Completed, /// Instruction has completed
166 ResultReady, /// Instruction has its result
167 CanIssue, /// Instruction can issue and execute
168 Issued, /// Instruction has issued
169 Executed, /// Instruction has executed
170 CanCommit, /// Instruction can commit
171 AtCommit, /// Instruction has reached commit
172 Committed, /// Instruction has committed
173 Squashed, /// Instruction is squashed
174 SquashedInIQ, /// Instruction is squashed in the IQ
175 SquashedInLSQ, /// Instruction is squashed in the LSQ
176 SquashedInROB, /// Instruction is squashed in the ROB
177 RecoverInst, /// Is a recover instruction
178 BlockingInst, /// Is a blocking instruction
179 ThreadsyncWait, /// Is a thread synchronization instruction
180 SerializeBefore, /// Needs to serialize on
181 /// instructions ahead of it
182 SerializeAfter, /// Needs to serialize instructions behind it
183 SerializeHandled, /// Serialization has been handled
184 NumStatus
185 };
186
187 /** The status of this BaseDynInst. Several bits can be set. */
188 std::bitset<NumStatus> status;
189
190 /** The thread this instruction is from. */
191 ThreadID threadNumber;
192
193 /** data address space ID, for loads & stores. */
194 short asid;
195
196 /** How many source registers are ready. */
197 unsigned readyRegs;
198
199 /** Pointer to the Impl's CPU object. */
200 ImplCPU *cpu;
201
202 /** Pointer to the thread state. */
203 ImplState *thread;
204
205 /** The kind of fault this instruction has generated. */
206 Fault fault;
207
208 /** Pointer to the data for the memory access. */
209 uint8_t *memData;
210
211 /** The effective virtual address (lds & stores only). */
212 Addr effAddr;
213
214 /** Is the effective virtual address valid. */
215 bool effAddrValid;
216
217 /** The effective physical address. */
218 Addr physEffAddr;
219
220 /** Effective virtual address for a copy source. */
221 Addr copySrcEffAddr;
222
223 /** Effective physical address for a copy source. */
224 Addr copySrcPhysEffAddr;
225
226 /** The memory request flags (from translation). */
227 unsigned memReqFlags;
228
229 union Result {
230 uint64_t integer;
231// float fp;
232 double dbl;
233 };
234
235 /** The result of the instruction; assumes for now that there's only one
236 * destination register.
237 */
238 Result instResult;
239
240 /** Records changes to result? */
241 bool recordResult;
242
243 /** PC of this instruction. */
244 Addr PC;
245
246 /** Micro PC of this instruction. */
247 Addr microPC;
248
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 * Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "base/fast_alloc.hh"
42#include "base/trace.hh"
43#include "config/full_system.hh"
44#include "config/the_isa.hh"
45#include "cpu/o3/comm.hh"
46#include "cpu/exetrace.hh"
47#include "cpu/inst_seq.hh"
48#include "cpu/op_class.hh"
49#include "cpu/static_inst.hh"
50#include "cpu/translation.hh"
51#include "mem/packet.hh"
52#include "sim/system.hh"
53#include "sim/tlb.hh"
54
55/**
56 * @file
57 * Defines a dynamic instruction context.
58 */
59
60// Forward declaration.
61class StaticInstPtr;
62
63template <class Impl>
64class BaseDynInst : public FastAlloc, public RefCounted
65{
66 public:
67 // Typedef for the CPU.
68 typedef typename Impl::CPUType ImplCPU;
69 typedef typename ImplCPU::ImplState ImplState;
70
71 // Logical register index type.
72 typedef TheISA::RegIndex RegIndex;
73 // Integer register type.
74 typedef TheISA::IntReg IntReg;
75 // Floating point register type.
76 typedef TheISA::FloatReg FloatReg;
77
78 // The DynInstPtr type.
79 typedef typename Impl::DynInstPtr DynInstPtr;
80
81 // The list of instructions iterator type.
82 typedef typename std::list<DynInstPtr>::iterator ListIt;
83
84 enum {
85 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
86 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
87 };
88
89 /** The StaticInst used by this BaseDynInst. */
90 StaticInstPtr staticInst;
91
92 ////////////////////////////////////////////
93 //
94 // INSTRUCTION EXECUTION
95 //
96 ////////////////////////////////////////////
97 /** InstRecord that tracks this instructions. */
98 Trace::InstRecord *traceData;
99
100 void demapPage(Addr vaddr, uint64_t asn)
101 {
102 cpu->demapPage(vaddr, asn);
103 }
104 void demapInstPage(Addr vaddr, uint64_t asn)
105 {
106 cpu->demapPage(vaddr, asn);
107 }
108 void demapDataPage(Addr vaddr, uint64_t asn)
109 {
110 cpu->demapPage(vaddr, asn);
111 }
112
113 /**
114 * Does a read to a given address.
115 * @param addr The address to read.
116 * @param data The read's data is written into this parameter.
117 * @param flags The request's flags.
118 * @return Returns any fault due to the read.
119 */
120 template <class T>
121 Fault read(Addr addr, T &data, unsigned flags);
122
123 Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
124
125 /**
126 * Does a write to a given address.
127 * @param data The data to be written.
128 * @param addr The address to write to.
129 * @param flags The request's flags.
130 * @param res The result of the write (for load locked/store conditionals).
131 * @return Returns any fault due to the write.
