base_dyn_inst.hh (12105:742d80361989) base_dyn_inst.hh (12106:7784fac1b159)
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <list>
52#include <string>
53#include <queue>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/o3/comm.hh"
61#include "cpu/exec_context.hh"
62#include "cpu/exetrace.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/op_class.hh"
65#include "cpu/static_inst.hh"
66#include "cpu/translation.hh"
67#include "mem/packet.hh"
68#include "mem/request.hh"
69#include "sim/byteswap.hh"
70#include "sim/system.hh"
71
72/**
73 * @file
74 * Defines a dynamic instruction context.
75 */
76
77template <class Impl>
78class BaseDynInst : public ExecContext, public RefCounted
79{
80 public:
81 // Typedef for the CPU.
82 typedef typename Impl::CPUType ImplCPU;
83 typedef typename ImplCPU::ImplState ImplState;
84
85 // The DynInstPtr type.
86 typedef typename Impl::DynInstPtr DynInstPtr;
87 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
88
89 // The list of instructions iterator type.
90 typedef typename std::list<DynInstPtr>::iterator ListIt;
91
92 enum {
93 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
94 MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
95 };
96
97 union Result {
98 uint64_t integer;
99 double dbl;
100 void set(uint64_t i) { integer = i; }
101 void set(double d) { dbl = d; }
102 void get(uint64_t& i) { i = integer; }
103 void get(double& d) { d = dbl; }
104 };
105
106 protected:
107 enum Status {
108 IqEntry, /// Instruction is in the IQ
109 RobEntry, /// Instruction is in the ROB
110 LsqEntry, /// Instruction is in the LSQ
111 Completed, /// Instruction has completed
112 ResultReady, /// Instruction has its result
113 CanIssue, /// Instruction can issue and execute
114 Issued, /// Instruction has issued
115 Executed, /// Instruction has executed
116 CanCommit, /// Instruction can commit
117 AtCommit, /// Instruction has reached commit
118 Committed, /// Instruction has committed
119 Squashed, /// Instruction is squashed
120 SquashedInIQ, /// Instruction is squashed in the IQ
121 SquashedInLSQ, /// Instruction is squashed in the LSQ
122 SquashedInROB, /// Instruction is squashed in the ROB
123 RecoverInst, /// Is a recover instruction
124 BlockingInst, /// Is a blocking instruction
125 ThreadsyncWait, /// Is a thread synchronization instruction
126 SerializeBefore, /// Needs to serialize on
127 /// instructions ahead of it
128 SerializeAfter, /// Needs to serialize instructions behind it
129 SerializeHandled, /// Serialization has been handled
130 NumStatus
131 };
132
133 enum Flags {
134 TranslationStarted,
135 TranslationCompleted,
136 PossibleLoadViolation,
137 HitExternalSnoop,
138 EffAddrValid,
139 RecordResult,
140 Predicate,
141 PredTaken,
142 /** Whether or not the effective address calculation is completed.
143 * @todo: Consider if this is necessary or not.
144 */
145 EACalcDone,
146 IsStrictlyOrdered,
147 ReqMade,
148 MemOpDone,
149 MaxFlags
150 };
151
152 public:
153 /** The sequence number of the instruction. */
154 InstSeqNum seqNum;
155
156 /** The StaticInst used by this BaseDynInst. */
157 const StaticInstPtr staticInst;
158
159 /** Pointer to the Impl's CPU object. */
160 ImplCPU *cpu;
161
162 BaseCPU *getCpuPtr() { return cpu; }
163
164 /** Pointer to the thread state. */
165 ImplState *thread;
166
167 /** The kind of fault this instruction has generated. */
168 Fault fault;
169
170 /** InstRecord that tracks this instructions. */
171 Trace::InstRecord *traceData;
172
173 protected:
174 /** The result of the instruction; assumes an instruction can have many
175 * destination registers.
176 */
177 std::queue<Result> instResult;
178
179 /** PC state for this instruction. */
180 TheISA::PCState pc;
181
182 /* An amalgamation of a lot of boolean values into one */
183 std::bitset<MaxFlags> instFlags;
184
185 /** The status of this BaseDynInst. Several bits can be set. */
186 std::bitset<NumStatus> status;
187
188 /** Whether or not the source register is ready.
189 * @todo: Not sure this should be here vs the derived class.
190 */
191 std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
192
193 public:
194 /** The thread this instruction is from. */
195 ThreadID threadNumber;
196
197 /** Iterator pointing to this BaseDynInst in the list of all insts. */
198 ListIt instListIt;
199
200 ////////////////////// Branch Data ///////////////
201 /** Predicted PC state after this instruction. */
202 TheISA::PCState predPC;
203
204 /** The Macroop if one exists */
205 const StaticInstPtr macroop;
206
207 /** How many source registers are ready. */
208 uint8_t readyRegs;
209
210 public:
211 /////////////////////// Load Store Data //////////////////////
212 /** The effective virtual address (lds & stores only). */
213 Addr effAddr;
214
215 /** The effective physical address. */
216 Addr physEffAddrLow;
217
218 /** The effective physical address
219 * of the second request for a split request
220 */
221 Addr physEffAddrHigh;
222
223 /** The memory request flags (from translation). */
224 unsigned memReqFlags;
225
226 /** data address space ID, for loads & stores. */
227 short asid;
228
229 /** The size of the request */
230 uint8_t effSize;
231
232 /** Pointer to the data for the memory access. */
233 uint8_t *memData;
234
235 /** Load queue index. */
236 int16_t lqIdx;
237
238 /** Store queue index. */
239 int16_t sqIdx;
240
241
242 /////////////////////// TLB Miss //////////////////////
243 /**
244 * Saved memory requests (needed when the DTB address translation is
245 * delayed due to a hw page table walk).
246 */
247 RequestPtr savedReq;
248 RequestPtr savedSreqLow;
249 RequestPtr savedSreqHigh;
250
251 /////////////////////// Checker //////////////////////
252 // Need a copy of main request pointer to verify on writes.
253 RequestPtr reqToVerify;
254
255 private:
256 /** Instruction effective address.
257 * @todo: Consider if this is necessary or not.
258 */
259 Addr instEffAddr;
260
261 protected:
262 /** Flattened register index of the destination registers of this
263 * instruction.
264 */
265 std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
266
267 /** Physical register index of the destination registers of this
268 * instruction.
269 */
270 std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
271
272 /** Physical register index of the source registers of this
273 * instruction.
274 */
275 std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
276
277 /** Physical register index of the previous producers of the
278 * architected destinations.