132 */
133 template <class T>
134 Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
135
136 Fault writeBytes(uint8_t *data, unsigned size,
137 Addr addr, unsigned flags, uint64_t *res);
138
139 /** Splits a request in two if it crosses a dcache block. */
140 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
141 RequestPtr &sreqHigh);
142
143 /** Initiate a DTB address translation. */
144 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
145 RequestPtr sreqHigh, uint64_t *res,
146 BaseTLB::Mode mode);
147
148 /** Finish a DTB address translation. */
149 void finishTranslation(WholeTranslationState *state);
150
151 void prefetch(Addr addr, unsigned flags);
152 void writeHint(Addr addr, int size, unsigned flags);
153 Fault copySrcTranslate(Addr src);
154 Fault copy(Addr dest);
155
156 /** @todo: Consider making this private. */
157 public:
158 /** The sequence number of the instruction. */
159 InstSeqNum seqNum;
160
161 enum Status {
162 IqEntry, /// Instruction is in the IQ
163 RobEntry, /// Instruction is in the ROB
164 LsqEntry, /// Instruction is in the LSQ
165 Completed, /// Instruction has completed
166 ResultReady, /// Instruction has its result
167 CanIssue, /// Instruction can issue and execute
168 Issued, /// Instruction has issued
169 Executed, /// Instruction has executed
170 CanCommit, /// Instruction can commit
171 AtCommit, /// Instruction has reached commit
172 Committed, /// Instruction has committed
173 Squashed, /// Instruction is squashed
174 SquashedInIQ, /// Instruction is squashed in the IQ
175 SquashedInLSQ, /// Instruction is squashed in the LSQ
176 SquashedInROB, /// Instruction is squashed in the ROB
177 RecoverInst, /// Is a recover instruction
178 BlockingInst, /// Is a blocking instruction
179 ThreadsyncWait, /// Is a thread synchronization instruction
180 SerializeBefore, /// Needs to serialize on
181 /// instructions ahead of it
182 SerializeAfter, /// Needs to serialize instructions behind it
183 SerializeHandled, /// Serialization has been handled
184 NumStatus
185 };
186
187 /** The status of this BaseDynInst. Several bits can be set. */
188 std::bitset<NumStatus> status;
189
190 /** The thread this instruction is from. */
191 ThreadID threadNumber;
192
193 /** data address space ID, for loads & stores. */
194 short asid;
195
196 /** How many source registers are ready. */
197 unsigned readyRegs;
198
199 /** Pointer to the Impl's CPU object. */
200 ImplCPU *cpu;
201
202 /** Pointer to the thread state. */
203 ImplState *thread;
204
205 /** The kind of fault this instruction has generated. */
206 Fault fault;
207
208 /** Pointer to the data for the memory access. */
209 uint8_t *memData;
210
211 /** The effective virtual address (lds & stores only). */
212 Addr effAddr;
213
214 /** Is the effective virtual address valid. */
215 bool effAddrValid;
216
217 /** The effective physical address. */
218 Addr physEffAddr;
219
220 /** Effective virtual address for a copy source. */
221 Addr copySrcEffAddr;
222
223 /** Effective physical address for a copy source. */
224 Addr copySrcPhysEffAddr;
225
226 /** The memory request flags (from translation). */
227 unsigned memReqFlags;
228
229 union Result {
230 uint64_t integer;
231// float fp;
232 double dbl;
233 };
234
235 /** The result of the instruction; assumes for now that there's only one
236 * destination register.
237 */
238 Result instResult;
239
240 /** Records changes to result? */
241 bool recordResult;
242
243 /** PC of this instruction. */
244 Addr PC;
245
246 /** Micro PC of this instruction. */
247 Addr microPC;
248
249 /** Did this instruction execute, or is it predicated false */
250 bool predicate;
251
249 protected:
250 /** Next non-speculative PC. It is not filled in at fetch, but rather
251 * once the target of the branch is truly known (either decode or
252 * execute).
253 */
254 Addr nextPC;
255
256 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
257 Addr nextNPC;
258
259 /** Next non-speculative micro PC. */
260 Addr nextMicroPC;
261
262 /** Predicted next PC. */
263 Addr predPC;
264
265 /** Predicted next NPC. */
266 Addr predNPC;
267
268 /** Predicted next microPC */
269 Addr predMicroPC;
270
271 /** If this is a branch that was predicted taken */
272 bool predTaken;
273
274 public:
275
276#ifdef DEBUG
277 void dumpSNList();
278#endif
279
280 /** Whether or not the source register is ready.
281 * @todo: Not sure this should be here vs the derived class.
282 */
283 bool _readySrcRegIdx[MaxInstSrcRegs];
284
285 protected:
286 /** Flattened register index of the destination registers of this
287 * instruction.
288 */
289 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
290
291 /** Flattened register index of the source registers of this
292 * instruction.
293 */
294 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
295
296 /** Physical register index of the destination registers of this
297 * instruction.
298 */
299 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
300
301 /** Physical register index of the source registers of this
302 * instruction.
303 */
304 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
305
306 /** Physical register index of the previous producers of the
307 * architected destinations.
308 */
309 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
310
311 public:
312
313 /** Returns the physical register index of the i'th destination
314 * register.
315 */
316 PhysRegIndex renamedDestRegIdx(int idx) const
317 {
318 return _destRegIdx[idx];
319 }
320
321 /** Returns the physical register index of the i'th source register. */
322 PhysRegIndex renamedSrcRegIdx(int idx) const
323 {
324 return _srcRegIdx[idx];
325 }
326
327 /** Returns the flattened register index of the i'th destination
328 * register.
329 */
330 TheISA::RegIndex flattenedDestRegIdx(int idx) const
331 {
332 return _flatDestRegIdx[idx];
333 }
334
335 /** Returns the flattened register index of the i'th source register */
336 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
337 {
338 return _flatSrcRegIdx[idx];
339 }
340
341 /** Returns the physical register index of the previous physical register
342 * that remapped to the same logical register index.
343 */
344 PhysRegIndex prevDestRegIdx(int idx) const
345 {
346 return _prevDestRegIdx[idx];
347 }
348
349 /** Renames a destination register to a physical register. Also records
350 * the previous physical register that the logical register mapped to.
351 */
352 void renameDestReg(int idx,
353 PhysRegIndex renamed_dest,
354 PhysRegIndex previous_rename)
355 {
356 _destRegIdx[idx] = renamed_dest;
357 _prevDestRegIdx[idx] = previous_rename;
358 }
359
360 /** Renames a source logical register to the physical register which
361 * has/will produce that logical register's result.
362 * @todo: add in whether or not the source register is ready.
363 */
364 void renameSrcReg(int idx, PhysRegIndex renamed_src)
365 {
366 _srcRegIdx[idx] = renamed_src;
367 }
368
369 /** Flattens a source architectural register index into a logical index.
370 */
371 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
372 {
373 _flatSrcRegIdx[idx] = flattened_src;
374 }
375
376 /** Flattens a destination architectural register index into a logical
377 * index.
378 */
379 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
380 {
381 _flatDestRegIdx[idx] = flattened_dest;
382 }
383 /** BaseDynInst constructor given a binary instruction.
384 * @param staticInst A StaticInstPtr to the underlying instruction.
385 * @param PC The PC of the instruction.
386 * @param pred_PC The predicted next PC.
387 * @param pred_NPC The predicted next NPC.
388 * @param seq_num The sequence number of the instruction.
389 * @param cpu Pointer to the instruction's CPU.
390 */
391 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
392 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
393 InstSeqNum seq_num, ImplCPU *cpu);
394
395 /** BaseDynInst constructor given a binary instruction.
396 * @param inst The binary instruction.
397 * @param PC The PC of the instruction.
398 * @param pred_PC The predicted next PC.
399 * @param pred_NPC The predicted next NPC.
400 * @param seq_num The sequence number of the instruction.
401 * @param cpu Pointer to the instruction's CPU.
402 */
403 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
404 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
405 InstSeqNum seq_num, ImplCPU *cpu);
406
407 /** BaseDynInst constructor given a StaticInst pointer.
408 * @param _staticInst The StaticInst for this BaseDynInst.