279 */
280 std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
281
282
283 public:
284 /** Records changes to result? */
285 void recordResult(bool f) { instFlags[RecordResult] = f; }
286
287 /** Is the effective virtual address valid. */
288 bool effAddrValid() const { return instFlags[EffAddrValid]; }
289
290 /** Whether or not the memory operation is done. */
291 bool memOpDone() const { return instFlags[MemOpDone]; }
292 void memOpDone(bool f) { instFlags[MemOpDone] = f; }
293
294
295 ////////////////////////////////////////////
296 //
297 // INSTRUCTION EXECUTION
298 //
299 ////////////////////////////////////////////
300
301 void demapPage(Addr vaddr, uint64_t asn)
302 {
303 cpu->demapPage(vaddr, asn);
304 }
305 void demapInstPage(Addr vaddr, uint64_t asn)
306 {
307 cpu->demapPage(vaddr, asn);
308 }
309 void demapDataPage(Addr vaddr, uint64_t asn)
310 {
311 cpu->demapPage(vaddr, asn);
312 }
313
314 Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);
315
316 Fault writeMem(uint8_t *data, unsigned size, Addr addr,
317 Request::Flags flags, uint64_t *res);
318
319 /** Splits a request in two if it crosses a dcache block. */
320 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
321 RequestPtr &sreqHigh);
322
323 /** Initiate a DTB address translation. */
324 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
325 RequestPtr sreqHigh, uint64_t *res,
326 BaseTLB::Mode mode);
327
328 /** Finish a DTB address translation. */
329 void finishTranslation(WholeTranslationState *state);
330
331 /** True if the DTB address translation has started. */
332 bool translationStarted() const { return instFlags[TranslationStarted]; }
333 void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
334
335 /** True if the DTB address translation has completed. */
336 bool translationCompleted() const { return instFlags[TranslationCompleted]; }
337 void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
338
339 /** True if this address was found to match a previous load and they issued
340 * out of order. If that happend, then it's only a problem if an incoming
341 * snoop invalidate modifies the line, in which case we need to squash.
342 * If nothing modified the line the order doesn't matter.
343 */
344 bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
345 void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
346
347 /** True if the address hit a external snoop while sitting in the LSQ.
348 * If this is true and a older instruction sees it, this instruction must
349 * reexecute
350 */
351 bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
352 void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
353
354 /**
355 * Returns true if the DTB address translation is being delayed due to a hw
356 * page table walk.
357 */
358 bool isTranslationDelayed() const
359 {
360 return (translationStarted() && !translationCompleted());
361 }
362
363 public:
364#ifdef DEBUG
365 void dumpSNList();
366#endif
367
368 /** Returns the physical register index of the i'th destination
369 * register.
370 */
371 PhysRegIdPtr renamedDestRegIdx(int idx) const
372 {
373 return _destRegIdx[idx];
374 }
375
376 /** Returns the physical register index of the i'th source register. */
377 PhysRegIdPtr renamedSrcRegIdx(int idx) const
378 {
379 assert(TheISA::MaxInstSrcRegs > idx);
380 return _srcRegIdx[idx];
381 }
382
383 /** Returns the flattened register index of the i'th destination
384 * register.
385 */
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <list>
52#include <string>
53#include <queue>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/o3/comm.hh"
61#include "cpu/exec_context.hh"
62#include "cpu/exetrace.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/op_class.hh"
65#include "cpu/static_inst.hh"
66#include "cpu/translation.hh"
67#include "mem/packet.hh"
68#include "mem/request.hh"
69#include "sim/byteswap.hh"
70#include "sim/system.hh"
71
72/**
73 * @file
74 * Defines a dynamic instruction context.
75 */
76
77template <class Impl>
78class BaseDynInst : public ExecContext, public RefCounted
79{
80 public:
81 // Typedef for the CPU.
82 typedef typename Impl::CPUType ImplCPU;
83 typedef typename ImplCPU::ImplState ImplState;
84
85 // The DynInstPtr type.
86 typedef typename Impl::DynInstPtr DynInstPtr;
87 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
88
89 // The list of instructions iterator type.
90 typedef typename std::list<DynInstPtr>::iterator ListIt;
91
92 enum {
93 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
94 MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
95 };
96
97 union Result {
98 uint64_t integer;
99 double dbl;
100 void set(uint64_t i) { integer = i; }
101 void set(double d) { dbl = d; }
102 void get(uint64_t& i) { i = integer; }
103 void get(double& d) { d = dbl; }
104 };
105
106 protected:
107 enum Status {
108 IqEntry, /// Instruction is in the IQ
109 RobEntry, /// Instruction is in the ROB
110 LsqEntry, /// Instruction is in the LSQ
111 Completed, /// Instruction has completed
112 ResultReady, /// Instruction has its result
113 CanIssue, /// Instruction can issue and execute
114 Issued, /// Instruction has issued
115 Executed, /// Instruction has executed
116 CanCommit, /// Instruction can commit
117 AtCommit, /// Instruction has reached commit
118 Committed, /// Instruction has committed
119 Squashed, /// Instruction is squashed
120 SquashedInIQ, /// Instruction is squashed in the IQ
121 SquashedInLSQ, /// Instruction is squashed in the LSQ
122 SquashedInROB, /// Instruction is squashed in the ROB
123 RecoverInst, /// Is a recover instruction
124 BlockingInst, /// Is a blocking instruction
125 ThreadsyncWait, /// Is a thread synchronization instruction
126 SerializeBefore, /// Needs to serialize on
127 /// instructions ahead of it
128 SerializeAfter, /// Needs to serialize instructions behind it
129 SerializeHandled, /// Serialization has been handled
130 NumStatus
131 };
132
133 enum Flags {
134 TranslationStarted,
135 TranslationCompleted,
136 PossibleLoadViolation,
137 HitExternalSnoop,
138 EffAddrValid,
139 RecordResult,
140 Predicate,
141 PredTaken,
142 /** Whether or not the effective address calculation is completed.
143 * @todo: Consider if this is necessary or not.
144 */
145 EACalcDone,
146 IsStrictlyOrdered,
147 ReqMade,
148 MemOpDone,
149 MaxFlags
150 };
151
152 public:
153 /** The sequence number of the instruction. */
154 InstSeqNum seqNum;
155
156 /** The StaticInst used by this BaseDynInst. */
157 const StaticInstPtr staticInst;
158
159 /** Pointer to the Impl's CPU object. */
160 ImplCPU *cpu;
161
162 BaseCPU *getCpuPtr() { return cpu; }
163
164 /** Pointer to the thread state. */
165 ImplState *thread;
166
167 /** The kind of fault this instruction has generated. */
168 Fault fault;
169
170 /** InstRecord that tracks this instructions. */
171 Trace::InstRecord *traceData;
172
173 protected:
174 /** The result of the instruction; assumes an instruction can have many
175 * destination registers.
176 */
177 std::queue<Result> instResult;
178
179 /** PC state for this instruction. */
180 TheISA::PCState pc;
181
182 /* An amalgamation of a lot of boolean values into one */
183 std::bitset<MaxFlags> instFlags;
184
185 /** The status of this BaseDynInst. Several bits can be set. */
186 std::bitset<NumStatus> status;
187
188 /** Whether or not the source register is ready.
189 * @todo: Not sure this should be here vs the derived class.
190 */
191 std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
192
193 public:
194 /** The thread this instruction is from. */
195 ThreadID threadNumber;
196
197 /** Iterator pointing to this BaseDynInst in the list of all insts. */
198 ListIt instListIt;
199
200 ////////////////////// Branch Data ///////////////
201 /** Predicted PC state after this instruction. */
202 TheISA::PCState predPC;
203
204 /** The Macroop if one exists */
205 const StaticInstPtr macroop;
206
207 /** How many source registers are ready. */
208 uint8_t readyRegs;
209
210 public:
211 /////////////////////// Load Store Data //////////////////////
212 /** The effective virtual address (lds & stores only). */
213 Addr effAddr;
214
215 /** The effective physical address. */
216 Addr physEffAddrLow;
217
218 /** The effective physical address
219 * of the second request for a split request
220 */
221 Addr physEffAddrHigh;
222
223 /** The memory request flags (from translation). */
224 unsigned memReqFlags;
225
226 /** data address space ID, for loads & stores. */
227 short asid;
228
229 /** The size of the request */
230 uint8_t effSize;
231
232 /** Pointer to the data for the memory access. */
233 uint8_t *memData;
234
235 /** Load queue index. */
236 int16_t lqIdx;
237
238 /** Store queue index. */
239 int16_t sqIdx;
240
241
242 /////////////////////// TLB Miss //////////////////////
243 /**
244 * Saved memory requests (needed when the DTB address translation is
245 * delayed due to a hw page table walk).