409 */
410 BaseDynInst(StaticInstPtr &_staticInst);
411
412 /** BaseDynInst destructor. */
413 ~BaseDynInst();
414
415 private:
416 /** Function to initialize variables in the constructors. */
417 void initVars();
418
419 public:
420 /** Dumps out contents of this BaseDynInst. */
421 void dump();
422
423 /** Dumps out contents of this BaseDynInst into given string. */
424 void dump(std::string &outstring);
425
426 /** Read this CPU's ID. */
427 int cpuId() { return cpu->cpuId(); }
428
429 /** Read this context's system-wide ID **/
430 int contextId() { return thread->contextId(); }
431
432 /** Returns the fault type. */
433 Fault getFault() { return fault; }
434
435 /** Checks whether or not this instruction has had its branch target
436 * calculated yet. For now it is not utilized and is hacked to be
437 * always false.
438 * @todo: Actually use this instruction.
439 */
440 bool doneTargCalc() { return false; }
441
442 /** Returns the next PC. This could be the speculative next PC if it is
443 * called prior to the actual branch target being calculated.
444 */
445 Addr readNextPC() { return nextPC; }
446
447 /** Returns the next NPC. This could be the speculative next NPC if it is
448 * called prior to the actual branch target being calculated.
449 */
450 Addr readNextNPC()
451 {
452#if ISA_HAS_DELAY_SLOT
453 return nextNPC;
454#else
455 return nextPC + sizeof(TheISA::MachInst);
456#endif
457 }
458
459 Addr readNextMicroPC()
460 {
461 return nextMicroPC;
462 }
463
464 /** Set the predicted target of this current instruction. */
465 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
466 Addr predicted_MicroPC)
467 {
468 predPC = predicted_PC;
469 predNPC = predicted_NPC;
470 predMicroPC = predicted_MicroPC;
471 }
472
473 /** Returns the predicted PC immediately after the branch. */
474 Addr readPredPC() { return predPC; }
475
476 /** Returns the predicted PC two instructions after the branch */
477 Addr readPredNPC() { return predNPC; }
478
479 /** Returns the predicted micro PC after the branch */
480 Addr readPredMicroPC() { return predMicroPC; }
481
482 /** Returns whether the instruction was predicted taken or not. */
483 bool readPredTaken()
484 {
485 return predTaken;
486 }
487
488 void setPredTaken(bool predicted_taken)
489 {
490 predTaken = predicted_taken;
491 }
492
493 /** Returns whether the instruction mispredicted. */
494 bool mispredicted()
495 {
496 return readPredPC() != readNextPC() ||
497 readPredNPC() != readNextNPC() ||
498 readPredMicroPC() != readNextMicroPC();
499 }
500
501 //
502 // Instruction types. Forward checks to StaticInst object.
503 //
504 bool isNop() const { return staticInst->isNop(); }
505 bool isMemRef() const { return staticInst->isMemRef(); }
506 bool isLoad() const { return staticInst->isLoad(); }
507 bool isStore() const { return staticInst->isStore(); }
508 bool isStoreConditional() const
509 { return staticInst->isStoreConditional(); }
510 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
511 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
512 bool isCopy() const { return staticInst->isCopy(); }
513 bool isInteger() const { return staticInst->isInteger(); }
514 bool isFloating() const { return staticInst->isFloating(); }
515 bool isControl() const { return staticInst->isControl(); }
516 bool isCall() const { return staticInst->isCall(); }
517 bool isReturn() const { return staticInst->isReturn(); }
518 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
519 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
520 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
521 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
522 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
523 bool isThreadSync() const { return staticInst->isThreadSync(); }
524 bool isSerializing() const { return staticInst->isSerializing(); }
525 bool isSerializeBefore() const
526 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
527 bool isSerializeAfter() const
528 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
529 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
530 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
531 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
532 bool isQuiesce() const { return staticInst->isQuiesce(); }
533 bool isIprAccess() const { return staticInst->isIprAccess(); }
534 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
535 bool isSyscall() const { return staticInst->isSyscall(); }
536 bool isMacroop() const { return staticInst->isMacroop(); }
537 bool isMicroop() const { return staticInst->isMicroop(); }
538 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
539 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
540 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
541 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
542
543 /** Temporarily sets this instruction as a serialize before instruction. */
544 void setSerializeBefore() { status.set(SerializeBefore); }
545
546 /** Clears the serializeBefore part of this instruction. */
547 void clearSerializeBefore() { status.reset(SerializeBefore); }
548
549 /** Checks if this serializeBefore is only temporarily set. */
550 bool isTempSerializeBefore() { return status[SerializeBefore]; }
551
552 /** Temporarily sets this instruction as a serialize after instruction. */
553 void setSerializeAfter() { status.set(SerializeAfter); }
554
555 /** Clears the serializeAfter part of this instruction.*/
556 void clearSerializeAfter() { status.reset(SerializeAfter); }
557
558 /** Checks if this serializeAfter is only temporarily set. */
559 bool isTempSerializeAfter() { return status[SerializeAfter]; }
560
561 /** Sets the serialization part of this instruction as handled. */
562 void setSerializeHandled() { status.set(SerializeHandled); }
563
564 /** Checks if the serialization part of this instruction has been
565 * handled. This does not apply to the temporary serializing
566 * state; it only applies to this instruction's own permanent
567 * serializing state.
568 */
569 bool isSerializeHandled() { return status[SerializeHandled]; }
570
571 /** Returns the opclass of this instruction. */
572 OpClass opClass() const { return staticInst->opClass(); }
573
574 /** Returns the branch target address. */
575 Addr branchTarget() const { return staticInst->branchTarget(PC); }
576
577 /** Returns the number of source registers. */
578 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
579
580 /** Returns the number of destination registers. */
581 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
582
583 // the following are used to track physical register usage
584 // for machines with separate int & FP reg files
585 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
586 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
587
588 /** Returns the logical register index of the i'th destination register. */
589 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
590
591 /** Returns the logical register index of the i'th source register. */
592 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
593
594 /** Returns the result of an integer instruction. */
595 uint64_t readIntResult() { return instResult.integer; }
596
597 /** Returns the result of a floating point instruction. */
598 float readFloatResult() { return (float)instResult.dbl; }
599
600 /** Returns the result of a floating point (double) instruction. */
601 double readDoubleResult() { return instResult.dbl; }
602
603 /** Records an integer register being set to a value. */
604 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
605 {
606 if (recordResult)
607 instResult.integer = val;
608 }
609
610 /** Records an fp register being set to a value. */
611 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
612 int width)
613 {
614 if (recordResult) {
615 if (width == 32)
616 instResult.dbl = (double)val;
617 else if (width == 64)
618 instResult.dbl = val;
619 else
620 panic("Unsupported width!");
621 }
622 }
623
624 /** Records an fp register being set to a value. */
625 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
626 {
627 if (recordResult)
628 instResult.dbl = (double)val;
629 }
630
631 /** Records an fp register being set to an integer value. */
632 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
633 int width)
634 {
635 if (recordResult)
636 instResult.integer = val;
637 }
638
639 /** Records an fp register being set to an integer value. */
640 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
641 {
642 if (recordResult)
643 instResult.integer = val;
644 }
645
646 /** Records that one of the source registers is ready. */
647 void markSrcRegReady();
648
649 /** Marks a specific register as ready. */
650 void markSrcRegReady(RegIndex src_idx);
651
652 /** Returns if a source register is ready. */
653 bool isReadySrcRegIdx(int idx) const
654 {
655 return this->_readySrcRegIdx[idx];
656 }
657
658 /** Sets this instruction as completed. */
659 void setCompleted() { status.set(Completed); }
660
661 /** Returns whether or not this instruction is completed. */
662 bool isCompleted() const { return status[Completed]; }
663
664 /** Marks the result as ready. */
665 void setResultReady() { status.set(ResultReady); }
666
667 /** Returns whether or not the result is ready. */
668 bool isResultReady() const { return status[ResultReady]; }
669
670 /** Sets this instruction as ready to issue. */
671 void setCanIssue() { status.set(CanIssue); }
672
673 /** Returns whether or not this instruction is ready to issue. */
674 bool readyToIssue() const { return status[CanIssue]; }
675
676 /** Clears this instruction being able to issue. */
677 void clearCanIssue() { status.reset(CanIssue); }
678
679 /** Sets this instruction as issued from the IQ. */
680 void setIssued() { status.set(Issued); }
681
682 /** Returns whether or not this instruction has issued. */
683 bool isIssued() const { return status[Issued]; }
684
685 /** Clears this instruction as being issued. */
686 void clearIssued() { status.reset(Issued); }
687
688 /** Sets this instruction as executed. */
689 void setExecuted() { status.set(Executed); }
690
691 /** Returns whether or not this instruction has executed. */
692 bool isExecuted() const { return status[Executed]; }
693
694 /** Sets this instruction as ready to commit. */
695 void setCanCommit() { status.set(CanCommit); }
696
697 /** Clears this instruction as being ready to commit. */
698 void clearCanCommit() { status.reset(CanCommit); }
699
700 /** Returns whether or not this instruction is ready to commit. */
701 bool readyToCommit() const { return status[CanCommit]; }
702
703 void setAtCommit() { status.set(AtCommit); }
704
705 bool isAtCommit() { return status[AtCommit]; }
706
707 /** Sets this instruction as committed. */
708 void setCommitted() { status.set(Committed); }
709
710 /** Returns whether or not this instruction is committed. */
711 bool isCommitted() const { return status[Committed]; }
712
713 /** Sets this instruction as squashed. */
714 void setSquashed() { status.set(Squashed); }
715
716 /** Returns whether or not this instruction is squashed. */
717 bool isSquashed() const { return status[Squashed]; }
718
719 //Instruction Queue Entry
720 //-----------------------
721 /** Sets this instruction as a entry the IQ. */
722 void setInIQ() { status.set(IqEntry); }
723
724 /** Sets this instruction as a entry the IQ. */
725 void clearInIQ() { status.reset(IqEntry); }
726
727 /** Returns whether or not this instruction has issued. */
728 bool isInIQ() const { return status[IqEntry]; }
729
730 /** Sets this instruction as squashed in the IQ. */
731 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
732
733 /** Returns whether or not this instruction is squashed in the IQ. */
734 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
735
736
737 //Load / Store Queue Functions
738 //-----------------------
739 /** Sets this instruction as a entry the LSQ. */
740 void setInLSQ() { status.set(LsqEntry); }
741
742 /** Sets this instruction as a entry the LSQ. */
743 void removeInLSQ() { status.reset(LsqEntry); }
744
745 /** Returns whether or not this instruction is in the LSQ. */
746 bool isInLSQ() const { return status[LsqEntry]; }
747
748 /** Sets this instruction as squashed in the LSQ. */
749 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
750
751 /** Returns whether or not this instruction is squashed in the LSQ. */
752 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
753
754
755 //Reorder Buffer Functions
756 //-----------------------
757 /** Sets this instruction as a entry the ROB. */
758 void setInROB() { status.set(RobEntry); }
759
760 /** Sets this instruction as a entry the ROB. */
761 void clearInROB() { status.reset(RobEntry); }
762
763 /** Returns whether or not this instruction is in the ROB. */
764 bool isInROB() const { return status[RobEntry]; }
765
766 /** Sets this instruction as squashed in the ROB. */
767 void setSquashedInROB() { status.set(SquashedInROB); }
768
769 /** Returns whether or not this instruction is squashed in the ROB. */
770 bool isSquashedInROB() const { return status[SquashedInROB]; }
771
772 /** Read the PC of this instruction. */
773 const Addr readPC() const { return PC; }
774
775 /**Read the micro PC of this instruction. */
776 const Addr readMicroPC() const { return microPC; }
777
778 /** Set the next PC of this instruction (its actual target). */
779 void setNextPC(Addr val)
780 {
781 nextPC = val;
782 }
783
784 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
785 void setNextNPC(Addr val)
786 {
787#if ISA_HAS_DELAY_SLOT
788 nextNPC = val;
789#endif
790 }
791
792 void setNextMicroPC(Addr val)
793 {
794 nextMicroPC = val;
795 }
796
252 protected:
253 /** Next non-speculative PC. It is not filled in at fetch, but rather
254 * once the target of the branch is truly known (either decode or
255 * execute).
256 */
257 Addr nextPC;
258
259 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
260 Addr nextNPC;
261
262 /** Next non-speculative micro PC. */
263 Addr nextMicroPC;
264
265 /** Predicted next PC. */
266 Addr predPC;
267
268 /** Predicted next NPC. */
269 Addr predNPC;
270
271 /** Predicted next microPC */
272 Addr predMicroPC;
273
274 /** If this is a branch that was predicted taken */
275 bool predTaken;
276
277 public:
278
279#ifdef DEBUG
280 void dumpSNList();
281#endif
282
283 /** Whether or not the source register is ready.
284 * @todo: Not sure this should be here vs the derived class.
285 */
286 bool _readySrcRegIdx[MaxInstSrcRegs];
287
288 protected:
289 /** Flattened register index of the destination registers of this
290 * instruction.
291 */
292 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
293
294 /** Flattened register index of the source registers of this
295 * instruction.
296 */
297 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
298
299 /** Physical register index of the destination registers of this
300 * instruction.
301 */
302 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
303
304 /** Physical register index of the source registers of this
305 * instruction.
306 */
307 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
308
309 /** Physical register index of the previous producers of the
310 * architected destinations.
311 */
312 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
313
314 public:
315
316 /** Returns the physical register index of the i'th destination
317 * register.
318 */
319 PhysRegIndex renamedDestRegIdx(int idx) const
320 {
321 return _destRegIdx[idx];
322 }
323
324 /** Returns the physical register index of the i'th source register. */
325 PhysRegIndex renamedSrcRegIdx(int idx) const
326 {
327 return _srcRegIdx[idx];
328 }
329
330 /** Returns the flattened register index of the i'th destination
331 * register.
332 */
333 TheISA::RegIndex flattenedDestRegIdx(int idx) const
334 {
335 return _flatDestRegIdx[idx];
336 }
337
338 /** Returns the flattened register index of the i'th source register */
339 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
340 {
341 return _flatSrcRegIdx[idx];
342 }
343
344 /** Returns the physical register index of the previous physical register
345 * that remapped to the same logical register index.