246 */
247 RequestPtr savedReq;
248 RequestPtr savedSreqLow;
249 RequestPtr savedSreqHigh;
250
251 /////////////////////// Checker //////////////////////
252 // Need a copy of main request pointer to verify on writes.
253 RequestPtr reqToVerify;
254
255 private:
256 /** Instruction effective address.
257 * @todo: Consider if this is necessary or not.
258 */
259 Addr instEffAddr;
260
261 protected:
262 /** Flattened register index of the destination registers of this
263 * instruction.
264 */
265 std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
266
267 /** Physical register index of the destination registers of this
268 * instruction.
269 */
270 std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
271
272 /** Physical register index of the source registers of this
273 * instruction.
274 */
275 std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
276
277 /** Physical register index of the previous producers of the
278 * architected destinations.
279 */
280 std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
281
282
283 public:
284 /** Records changes to result? */
285 void recordResult(bool f) { instFlags[RecordResult] = f; }
286
287 /** Is the effective virtual address valid. */
288 bool effAddrValid() const { return instFlags[EffAddrValid]; }
289
290 /** Whether or not the memory operation is done. */
291 bool memOpDone() const { return instFlags[MemOpDone]; }
292 void memOpDone(bool f) { instFlags[MemOpDone] = f; }
293
294
295 ////////////////////////////////////////////
296 //
297 // INSTRUCTION EXECUTION
298 //
299 ////////////////////////////////////////////
300
301 void demapPage(Addr vaddr, uint64_t asn)
302 {
303 cpu->demapPage(vaddr, asn);
304 }
305 void demapInstPage(Addr vaddr, uint64_t asn)
306 {
307 cpu->demapPage(vaddr, asn);
308 }
309 void demapDataPage(Addr vaddr, uint64_t asn)
310 {
311 cpu->demapPage(vaddr, asn);
312 }
313
314 Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);
315
316 Fault writeMem(uint8_t *data, unsigned size, Addr addr,
317 Request::Flags flags, uint64_t *res);
318
319 /** Splits a request in two if it crosses a dcache block. */
320 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
321 RequestPtr &sreqHigh);
322
323 /** Initiate a DTB address translation. */
324 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
325 RequestPtr sreqHigh, uint64_t *res,
326 BaseTLB::Mode mode);
327
328 /** Finish a DTB address translation. */
329 void finishTranslation(WholeTranslationState *state);
330
331 /** True if the DTB address translation has started. */
332 bool translationStarted() const { return instFlags[TranslationStarted]; }
333 void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
334
335 /** True if the DTB address translation has completed. */
336 bool translationCompleted() const { return instFlags[TranslationCompleted]; }
337 void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
338
339 /** True if this address was found to match a previous load and they issued
340 * out of order. If that happend, then it's only a problem if an incoming
341 * snoop invalidate modifies the line, in which case we need to squash.
342 * If nothing modified the line the order doesn't matter.
343 */
344 bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
345 void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
346
347 /** True if the address hit a external snoop while sitting in the LSQ.
348 * If this is true and a older instruction sees it, this instruction must
349 * reexecute
350 */
351 bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
352 void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
353
354 /**
355 * Returns true if the DTB address translation is being delayed due to a hw
356 * page table walk.
357 */
358 bool isTranslationDelayed() const
359 {
360 return (translationStarted() && !translationCompleted());
361 }
362
363 public:
364#ifdef DEBUG
365 void dumpSNList();
366#endif
367
368 /** Returns the physical register index of the i'th destination
369 * register.
370 */
371 PhysRegIdPtr renamedDestRegIdx(int idx) const
372 {
373 return _destRegIdx[idx];
374 }
375
376 /** Returns the physical register index of the i'th source register. */
377 PhysRegIdPtr renamedSrcRegIdx(int idx) const
378 {
379 assert(TheISA::MaxInstSrcRegs > idx);
380 return _srcRegIdx[idx];
381 }
382
383 /** Returns the flattened register index of the i'th destination
384 * register.
385 */
386 RegId flattenedDestRegIdx(int idx) const
386 const RegId& flattenedDestRegIdx(int idx) const
387 {
388 return _flatDestRegIdx[idx];
389 }
390
391 /** Returns the physical register index of the previous physical register
392 * that remapped to the same logical register index.
393 */
394 PhysRegIdPtr prevDestRegIdx(int idx) const
395 {
396 return _prevDestRegIdx[idx];
397 }
398
399 /** Renames a destination register to a physical register. Also records
400 * the previous physical register that the logical register mapped to.
401 */
402 void renameDestReg(int idx,
403 PhysRegIdPtr renamed_dest,
404 PhysRegIdPtr previous_rename)
405 {
406 _destRegIdx[idx] = renamed_dest;
407 _prevDestRegIdx[idx] = previous_rename;
408 }
409
410 /** Renames a source logical register to the physical register which
411 * has/will produce that logical register's result.
412 * @todo: add in whether or not the source register is ready.
413 */
414 void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
415 {
416 _srcRegIdx[idx] = renamed_src;
417 }
418
419 /** Flattens a destination architectural register index into a logical
420 * index.
421 */
387 {
388 return _flatDestRegIdx[idx];
389 }
390
391 /** Returns the physical register index of the previous physical register
392 * that remapped to the same logical register index.
393 */
394 PhysRegIdPtr prevDestRegIdx(int idx) const
395 {
396 return _prevDestRegIdx[idx];
397 }
398
399 /** Renames a destination register to a physical register. Also records
400 * the previous physical register that the logical register mapped to.
401 */
402 void renameDestReg(int idx,
403 PhysRegIdPtr renamed_dest,
404 PhysRegIdPtr previous_rename)
405 {
406 _destRegIdx[idx] = renamed_dest;
407 _prevDestRegIdx[idx] = previous_rename;
408 }
409
410 /** Renames a source logical register to the physical register which
411 * has/will produce that logical register's result.
412 * @todo: add in whether or not the source register is ready.
413 */
414 void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
415 {
416 _srcRegIdx[idx] = renamed_src;
417 }
418
419 /** Flattens a destination architectural register index into a logical
420 * index.
421 */
422 void flattenDestReg(int idx, RegId flattened_dest)
422 void flattenDestReg(int idx, const RegId& flattened_dest)
423 {
424 _flatDestRegIdx[idx] = flattened_dest;
425 }
426 /** BaseDynInst constructor given a binary instruction.
427 * @param staticInst A StaticInstPtr to the underlying instruction.
428 * @param pc The PC state for the instruction.
429 * @param predPC The predicted next PC state for the instruction.
430 * @param seq_num The sequence number of the instruction.
431 * @param cpu Pointer to the instruction's CPU.
432 */
433 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
434 TheISA::PCState pc, TheISA::PCState predPC,
435 InstSeqNum seq_num, ImplCPU *cpu);
436
437 /** BaseDynInst constructor given a StaticInst pointer.