346 */
347 PhysRegIndex prevDestRegIdx(int idx) const
348 {
349 return _prevDestRegIdx[idx];
350 }
351
352 /** Renames a destination register to a physical register. Also records
353 * the previous physical register that the logical register mapped to.
354 */
355 void renameDestReg(int idx,
356 PhysRegIndex renamed_dest,
357 PhysRegIndex previous_rename)
358 {
359 _destRegIdx[idx] = renamed_dest;
360 _prevDestRegIdx[idx] = previous_rename;
361 }
362
363 /** Renames a source logical register to the physical register which
364 * has/will produce that logical register's result.
365 * @todo: add in whether or not the source register is ready.
366 */
367 void renameSrcReg(int idx, PhysRegIndex renamed_src)
368 {
369 _srcRegIdx[idx] = renamed_src;
370 }
371
372 /** Flattens a source architectural register index into a logical index.
373 */
374 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
375 {
376 _flatSrcRegIdx[idx] = flattened_src;
377 }
378
379 /** Flattens a destination architectural register index into a logical
380 * index.
381 */
382 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
383 {
384 _flatDestRegIdx[idx] = flattened_dest;
385 }
386 /** BaseDynInst constructor given a binary instruction.
387 * @param staticInst A StaticInstPtr to the underlying instruction.
388 * @param PC The PC of the instruction.
389 * @param pred_PC The predicted next PC.
390 * @param pred_NPC The predicted next NPC.
391 * @param seq_num The sequence number of the instruction.
392 * @param cpu Pointer to the instruction's CPU.
393 */
394 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
395 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
396 InstSeqNum seq_num, ImplCPU *cpu);
397
398 /** BaseDynInst constructor given a binary instruction.
399 * @param inst The binary instruction.
400 * @param PC The PC of the instruction.
401 * @param pred_PC The predicted next PC.
402 * @param pred_NPC The predicted next NPC.
403 * @param seq_num The sequence number of the instruction.
404 * @param cpu Pointer to the instruction's CPU.
405 */
406 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
407 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
408 InstSeqNum seq_num, ImplCPU *cpu);
409
410 /** BaseDynInst constructor given a StaticInst pointer.
411 * @param _staticInst The StaticInst for this BaseDynInst.
412 */
413 BaseDynInst(StaticInstPtr &_staticInst);
414
415 /** BaseDynInst destructor. */
416 ~BaseDynInst();
417
418 private:
419 /** Function to initialize variables in the constructors. */
420 void initVars();
421
422 public:
423 /** Dumps out contents of this BaseDynInst. */
424 void dump();
425
426 /** Dumps out contents of this BaseDynInst into given string. */
427 void dump(std::string &outstring);
428
429 /** Read this CPU's ID. */
430 int cpuId() { return cpu->cpuId(); }
431
432 /** Read this context's system-wide ID **/
433 int contextId() { return thread->contextId(); }
434
435 /** Returns the fault type. */
436 Fault getFault() { return fault; }
437
438 /** Checks whether or not this instruction has had its branch target
439 * calculated yet. For now it is not utilized and is hacked to be
440 * always false.
441 * @todo: Actually use this instruction.
442 */
443 bool doneTargCalc() { return false; }
444
445 /** Returns the next PC. This could be the speculative next PC if it is
446 * called prior to the actual branch target being calculated.
447 */
448 Addr readNextPC() { return nextPC; }
449
450 /** Returns the next NPC. This could be the speculative next NPC if it is
451 * called prior to the actual branch target being calculated.
452 */
453 Addr readNextNPC()
454 {
455#if ISA_HAS_DELAY_SLOT
456 return nextNPC;
457#else
458 return nextPC + sizeof(TheISA::MachInst);
459#endif
460 }
461
462 Addr readNextMicroPC()
463 {
464 return nextMicroPC;
465 }
466
467 /** Set the predicted target of this current instruction. */
468 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
469 Addr predicted_MicroPC)
470 {
471 predPC = predicted_PC;
472 predNPC = predicted_NPC;
473 predMicroPC = predicted_MicroPC;
474 }
475
476 /** Returns the predicted PC immediately after the branch. */
477 Addr readPredPC() { return predPC; }
478
479 /** Returns the predicted PC two instructions after the branch */
480 Addr readPredNPC() { return predNPC; }
481
482 /** Returns the predicted micro PC after the branch */
483 Addr readPredMicroPC() { return predMicroPC; }
484
485 /** Returns whether the instruction was predicted taken or not. */
486 bool readPredTaken()
487 {
488 return predTaken;
489 }
490
491 void setPredTaken(bool predicted_taken)
492 {
493 predTaken = predicted_taken;
494 }
495
496 /** Returns whether the instruction mispredicted. */
497 bool mispredicted()
498 {
499 return readPredPC() != readNextPC() ||
500 readPredNPC() != readNextNPC() ||
501 readPredMicroPC() != readNextMicroPC();
502 }
503
504 //
505 // Instruction types. Forward checks to StaticInst object.
506 //
507 bool isNop() const { return staticInst->isNop(); }
508 bool isMemRef() const { return staticInst->isMemRef(); }
509 bool isLoad() const { return staticInst->isLoad(); }
510 bool isStore() const { return staticInst->isStore(); }
511 bool isStoreConditional() const
512 { return staticInst->isStoreConditional(); }
513 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
514 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
515 bool isCopy() const { return staticInst->isCopy(); }
516 bool isInteger() const { return staticInst->isInteger(); }
517 bool isFloating() const { return staticInst->isFloating(); }
518 bool isControl() const { return staticInst->isControl(); }
519 bool isCall() const { return staticInst->isCall(); }
520 bool isReturn() const { return staticInst->isReturn(); }
521 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
522 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
523 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
524 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
525 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
526 bool isThreadSync() const { return staticInst->isThreadSync(); }
527 bool isSerializing() const { return staticInst->isSerializing(); }
528 bool isSerializeBefore() const
529 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
530 bool isSerializeAfter() const
531 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
532 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
533 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
534 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
535 bool isQuiesce() const { return staticInst->isQuiesce(); }
536 bool isIprAccess() const { return staticInst->isIprAccess(); }
537 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
538 bool isSyscall() const { return staticInst->isSyscall(); }
539 bool isMacroop() const { return staticInst->isMacroop(); }
540 bool isMicroop() const { return staticInst->isMicroop(); }
541 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
542 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
543 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
544 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
545
546 /** Temporarily sets this instruction as a serialize before instruction. */
547 void setSerializeBefore() { status.set(SerializeBefore); }
548
549 /** Clears the serializeBefore part of this instruction. */
550 void clearSerializeBefore() { status.reset(SerializeBefore); }
551
552 /** Checks if this serializeBefore is only temporarily set. */
553 bool isTempSerializeBefore() { return status[SerializeBefore]; }
554
555 /** Temporarily sets this instruction as a serialize after instruction. */
556 void setSerializeAfter() { status.set(SerializeAfter); }
557
558 /** Clears the serializeAfter part of this instruction.*/
559 void clearSerializeAfter() { status.reset(SerializeAfter); }
560
561 /** Checks if this serializeAfter is only temporarily set. */
562 bool isTempSerializeAfter() { return status[SerializeAfter]; }
563
564 /** Sets the serialization part of this instruction as handled. */
565 void setSerializeHandled() { status.set(SerializeHandled); }
566
567 /** Checks if the serialization part of this instruction has been
568 * handled. This does not apply to the temporary serializing
569 * state; it only applies to this instruction's own permanent
570 * serializing state.
571 */
572 bool isSerializeHandled() { return status[SerializeHandled]; }
573
574 /** Returns the opclass of this instruction. */
575 OpClass opClass() const { return staticInst->opClass(); }
576
577 /** Returns the branch target address. */
578 Addr branchTarget() const { return staticInst->branchTarget(PC); }
579
580 /** Returns the number of source registers. */
581 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
582
583 /** Returns the number of destination registers. */
584 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
585
586 // the following are used to track physical register usage
587 // for machines with separate int & FP reg files
588 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
589 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
590
591 /** Returns the logical register index of the i'th destination register. */
592 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
593
594 /** Returns the logical register index of the i'th source register. */
595 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
596
597 /** Returns the result of an integer instruction. */
598 uint64_t readIntResult() { return instResult.integer; }
599
600 /** Returns the result of a floating point instruction. */
601 float readFloatResult() { return (float)instResult.dbl; }
602
603 /** Returns the result of a floating point (double) instruction. */
604 double readDoubleResult() { return instResult.dbl; }
605
606 /** Records an integer register being set to a value. */
607 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
608 {
609 if (recordResult)
610 instResult.integer = val;
611 }
612
613 /** Records an fp register being set to a value. */
614 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
615 int width)
616 {
617 if (recordResult) {
618 if (width == 32)
619 instResult.dbl = (double)val;
620 else if (width == 64)
621 instResult.dbl = val;
622 else
623 panic("Unsupported width!");
624 }
625 }
626
627 /** Records an fp register being set to a value. */
628 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
629 {
630 if (recordResult)
631 instResult.dbl = (double)val;
632 }
633
634 /** Records an fp register being set to an integer value. */
635 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
636 int width)
637 {
638 if (recordResult)
639 instResult.integer = val;
640 }
641
642 /** Records an fp register being set to an integer value. */
643 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
644 {
645 if (recordResult)
646 instResult.integer = val;
647 }
648
649 /** Records that one of the source registers is ready. */
650 void markSrcRegReady();
651
652 /** Marks a specific register as ready. */
653 void markSrcRegReady(RegIndex src_idx);
654
655 /** Returns if a source register is ready. */
656 bool isReadySrcRegIdx(int idx) const
657 {
658 return this->_readySrcRegIdx[idx];
659 }
660
661 /** Sets this instruction as completed. */
662 void setCompleted() { status.set(Completed); }
663
664 /** Returns whether or not this instruction is completed. */
665 bool isCompleted() const { return status[Completed]; }
666
667 /** Marks the result as ready. */
668 void setResultReady() { status.set(ResultReady); }
669
670 /** Returns whether or not the result is ready. */
671 bool isResultReady() const { return status[ResultReady]; }
672
673 /** Sets this instruction as ready to issue. */
674 void setCanIssue() { status.set(CanIssue); }
675
676 /** Returns whether or not this instruction is ready to issue. */
677 bool readyToIssue() const { return status[CanIssue]; }
678
679 /** Clears this instruction being able to issue. */
680 void clearCanIssue() { status.reset(CanIssue); }
681
682 /** Sets this instruction as issued from the IQ. */
683 void setIssued() { status.set(Issued); }
684
685 /** Returns whether or not this instruction has issued. */
686 bool isIssued() const { return status[Issued]; }
687
688 /** Clears this instruction as being issued. */
689 void clearIssued() { status.reset(Issued); }
690
691 /** Sets this instruction as executed. */
692 void setExecuted() { status.set(Executed); }
693
694 /** Returns whether or not this instruction has executed. */
695 bool isExecuted() const { return status[Executed]; }
696
697 /** Sets this instruction as ready to commit. */
698 void setCanCommit() { status.set(CanCommit); }
699
700 /** Clears this instruction as being ready to commit. */
701 void clearCanCommit() { status.reset(CanCommit); }
702
703 /** Returns whether or not this instruction is ready to commit. */
704 bool readyToCommit() const { return status[CanCommit]; }
705
706 void setAtCommit() { status.set(AtCommit); }
707
708 bool isAtCommit() { return status[AtCommit]; }
709
710 /** Sets this instruction as committed. */
711 void setCommitted() { status.set(Committed); }
712
713 /** Returns whether or not this instruction is committed. */
714 bool isCommitted() const { return status[Committed]; }
715
716 /** Sets this instruction as squashed. */
717 void setSquashed() { status.set(Squashed); }
718
719 /** Returns whether or not this instruction is squashed. */
720 bool isSquashed() const { return status[Squashed]; }
721
722 //Instruction Queue Entry
723 //-----------------------
724 /** Sets this instruction as a entry the IQ. */
725 void setInIQ() { status.set(IqEntry); }
726
727 /** Sets this instruction as a entry the IQ. */
728 void clearInIQ() { status.reset(IqEntry); }
729
730 /** Returns whether or not this instruction has issued. */
731 bool isInIQ() const { return status[IqEntry]; }
732
733 /** Sets this instruction as squashed in the IQ. */
734 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
735
736 /** Returns whether or not this instruction is squashed in the IQ. */
737 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
738
739
740 //Load / Store Queue Functions
741 //-----------------------
742 /** Sets this instruction as a entry the LSQ. */
743 void setInLSQ() { status.set(LsqEntry); }
744
745 /** Sets this instruction as a entry the LSQ. */
746 void removeInLSQ() { status.reset(LsqEntry); }
747
748 /** Returns whether or not this instruction is in the LSQ. */
749 bool isInLSQ() const { return status[LsqEntry]; }
750
751 /** Sets this instruction as squashed in the LSQ. */
752 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
753
754 /** Returns whether or not this instruction is squashed in the LSQ. */
755 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
756
757
758 //Reorder Buffer Functions
759 //-----------------------
760 /** Sets this instruction as a entry the ROB. */
761 void setInROB() { status.set(RobEntry); }
762
763 /** Sets this instruction as a entry the ROB. */
764 void clearInROB() { status.reset(RobEntry); }
765
766 /** Returns whether or not this instruction is in the ROB. */
767 bool isInROB() const { return status[RobEntry]; }
768
769 /** Sets this instruction as squashed in the ROB. */
770 void setSquashedInROB() { status.set(SquashedInROB); }
771
772 /** Returns whether or not this instruction is squashed in the ROB. */
773 bool isSquashedInROB() const { return status[SquashedInROB]; }
774
775 /** Read the PC of this instruction. */
776 const Addr readPC() const { return PC; }
777
778 /**Read the micro PC of this instruction. */
779 const Addr readMicroPC() const { return microPC; }
780
781 /** Set the next PC of this instruction (its actual target). */
782 void setNextPC(Addr val)
783 {
784 nextPC = val;
785 }
786
787 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
788 void setNextNPC(Addr val)
789 {
790#if ISA_HAS_DELAY_SLOT
791 nextNPC = val;
792#endif
793 }
794
795 void setNextMicroPC(Addr val)
796 {
797 nextMicroPC = val;
798 }
799
800 bool readPredicate()
801 {
802 return predicate;
803 }
804
805 void setPredicate(bool val)
806 {
807 predicate = val;
808 }
809
797 /** Sets the ASID. */
798 void setASID(short addr_space_id) { asid = addr_space_id; }
799
800 /** Sets the thread id. */
801 void setTid(ThreadID tid) { threadNumber = tid; }
802
803 /** Sets the pointer to the thread state. */
804 void setThreadState(ImplState *state) { thread = state; }
805
806 /** Returns the thread context. */
807 ThreadContext *tcBase() { return thread->getTC(); }
808
809 private:
810 /** Instruction effective address.