438 * @param _staticInst The StaticInst for this BaseDynInst.
439 */
440 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
441
442 /** BaseDynInst destructor. */
443 ~BaseDynInst();
444
445 private:
446 /** Function to initialize variables in the constructors. */
447 void initVars();
448
449 public:
450 /** Dumps out contents of this BaseDynInst. */
451 void dump();
452
453 /** Dumps out contents of this BaseDynInst into given string. */
454 void dump(std::string &outstring);
455
456 /** Read this CPU's ID. */
457 int cpuId() const { return cpu->cpuId(); }
458
459 /** Read this CPU's Socket ID. */
460 uint32_t socketId() const { return cpu->socketId(); }
461
462 /** Read this CPU's data requestor ID */
463 MasterID masterId() const { return cpu->dataMasterId(); }
464
465 /** Read this context's system-wide ID **/
466 ContextID contextId() const { return thread->contextId(); }
467
468 /** Returns the fault type. */
469 Fault getFault() const { return fault; }
470
471 /** Checks whether or not this instruction has had its branch target
472 * calculated yet. For now it is not utilized and is hacked to be
473 * always false.
474 * @todo: Actually use this instruction.
475 */
476 bool doneTargCalc() { return false; }
477
478 /** Set the predicted target of this current instruction. */
479 void setPredTarg(const TheISA::PCState &_predPC)
480 {
481 predPC = _predPC;
482 }
483
484 const TheISA::PCState &readPredTarg() { return predPC; }
485
486 /** Returns the predicted PC immediately after the branch. */
487 Addr predInstAddr() { return predPC.instAddr(); }
488
489 /** Returns the predicted PC two instructions after the branch */
490 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
491
492 /** Returns the predicted micro PC after the branch */
493 Addr predMicroPC() { return predPC.microPC(); }
494
495 /** Returns whether the instruction was predicted taken or not. */
496 bool readPredTaken()
497 {
498 return instFlags[PredTaken];
499 }
500
501 void setPredTaken(bool predicted_taken)
502 {
503 instFlags[PredTaken] = predicted_taken;
504 }
505
506 /** Returns whether the instruction mispredicted. */
507 bool mispredicted()
508 {
509 TheISA::PCState tempPC = pc;
510 TheISA::advancePC(tempPC, staticInst);
511 return !(tempPC == predPC);
512 }
513
514 //
515 // Instruction types. Forward checks to StaticInst object.
516 //
517 bool isNop() const { return staticInst->isNop(); }
518 bool isMemRef() const { return staticInst->isMemRef(); }
519 bool isLoad() const { return staticInst->isLoad(); }
520 bool isStore() const { return staticInst->isStore(); }
521 bool isStoreConditional() const
522 { return staticInst->isStoreConditional(); }
523 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
524 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
525 bool isInteger() const { return staticInst->isInteger(); }
526 bool isFloating() const { return staticInst->isFloating(); }
527 bool isControl() const { return staticInst->isControl(); }
528 bool isCall() const { return staticInst->isCall(); }
529 bool isReturn() const { return staticInst->isReturn(); }
530 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
531 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
532 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
533 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
534 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
535 bool isThreadSync() const { return staticInst->isThreadSync(); }
536 bool isSerializing() const { return staticInst->isSerializing(); }
537 bool isSerializeBefore() const
538 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
539 bool isSerializeAfter() const
540 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
541 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
542 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
543 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
544 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
545 bool isQuiesce() const { return staticInst->isQuiesce(); }
546 bool isIprAccess() const { return staticInst->isIprAccess(); }
547 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
548 bool isSyscall() const { return staticInst->isSyscall(); }
549 bool isMacroop() const { return staticInst->isMacroop(); }
550 bool isMicroop() const { return staticInst->isMicroop(); }
551 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
552 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
553 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
554 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
555
556 /** Temporarily sets this instruction as a serialize before instruction. */
557 void setSerializeBefore() { status.set(SerializeBefore); }
558
559 /** Clears the serializeBefore part of this instruction. */
560 void clearSerializeBefore() { status.reset(SerializeBefore); }
561
562 /** Checks if this serializeBefore is only temporarily set. */
563 bool isTempSerializeBefore() { return status[SerializeBefore]; }
564
565 /** Temporarily sets this instruction as a serialize after instruction. */
566 void setSerializeAfter() { status.set(SerializeAfter); }
567
568 /** Clears the serializeAfter part of this instruction.*/
569 void clearSerializeAfter() { status.reset(SerializeAfter); }
570
571 /** Checks if this serializeAfter is only temporarily set. */
572 bool isTempSerializeAfter() { return status[SerializeAfter]; }
573
574 /** Sets the serialization part of this instruction as handled. */
575 void setSerializeHandled() { status.set(SerializeHandled); }
576
577 /** Checks if the serialization part of this instruction has been
578 * handled. This does not apply to the temporary serializing
579 * state; it only applies to this instruction's own permanent
580 * serializing state.
581 */
582 bool isSerializeHandled() { return status[SerializeHandled]; }
583
584 /** Returns the opclass of this instruction. */
585 OpClass opClass() const { return staticInst->opClass(); }
586
587 /** Returns the branch target address. */
588 TheISA::PCState branchTarget() const
589 { return staticInst->branchTarget(pc); }
590
591 /** Returns the number of source registers. */
592 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
593
594 /** Returns the number of destination registers. */
595 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
596
597 // the following are used to track physical register usage
598 // for machines with separate int & FP reg files
599 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
600 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
601 int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
602
603 /** Returns the logical register index of the i'th destination register. */
423 {
424 _flatDestRegIdx[idx] = flattened_dest;
425 }
426 /** BaseDynInst constructor given a binary instruction.
427 * @param staticInst A StaticInstPtr to the underlying instruction.
428 * @param pc The PC state for the instruction.
429 * @param predPC The predicted next PC state for the instruction.
430 * @param seq_num The sequence number of the instruction.
431 * @param cpu Pointer to the instruction's CPU.
432 */
433 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
434 TheISA::PCState pc, TheISA::PCState predPC,
435 InstSeqNum seq_num, ImplCPU *cpu);
436
437 /** BaseDynInst constructor given a StaticInst pointer.
438 * @param _staticInst The StaticInst for this BaseDynInst.
439 */
440 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
441
442 /** BaseDynInst destructor. */
443 ~BaseDynInst();
444
445 private:
446 /** Function to initialize variables in the constructors. */
447 void initVars();
448
449 public:
450 /** Dumps out contents of this BaseDynInst. */
451 void dump();
452
453 /** Dumps out contents of this BaseDynInst into given string. */
454 void dump(std::string &outstring);
455
456 /** Read this CPU's ID. */
457 int cpuId() const { return cpu->cpuId(); }
458
459 /** Read this CPU's Socket ID. */
460 uint32_t socketId() const { return cpu->socketId(); }
461
462 /** Read this CPU's data requestor ID */
463 MasterID masterId() const { return cpu->dataMasterId(); }
464
465 /** Read this context's system-wide ID **/
466 ContextID contextId() const { return thread->contextId(); }
467
468 /** Returns the fault type. */
469 Fault getFault() const { return fault; }
470
471 /** Checks whether or not this instruction has had its branch target
472 * calculated yet. For now it is not utilized and is hacked to be
473 * always false.
474 * @todo: Actually use this instruction.