811 * @todo: Consider if this is necessary or not.
812 */
813 Addr instEffAddr;
814
815 /** Whether or not the effective address calculation is completed.
816 * @todo: Consider if this is necessary or not.
817 */
818 bool eaCalcDone;
819
820 /** Is this instruction's memory access uncacheable. */
821 bool isUncacheable;
822
823 /** Has this instruction generated a memory request. */
824 bool reqMade;
825
826 public:
827 /** Sets the effective address. */
828 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
829
830 /** Returns the effective address. */
831 const Addr &getEA() const { return instEffAddr; }
832
833 /** Returns whether or not the eff. addr. calculation has been completed. */
834 bool doneEACalc() { return eaCalcDone; }
835
836 /** Returns whether or not the eff. addr. source registers are ready. */
837 bool eaSrcsReady();
838
839 /** Whether or not the memory operation is done. */
840 bool memOpDone;
841
842 /** Is this instruction's memory access uncacheable. */
843 bool uncacheable() { return isUncacheable; }
844
845 /** Has this instruction generated a memory request. */
846 bool hasRequest() { return reqMade; }
847
848 public:
849 /** Load queue index. */
850 int16_t lqIdx;
851
852 /** Store queue index. */
853 int16_t sqIdx;
854
855 /** Iterator pointing to this BaseDynInst in the list of all insts. */
856 ListIt instListIt;
857
858 /** Returns iterator to this instruction in the list of all insts. */
859 ListIt &getInstListIt() { return instListIt; }
860
861 /** Sets iterator for this instruction in the list of all insts. */
862 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
863
864 public:
865 /** Returns the number of consecutive store conditional failures. */
866 unsigned readStCondFailures()
867 { return thread->storeCondFailures; }
868
869 /** Sets the number of consecutive store conditional failures. */
870 void setStCondFailures(unsigned sc_failures)
871 { thread->storeCondFailures = sc_failures; }
872};
873
874template<class Impl>
875Fault
876BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
877 unsigned size, unsigned flags)
878{
879 reqMade = true;
880 Request *req = new Request(asid, addr, size, flags, this->PC,
881 thread->contextId(), threadNumber);
882
883 Request *sreqLow = NULL;
884 Request *sreqHigh = NULL;
885
886 // Only split the request if the ISA supports unaligned accesses.
887 if (TheISA::HasUnalignedMemAcc) {
888 splitRequest(req, sreqLow, sreqHigh);
889 }
890 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
891
892 if (fault == NoFault) {
893 effAddr = req->getVaddr();
894 effAddrValid = true;
895 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
896 } else {
897 // Commit will have to clean up whatever happened. Set this
898 // instruction as executed.
899 this->setExecuted();
900 }
901
902 if (fault != NoFault) {
903 // Return a fixed value to keep simulation deterministic even
904 // along misspeculated paths.
905 bzero(data, size);
906 }
907
908 if (traceData) {
909 traceData->setAddr(addr);
910 }
911
912 return fault;
913}
914
915template<class Impl>
916template<class T>
917inline Fault
918BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
919{
920 Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
921
922 data = TheISA::gtoh(data);
923
924 if (traceData) {
925 traceData->setData(data);
926 }
927
928 return fault;
929}
930
931template<class Impl>
932Fault
933BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
934 Addr addr, unsigned flags, uint64_t *res)
935{
936 if (traceData) {
937 traceData->setAddr(addr);
938 }
939
940 reqMade = true;
941 Request *req = new Request(asid, addr, size, flags, this->PC,
942 thread->contextId(), threadNumber);
943
944 Request *sreqLow = NULL;
945 Request *sreqHigh = NULL;
946
947 // Only split the request if the ISA supports unaligned accesses.
948 if (TheISA::HasUnalignedMemAcc) {
949 splitRequest(req, sreqLow, sreqHigh);
950 }
951 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
952
953 if (fault == NoFault) {
954 effAddr = req->getVaddr();
955 effAddrValid = true;
956 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
957 }
958
959 return fault;
960}
961
962template<class Impl>
963template<class T>
964inline Fault
965BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
966{
967 if (traceData) {
968 traceData->setData(data);
969 }
970 data = TheISA::htog(data);
971 return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
972}
973
974template<class Impl>
975inline void
976BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
977 RequestPtr &sreqHigh)
978{
979 // Check to see if the request crosses the next level block boundary.
980 unsigned block_size = cpu->getDcachePort()->peerBlockSize();
981 Addr addr = req->getVaddr();
982 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
983 assert(split_addr <= addr || split_addr - addr < block_size);
984
985 // Spans two blocks.
986 if (split_addr > addr) {
987 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
988 }
989}
990
991template<class Impl>
992inline void
993BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
994 RequestPtr sreqHigh, uint64_t *res,
995 BaseTLB::Mode mode)
996{
997 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
998 WholeTranslationState *state =
999 new WholeTranslationState(req, NULL, res, mode);
1000
1001 // One translation if the request isn't split.
1002 DataTranslation<BaseDynInst<Impl> > *trans =
1003 new DataTranslation<BaseDynInst<Impl> >(this, state);
1004 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1005 } else {
1006 WholeTranslationState *state =
1007 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1008
1009 // Two translations when the request is split.