475 */
476 bool doneTargCalc() { return false; }
477
478 /** Set the predicted target of this current instruction. */
479 void setPredTarg(const TheISA::PCState &_predPC)
480 {
481 predPC = _predPC;
482 }
483
484 const TheISA::PCState &readPredTarg() { return predPC; }
485
486 /** Returns the predicted PC immediately after the branch. */
487 Addr predInstAddr() { return predPC.instAddr(); }
488
489 /** Returns the predicted PC two instructions after the branch */
490 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
491
492 /** Returns the predicted micro PC after the branch */
493 Addr predMicroPC() { return predPC.microPC(); }
494
495 /** Returns whether the instruction was predicted taken or not. */
496 bool readPredTaken()
497 {
498 return instFlags[PredTaken];
499 }
500
501 void setPredTaken(bool predicted_taken)
502 {
503 instFlags[PredTaken] = predicted_taken;
504 }
505
506 /** Returns whether the instruction mispredicted. */
507 bool mispredicted()
508 {
509 TheISA::PCState tempPC = pc;
510 TheISA::advancePC(tempPC, staticInst);
511 return !(tempPC == predPC);
512 }
513
514 //
515 // Instruction types. Forward checks to StaticInst object.
516 //
517 bool isNop() const { return staticInst->isNop(); }
518 bool isMemRef() const { return staticInst->isMemRef(); }
519 bool isLoad() const { return staticInst->isLoad(); }
520 bool isStore() const { return staticInst->isStore(); }
521 bool isStoreConditional() const
522 { return staticInst->isStoreConditional(); }
523 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
524 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
525 bool isInteger() const { return staticInst->isInteger(); }
526 bool isFloating() const { return staticInst->isFloating(); }
527 bool isControl() const { return staticInst->isControl(); }
528 bool isCall() const { return staticInst->isCall(); }
529 bool isReturn() const { return staticInst->isReturn(); }
530 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
531 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
532 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
533 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
534 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
535 bool isThreadSync() const { return staticInst->isThreadSync(); }
536 bool isSerializing() const { return staticInst->isSerializing(); }
537 bool isSerializeBefore() const
538 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
539 bool isSerializeAfter() const
540 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
541 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
542 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
543 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
544 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
545 bool isQuiesce() const { return staticInst->isQuiesce(); }
546 bool isIprAccess() const { return staticInst->isIprAccess(); }
547 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
548 bool isSyscall() const { return staticInst->isSyscall(); }
549 bool isMacroop() const { return staticInst->isMacroop(); }
550 bool isMicroop() const { return staticInst->isMicroop(); }
551 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
552 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
553 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
554 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
555
556 /** Temporarily sets this instruction as a serialize before instruction. */
557 void setSerializeBefore() { status.set(SerializeBefore); }
558
559 /** Clears the serializeBefore part of this instruction. */
560 void clearSerializeBefore() { status.reset(SerializeBefore); }
561
562 /** Checks if this serializeBefore is only temporarily set. */
563 bool isTempSerializeBefore() { return status[SerializeBefore]; }
564
565 /** Temporarily sets this instruction as a serialize after instruction. */
566 void setSerializeAfter() { status.set(SerializeAfter); }
567
568 /** Clears the serializeAfter part of this instruction.*/
569 void clearSerializeAfter() { status.reset(SerializeAfter); }
570
571 /** Checks if this serializeAfter is only temporarily set. */
572 bool isTempSerializeAfter() { return status[SerializeAfter]; }
573
574 /** Sets the serialization part of this instruction as handled. */
575 void setSerializeHandled() { status.set(SerializeHandled); }
576
577 /** Checks if the serialization part of this instruction has been
578 * handled. This does not apply to the temporary serializing
579 * state; it only applies to this instruction's own permanent
580 * serializing state.
581 */
582 bool isSerializeHandled() { return status[SerializeHandled]; }
583
584 /** Returns the opclass of this instruction. */
585 OpClass opClass() const { return staticInst->opClass(); }
586
587 /** Returns the branch target address. */
588 TheISA::PCState branchTarget() const
589 { return staticInst->branchTarget(pc); }
590
591 /** Returns the number of source registers. */
592 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
593
594 /** Returns the number of destination registers. */
595 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
596
597 // the following are used to track physical register usage
598 // for machines with separate int & FP reg files
599 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
600 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
601 int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
602
603 /** Returns the logical register index of the i'th destination register. */
604 RegId destRegIdx(int i) const { return staticInst->destRegIdx(i); }
604 const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }
605
606 /** Returns the logical register index of the i'th source register. */
605
606 /** Returns the logical register index of the i'th source register. */
607 RegId srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
607 const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
608
609 /** Pops a result off the instResult queue */
610 template <class T>
611 void popResult(T& t)
612 {
613 if (!instResult.empty()) {
614 instResult.front().get(t);
615 instResult.pop();
616 }
617 }
618
619 /** Read the most recent result stored by this instruction */
620 template <class T>
621 void readResult(T& t)
622 {
623 instResult.back().get(t);
624 }
625
626 /** Pushes a result onto the instResult queue */
627 template <class T>
628 void setResult(T t)
629 {
630 if (instFlags[RecordResult]) {
631 Result instRes;
632 instRes.set(t);
633 instResult.push(instRes);
634 }
635 }
636
637 /** Records an integer register being set to a value. */
638 void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
639 {
640 setResult<uint64_t>(val);
641 }
642
643 /** Records a CC register being set to a value. */
644 void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
645 {
646 setResult<uint64_t>(val);
647 }
648
649 /** Records an fp register being set to a value. */
650 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
651 {
652 setResult<double>(val);
653 }
654
655 /** Records an fp register being set to an integer value. */
656 void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
657 {
658 setResult<uint64_t>(val);
659 }
660
661 /** Records that one of the source registers is ready. */
662 void markSrcRegReady();
663
664 /** Marks a specific register as ready. */
665 void markSrcRegReady(RegIndex src_idx);
666
667 /** Returns if a source register is ready. */
668 bool isReadySrcRegIdx(int idx) const
669 {
670 return this->_readySrcRegIdx[idx];
671 }
672
673 /** Sets this instruction as completed. */
674 void setCompleted() { status.set(Completed); }
675
676 /** Returns whether or not this instruction is completed. */
677 bool isCompleted() const { return status[Completed]; }
678
679 /** Marks the result as ready. */
680 void setResultReady() { status.set(ResultReady); }
681
682 /** Returns whether or not the result is ready. */
683 bool isResultReady() const { return status[ResultReady]; }
684
685 /** Sets this instruction as ready to issue. */
686 void setCanIssue() { status.set(CanIssue); }
687
688 /** Returns whether or not this instruction is ready to issue. */
689 bool readyToIssue() const { return status[CanIssue]; }
690
691 /** Clears this instruction being able to issue. */
692 void clearCanIssue() { status.reset(CanIssue); }
693
694 /** Sets this instruction as issued from the IQ. */
695 void setIssued() { status.set(Issued); }
696
697 /** Returns whether or not this instruction has issued. */
698 bool isIssued() const { return status[Issued]; }
699
700 /** Clears this instruction as being issued. */
701 void clearIssued() { status.reset(Issued); }
702
703 /** Sets this instruction as executed. */
704 void setExecuted() { status.set(Executed); }
705
706 /** Returns whether or not this instruction has executed. */
707 bool isExecuted() const { return status[Executed]; }
708
709 /** Sets this instruction as ready to commit. */
710 void setCanCommit() { status.set(CanCommit); }
711
712 /** Clears this instruction as being ready to commit. */
713 void clearCanCommit() { status.reset(CanCommit); }
714
715 /** Returns whether or not this instruction is ready to commit. */
716 bool readyToCommit() const { return status[CanCommit]; }
717
718 void setAtCommit() { status.set(AtCommit); }
719
720 bool isAtCommit() { return status[AtCommit]; }
721
722 /** Sets this instruction as committed. */
723 void setCommitted() { status.set(Committed); }
724
725 /** Returns whether or not this instruction is committed. */
726 bool isCommitted() const { return status[Committed]; }
727
728 /** Sets this instruction as squashed. */
729 void setSquashed() { status.set(Squashed); }
730
731 /** Returns whether or not this instruction is squashed. */
732 bool isSquashed() const { return status[Squashed]; }
733
734 //Instruction Queue Entry
735 //-----------------------
736 /** Sets this instruction as a entry the IQ. */
737 void setInIQ() { status.set(IqEntry); }
738
739 /** Sets this instruction as a entry the IQ. */
740 void clearInIQ() { status.reset(IqEntry); }
741
742 /** Returns whether or not this instruction has issued. */
743 bool isInIQ() const { return status[IqEntry]; }
744
745 /** Sets this instruction as squashed in the IQ. */
746 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
747
748 /** Returns whether or not this instruction is squashed in the IQ. */
749 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
750
751
752 //Load / Store Queue Functions
753 //-----------------------
754 /** Sets this instruction as a entry the LSQ. */
755 void setInLSQ() { status.set(LsqEntry); }
756
757 /** Sets this instruction as a entry the LSQ. */
758 void removeInLSQ() { status.reset(LsqEntry); }
759
760 /** Returns whether or not this instruction is in the LSQ. */
761 bool isInLSQ() const { return status[LsqEntry]; }
762
763 /** Sets this instruction as squashed in the LSQ. */
764 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
765
766 /** Returns whether or not this instruction is squashed in the LSQ. */
767 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
768
769
770 //Reorder Buffer Functions
771 //-----------------------
772 /** Sets this instruction as a entry the ROB. */
773 void setInROB() { status.set(RobEntry); }
774
775 /** Sets this instruction as a entry the ROB. */
776 void clearInROB() { status.reset(RobEntry); }
777
778 /** Returns whether or not this instruction is in the ROB. */
779 bool isInROB() const { return status[RobEntry]; }
780
781 /** Sets this instruction as squashed in the ROB. */
782 void setSquashedInROB() { status.set(SquashedInROB); }
783
784 /** Returns whether or not this instruction is squashed in the ROB. */
785 bool isSquashedInROB() const { return status[SquashedInROB]; }
786
787 /** Read the PC state of this instruction. */
788 TheISA::PCState pcState() const { return pc; }
789
790 /** Set the PC state of this instruction. */
791 void pcState(const TheISA::PCState &val) { pc = val; }
792
793 /** Read the PC of this instruction. */
794 Addr instAddr() const { return pc.instAddr(); }
795
796 /** Read the PC of the next instruction. */
797 Addr nextInstAddr() const { return pc.nextInstAddr(); }
798
799 /**Read the micro PC of this instruction. */
800 Addr microPC() const { return pc.microPC(); }
801
802 bool readPredicate()
803 {
804 return instFlags[Predicate];
805 }
806
807 void setPredicate(bool val)
808 {
809 instFlags[Predicate] = val;
810
811 if (traceData) {
812 traceData->setPredicate(val);
813 }
814 }
815
816 /** Sets the ASID. */
817 void setASID(short addr_space_id) { asid = addr_space_id; }
818
819 /** Sets the thread id. */
820 void setTid(ThreadID tid) { threadNumber = tid; }
821
822 /** Sets the pointer to the thread state. */
823 void setThreadState(ImplState *state) { thread = state; }
824
825 /** Returns the thread context. */
826 ThreadContext *tcBase() { return thread->getTC(); }
827
828 public:
829 /** Sets the effective address. */
830 void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
831
832 /** Returns the effective address. */
833 Addr getEA() const { return instEffAddr; }
834
835 /** Returns whether or not the eff. addr. calculation has been completed. */
836 bool doneEACalc() { return instFlags[EACalcDone]; }
837
838 /** Returns whether or not the eff. addr. source registers are ready. */
839 bool eaSrcsReady();
840
841 /** Is this instruction's memory access strictly ordered? */
842 bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
843
844 /** Has this instruction generated a memory request. */
845 bool hasRequest() { return instFlags[ReqMade]; }
846
847 /** Returns iterator to this instruction in the list of all insts. */
848 ListIt &getInstListIt() { return instListIt; }
849
850 /** Sets iterator for this instruction in the list of all insts. */
851 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
852
853 public:
854 /** Returns the number of consecutive store conditional failures. */
855 unsigned int readStCondFailures() const
856 { return thread->storeCondFailures; }
857
858 /** Sets the number of consecutive store conditional failures. */
859 void setStCondFailures(unsigned int sc_failures)
860 { thread->storeCondFailures = sc_failures; }
861
862 public:
863 // monitor/mwait funtions
864 void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
865 bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
866 void mwaitAtomic(ThreadContext *tc)
867 { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
868 AddressMonitor *getAddrMonitor()
869 { return cpu->getCpuAddrMonitor(threadNumber); }
870};
871
872template<class Impl>
873Fault
874BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
875 Request::Flags flags)
876{
877 instFlags[ReqMade] = true;
878 Request *req = NULL;
879 Request *sreqLow = NULL;
880 Request *sreqHigh = NULL;
881
882 if (instFlags[ReqMade] && translationStarted()) {
883 req = savedReq;
884 sreqLow = savedSreqLow;
885 sreqHigh = savedSreqHigh;
886 } else {
887 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
888 thread->contextId());
889
890 req->taskId(cpu->taskId());
891
892 // Only split the request if the ISA supports unaligned accesses.
893 if (TheISA::HasUnalignedMemAcc) {
894 splitRequest(req, sreqLow, sreqHigh);
895 }
896 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
897 }
898
899 if (translationCompleted()) {
900 if (fault == NoFault) {
901 effAddr = req->getVaddr();
902 effSize = size;
903 instFlags[EffAddrValid] = true;
904
905 if (cpu->checker) {
906 if (reqToVerify != NULL) {
907 delete reqToVerify;
908 }
909 reqToVerify = new Request(*req);
910 }
911 fault = cpu->read(req, sreqLow, sreqHigh, lqIdx);
912 } else {
913 // Commit will have to clean up whatever happened. Set this
914 // instruction as executed.
915 this->setExecuted();
916 }
917 }
918
919 if (traceData)
920 traceData->setMem(addr, size, flags);
921
922 return fault;
923}
924
925template<class Impl>
926Fault
927BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
928 Request::Flags flags, uint64_t *res)
929{
930 if (traceData)
931 traceData->setMem(addr, size, flags);
932
933 instFlags[ReqMade] = true;
934 Request *req = NULL;
935 Request *sreqLow = NULL;
936 Request *sreqHigh = NULL;
937
938 if (instFlags[ReqMade] && translationStarted()) {
939 req = savedReq;
940 sreqLow = savedSreqLow;
941 sreqHigh = savedSreqHigh;
942 } else {
943 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
944 thread->contextId());
945
946 req->taskId(cpu->taskId());
947
948 // Only split the request if the ISA supports unaligned accesses.