1010 DataTranslation<BaseDynInst<Impl> > *stransLow =
1011 new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1012 DataTranslation<BaseDynInst<Impl> > *stransHigh =
1013 new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1014
1015 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1016 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1017 }
1018}
1019
1020template<class Impl>
1021inline void
1022BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1023{
1024 fault = state->getFault();
1025
1026 if (state->isUncacheable())
1027 isUncacheable = true;
1028
1029 if (fault == NoFault) {
1030 physEffAddr = state->getPaddr();
1031 memReqFlags = state->getFlags();
1032
1033 if (state->mainReq->isCondSwap()) {
1034 assert(state->res);
1035 state->mainReq->setExtraData(*state->res);
1036 }
1037
1038 } else {
1039 state->deleteReqs();
1040 }
1041 delete state;
1042}
1043
1044#endif // __CPU_BASE_DYN_INST_HH__
810 /** Sets the ASID. */
811 void setASID(short addr_space_id) { asid = addr_space_id; }
812
813 /** Sets the thread id. */
814 void setTid(ThreadID tid) { threadNumber = tid; }
815
816 /** Sets the pointer to the thread state. */
817 void setThreadState(ImplState *state) { thread = state; }
818
819 /** Returns the thread context. */
820 ThreadContext *tcBase() { return thread->getTC(); }
821
822 private:
823 /** Instruction effective address.
824 * @todo: Consider if this is necessary or not.
825 */
826 Addr instEffAddr;
827
828 /** Whether or not the effective address calculation is completed.
829 * @todo: Consider if this is necessary or not.
830 */
831 bool eaCalcDone;
832
833 /** Is this instruction's memory access uncacheable. */
834 bool isUncacheable;
835
836 /** Has this instruction generated a memory request. */
837 bool reqMade;
838
839 public:
840 /** Sets the effective address. */
841 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
842
843 /** Returns the effective address. */
844 const Addr &getEA() const { return instEffAddr; }
845
846 /** Returns whether or not the eff. addr. calculation has been completed. */
847 bool doneEACalc() { return eaCalcDone; }
848
849 /** Returns whether or not the eff. addr. source registers are ready. */
850 bool eaSrcsReady();
851
852 /** Whether or not the memory operation is done. */
853 bool memOpDone;
854
855 /** Is this instruction's memory access uncacheable. */
856 bool uncacheable() { return isUncacheable; }
857
858 /** Has this instruction generated a memory request. */
859 bool hasRequest() { return reqMade; }
860
861 public:
862 /** Load queue index. */
863 int16_t lqIdx;
864
865 /** Store queue index. */
866 int16_t sqIdx;
867
868 /** Iterator pointing to this BaseDynInst in the list of all insts. */
869 ListIt instListIt;
870
871 /** Returns iterator to this instruction in the list of all insts. */
872 ListIt &getInstListIt() { return instListIt; }
873
874 /** Sets iterator for this instruction in the list of all insts. */
875 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
876
877 public:
878 /** Returns the number of consecutive store conditional failures. */
879 unsigned readStCondFailures()
880 { return thread->storeCondFailures; }
881
882 /** Sets the number of consecutive store conditional failures. */
883 void setStCondFailures(unsigned sc_failures)
884 { thread->storeCondFailures = sc_failures; }
885};
886
887template<class Impl>
888Fault
889BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
890 unsigned size, unsigned flags)
891{
892 reqMade = true;
893 Request *req = new Request(asid, addr, size, flags, this->PC,
894 thread->contextId(), threadNumber);
895
896 Request *sreqLow = NULL;
897 Request *sreqHigh = NULL;
898
899 // Only split the request if the ISA supports unaligned accesses.
900 if (TheISA::HasUnalignedMemAcc) {
901 splitRequest(req, sreqLow, sreqHigh);
902 }
903 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
904
905 if (fault == NoFault) {
906 effAddr = req->getVaddr();
907 effAddrValid = true;
908 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
909 } else {
910 // Commit will have to clean up whatever happened. Set this
911 // instruction as executed.
912 this->setExecuted();
913 }
914
915 if (fault != NoFault) {
916 // Return a fixed value to keep simulation deterministic even
917 // along misspeculated paths.
918 bzero(data, size);
919 }
920
921 if (traceData) {
922 traceData->setAddr(addr);
923 }
924
925 return fault;
926}
927
928template<class Impl>
929template<class T>
930inline Fault
931BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
932{
933 Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
934
935 data = TheISA::gtoh(data);
936
937 if (traceData) {
938 traceData->setData(data);
939 }
940
941 return fault;
942}
943
944template<class Impl>
945Fault
946BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
947 Addr addr, unsigned flags, uint64_t *res)
948{
949 if (traceData) {
950 traceData->setAddr(addr);
951 }
952
953 reqMade = true;
954 Request *req = new Request(asid, addr, size, flags, this->PC,
955 thread->contextId(), threadNumber);
956
957 Request *sreqLow = NULL;
958 Request *sreqHigh = NULL;
959
960 // Only split the request if the ISA supports unaligned accesses.
961 if (TheISA::HasUnalignedMemAcc) {
962 splitRequest(req, sreqLow, sreqHigh);
963 }
964 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
965
966 if (fault == NoFault) {
967 effAddr = req->getVaddr();
968 effAddrValid = true;
969 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
970 }
971
972 return fault;
973}
974
975template<class Impl>
976template<class T>
977inline Fault
978BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
979{
980 if (traceData) {
981 traceData->setData(data);
982 }
983 data = TheISA::htog(data);
984 return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
985}
986
987template<class Impl>
988inline void
989BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
990 RequestPtr &sreqHigh)
991{
992 // Check to see if the request crosses the next level block boundary.
993 unsigned block_size = cpu->getDcachePort()->peerBlockSize();
994 Addr addr = req->getVaddr();
995 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
996 assert(split_addr <= addr || split_addr - addr < block_size);
997
998 // Spans two blocks.
999 if (split_addr > addr) {
1000 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1001 }
1002}
1003
1004template<class Impl>
1005inline void
1006BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1007 RequestPtr sreqHigh, uint64_t *res,
1008 BaseTLB::Mode mode)
1009{
1010 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1011 WholeTranslationState *state =
1012 new WholeTranslationState(req, NULL, res, mode);
1013
1014 // One translation if the request isn't split.
1015 DataTranslation<BaseDynInst<Impl> > *trans =
1016 new DataTranslation<BaseDynInst<Impl> >(this, state);
1017 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1018 } else {
1019 WholeTranslationState *state =
1020 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1021
1022 // Two translations when the request is split.
1023 DataTranslation<BaseDynInst<Impl> > *stransLow =
1024 new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1025 DataTranslation<BaseDynInst<Impl> > *stransHigh =
1026 new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1027
1028 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1029 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1030 }
1031}
1032
1033template<class Impl>
1034inline void
1035BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1036{
1037 fault = state->getFault();
1038
1039 if (state->isUncacheable())
1040 isUncacheable = true;
1041
1042 if (fault == NoFault) {
1043 physEffAddr = state->getPaddr();
1044 memReqFlags = state->getFlags();
1045
1046 if (state->mainReq->isCondSwap()) {
1047 assert(state->res);
1048 state->mainReq->setExtraData(*state->res);
1049 }
1050
1051 } else {
1052 state->deleteReqs();
1053 }
1054 delete state;
1055}
1056
1057#endif // __CPU_BASE_DYN_INST_HH__