949 if (TheISA::HasUnalignedMemAcc) {
950 splitRequest(req, sreqLow, sreqHigh);
951 }
952 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
953 }
954
955 if (fault == NoFault && translationCompleted()) {
956 effAddr = req->getVaddr();
957 effSize = size;
958 instFlags[EffAddrValid] = true;
959
960 if (cpu->checker) {
961 if (reqToVerify != NULL) {
962 delete reqToVerify;
963 }
964 reqToVerify = new Request(*req);
965 }
966 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
967 }
968
969 return fault;
970}
971
972template<class Impl>
973inline void
974BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
975 RequestPtr &sreqHigh)
976{
977 // Check to see if the request crosses the next level block boundary.
978 unsigned block_size = cpu->cacheLineSize();
979 Addr addr = req->getVaddr();
980 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
981 assert(split_addr <= addr || split_addr - addr < block_size);
982
983 // Spans two blocks.
984 if (split_addr > addr) {
985 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
986 }
987}
988
989template<class Impl>
990inline void
991BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
992 RequestPtr sreqHigh, uint64_t *res,
993 BaseTLB::Mode mode)
994{
995 translationStarted(true);
996
997 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
998 WholeTranslationState *state =
999 new WholeTranslationState(req, NULL, res, mode);
1000
1001 // One translation if the request isn't split.
1002 DataTranslation<BaseDynInstPtr> *trans =
1003 new DataTranslation<BaseDynInstPtr>(this, state);
1004
1005 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1006
1007 if (!translationCompleted()) {
1008 // The translation isn't yet complete, so we can't possibly have a
1009 // fault. Overwrite any existing fault we might have from a previous
1010 // execution of this instruction (e.g. an uncachable load that
1011 // couldn't execute because it wasn't at the head of the ROB).
1012 fault = NoFault;
1013
1014 // Save memory requests.
1015 savedReq = state->mainReq;
1016 savedSreqLow = state->sreqLow;
1017 savedSreqHigh = state->sreqHigh;
1018 }
1019 } else {
1020 WholeTranslationState *state =
1021 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1022
1023 // Two translations when the request is split.
1024 DataTranslation<BaseDynInstPtr> *stransLow =
1025 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1026 DataTranslation<BaseDynInstPtr> *stransHigh =
1027 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1028
1029 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1030 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1031
1032 if (!translationCompleted()) {
1033 // The translation isn't yet complete, so we can't possibly have a
1034 // fault. Overwrite any existing fault we might have from a previous
1035 // execution of this instruction (e.g. an uncachable load that
1036 // couldn't execute because it wasn't at the head of the ROB).
1037 fault = NoFault;
1038
1039 // Save memory requests.
1040 savedReq = state->mainReq;
1041 savedSreqLow = state->sreqLow;
1042 savedSreqHigh = state->sreqHigh;
1043 }
1044 }
1045}
1046
1047template<class Impl>
1048inline void
1049BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1050{
1051 fault = state->getFault();
1052
1053 instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();
1054
1055 if (fault == NoFault) {
1056 // save Paddr for a single req
1057 physEffAddrLow = state->getPaddr();
1058
1059 // case for the request that has been split
1060 if (state->isSplit) {
1061 physEffAddrLow = state->sreqLow->getPaddr();
1062 physEffAddrHigh = state->sreqHigh->getPaddr();
1063 }
1064
1065 memReqFlags = state->getFlags();
1066
1067 if (state->mainReq->isCondSwap()) {
1068 assert(state->res);
1069 state->mainReq->setExtraData(*state->res);
1070 }
1071
1072 } else {
1073 state->deleteReqs();
1074 }
1075 delete state;
1076
1077 translationCompleted(true);
1078}
1079
1080#endif // __CPU_BASE_DYN_INST_HH__
608
609 /** Pops a result off the instResult queue */
610 template <class T>
611 void popResult(T& t)
612 {
613 if (!instResult.empty()) {
614 instResult.front().get(t);
615 instResult.pop();
616 }
617 }
618
619 /** Read the most recent result stored by this instruction */
620 template <class T>
621 void readResult(T& t)
622 {
623 instResult.back().get(t);
624 }
625
626 /** Pushes a result onto the instResult queue */
627 template <class T>
628 void setResult(T t)
629 {
630 if (instFlags[RecordResult]) {
631 Result instRes;
632 instRes.set(t);
633 instResult.push(instRes);
634 }
635 }
636
637 /** Records an integer register being set to a value. */
638 void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
639 {
640 setResult<uint64_t>(val);
641 }
642
643 /** Records a CC register being set to a value. */
644 void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
645 {
646 setResult<uint64_t>(val);
647 }
648
649 /** Records an fp register being set to a value. */
650 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
651 {
652 setResult<double>(val);
653 }
654
655 /** Records an fp register being set to an integer value. */
656 void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
657 {
658 setResult<uint64_t>(val);
659 }
660
661 /** Records that one of the source registers is ready. */
662 void markSrcRegReady();
663
664 /** Marks a specific register as ready. */
665 void markSrcRegReady(RegIndex src_idx);
666
667 /** Returns if a source register is ready. */
668 bool isReadySrcRegIdx(int idx) const
669 {
670 return this->_readySrcRegIdx[idx];
671 }
672
673 /** Sets this instruction as completed. */
674 void setCompleted() { status.set(Completed); }
675
676 /** Returns whether or not this instruction is completed. */
677 bool isCompleted() const { return status[Completed]; }
678
679 /** Marks the result as ready. */
680 void setResultReady() { status.set(ResultReady); }
681
682 /** Returns whether or not the result is ready. */
683 bool isResultReady() const { return status[ResultReady]; }
684
685 /** Sets this instruction as ready to issue. */
686 void setCanIssue() { status.set(CanIssue); }
687
688 /** Returns whether or not this instruction is ready to issue. */
689 bool readyToIssue() const { return status[CanIssue]; }
690
691 /** Clears this instruction being able to issue. */
692 void clearCanIssue() { status.reset(CanIssue); }
693
694 /** Sets this instruction as issued from the IQ. */
695 void setIssued() { status.set(Issued); }
696
697 /** Returns whether or not this instruction has issued. */
698 bool isIssued() const { return status[Issued]; }
699
700 /** Clears this instruction as being issued. */
701 void clearIssued() { status.reset(Issued); }
702
703 /** Sets this instruction as executed. */
704 void setExecuted() { status.set(Executed); }
705
706 /** Returns whether or not this instruction has executed. */
707 bool isExecuted() const { return status[Executed]; }
708
709 /** Sets this instruction as ready to commit. */
710 void setCanCommit() { status.set(CanCommit); }
711
712 /** Clears this instruction as being ready to commit. */
713 void clearCanCommit() { status.reset(CanCommit); }
714
715 /** Returns whether or not this instruction is ready to commit. */
716 bool readyToCommit() const { return status[CanCommit]; }
717
718 void setAtCommit() { status.set(AtCommit); }
719
720 bool isAtCommit() { return status[AtCommit]; }
721
722 /** Sets this instruction as committed. */
723 void setCommitted() { status.set(Committed); }
724
725 /** Returns whether or not this instruction is committed. */
726 bool isCommitted() const { return status[Committed]; }
727
728 /** Sets this instruction as squashed. */
729 void setSquashed() { status.set(Squashed); }
730
731 /** Returns whether or not this instruction is squashed. */
732 bool isSquashed() const { return status[Squashed]; }
733
734 //Instruction Queue Entry
735 //-----------------------
736 /** Sets this instruction as a entry the IQ. */
737 void setInIQ() { status.set(IqEntry); }
738
739 /** Sets this instruction as a entry the IQ. */
740 void clearInIQ() { status.reset(IqEntry); }
741
742 /** Returns whether or not this instruction has issued. */
743 bool isInIQ() const { return status[IqEntry]; }
744
745 /** Sets this instruction as squashed in the IQ. */
746 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
747
748 /** Returns whether or not this instruction is squashed in the IQ. */
749 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
750
751
752 //Load / Store Queue Functions
753 //-----------------------
754 /** Sets this instruction as a entry the LSQ. */
755 void setInLSQ() { status.set(LsqEntry); }
756
757 /** Sets this instruction as a entry the LSQ. */
758 void removeInLSQ() { status.reset(LsqEntry); }
759
760 /** Returns whether or not this instruction is in the LSQ. */
761 bool isInLSQ() const { return status[LsqEntry]; }
762
763 /** Sets this instruction as squashed in the LSQ. */
764 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
765
766 /** Returns whether or not this instruction is squashed in the LSQ. */
767 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
768
769
770 //Reorder Buffer Functions
771 //-----------------------
772 /** Sets this instruction as a entry the ROB. */
773 void setInROB() { status.set(RobEntry); }
774
775 /** Sets this instruction as a entry the ROB. */
776 void clearInROB() { status.reset(RobEntry); }
777
778 /** Returns whether or not this instruction is in the ROB. */
779 bool isInROB() const { return status[RobEntry]; }
780
781 /** Sets this instruction as squashed in the ROB. */
782 void setSquashedInROB() { status.set(SquashedInROB); }
783
784 /** Returns whether or not this instruction is squashed in the ROB. */
785 bool isSquashedInROB() const { return status[SquashedInROB]; }
786
787 /** Read the PC state of this instruction. */
788 TheISA::PCState pcState() const { return pc; }
789
790 /** Set the PC state of this instruction. */
791 void pcState(const TheISA::PCState &val) { pc = val; }
792
793 /** Read the PC of this instruction. */
794 Addr instAddr() const { return pc.instAddr(); }
795
796 /** Read the PC of the next instruction. */
797 Addr nextInstAddr() const { return pc.nextInstAddr(); }
798
799 /**Read the micro PC of this instruction. */
800 Addr microPC() const { return pc.microPC(); }
801
802 bool readPredicate()
803 {
804 return instFlags[Predicate];
805 }
806
807 void setPredicate(bool val)
808 {
809 instFlags[Predicate] = val;
810
811 if (traceData) {
812 traceData->setPredicate(val);
813 }
814 }
815
816 /** Sets the ASID. */
817 void setASID(short addr_space_id) { asid = addr_space_id; }
818
819 /** Sets the thread id. */
820 void setTid(ThreadID tid) { threadNumber = tid; }
821
822 /** Sets the pointer to the thread state. */
823 void setThreadState(ImplState *state) { thread = state; }
824
825 /** Returns the thread context. */
826 ThreadContext *tcBase() { return thread->getTC(); }
827
828 public:
829 /** Sets the effective address. */
830 void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
831
832 /** Returns the effective address. */
833 Addr getEA() const { return instEffAddr; }
834
835 /** Returns whether or not the eff. addr. calculation has been completed. */
836 bool doneEACalc() { return instFlags[EACalcDone]; }
837
838 /** Returns whether or not the eff. addr. source registers are ready. */
839 bool eaSrcsReady();
840
841 /** Is this instruction's memory access strictly ordered? */
842 bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
843
844 /** Has this instruction generated a memory request. */
845 bool hasRequest() { return instFlags[ReqMade]; }
846
847 /** Returns iterator to this instruction in the list of all insts. */
848 ListIt &getInstListIt() { return instListIt; }
849
850 /** Sets iterator for this instruction in the list of all insts. */
851 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
852
853 public:
854 /** Returns the number of consecutive store conditional failures. */
855 unsigned int readStCondFailures() const
856 { return thread->storeCondFailures; }
857
858 /** Sets the number of consecutive store conditional failures. */
859 void setStCondFailures(unsigned int sc_failures)
860 { thread->storeCondFailures = sc_failures; }
861
862 public:
863 // monitor/mwait funtions
864 void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
865 bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
866 void mwaitAtomic(ThreadContext *tc)
867 { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
868 AddressMonitor *getAddrMonitor()
869 { return cpu->getCpuAddrMonitor(threadNumber); }
870};
871
872template<class Impl>
873Fault
874BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
875 Request::Flags flags)
876{
877 instFlags[ReqMade] = true;
878 Request *req = NULL;
879 Request *sreqLow = NULL;
880 Request *sreqHigh = NULL;
881
882 if (instFlags[ReqMade] && translationStarted()) {
883 req = savedReq;
884 sreqLow = savedSreqLow;
885 sreqHigh = savedSreqHigh;
886 } else {
887 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
888 thread->contextId());
889
890 req->taskId(cpu->taskId());
891
892 // Only split the request if the ISA supports unaligned accesses.
893 if (TheISA::HasUnalignedMemAcc) {
894 splitRequest(req, sreqLow, sreqHigh);
895 }
896 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
897 }
898
899 if (translationCompleted()) {
900 if (fault == NoFault) {
901 effAddr = req->getVaddr();
902 effSize = size;
903 instFlags[EffAddrValid] = true;
904
905 if (cpu->checker) {
906 if (reqToVerify != NULL) {
907 delete reqToVerify;
908 }
909 reqToVerify = new Request(*req);
910 }
911 fault = cpu->read(req, sreqLow, sreqHigh, lqIdx);
912 } else {
913 // Commit will have to clean up whatever happened. Set this
914 // instruction as executed.
915 this->setExecuted();
916 }
917 }
918
919 if (traceData)
920 traceData->setMem(addr, size, flags);
921
922 return fault;
923}
924
925template<class Impl>
926Fault
927BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
928 Request::Flags flags, uint64_t *res)
929{
930 if (traceData)
931 traceData->setMem(addr, size, flags);
932
933 instFlags[ReqMade] = true;
934 Request *req = NULL;
935 Request *sreqLow = NULL;
936 Request *sreqHigh = NULL;
937
938 if (instFlags[ReqMade] && translationStarted()) {
939 req = savedReq;
940 sreqLow = savedSreqLow;
941 sreqHigh = savedSreqHigh;
942 } else {
943 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
944 thread->contextId());
945
946 req->taskId(cpu->taskId());
947
948 // Only split the request if the ISA supports unaligned accesses.
949 if (TheISA::HasUnalignedMemAcc) {
950 splitRequest(req, sreqLow, sreqHigh);
951 }
952 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
953 }
954
955 if (fault == NoFault && translationCompleted()) {
956 effAddr = req->getVaddr();
957 effSize = size;
958 instFlags[EffAddrValid] = true;
959
960 if (cpu->checker) {
961 if (reqToVerify != NULL) {
962 delete reqToVerify;
963 }
964 reqToVerify = new Request(*req);
965 }
966 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
967 }
968
969 return fault;
970}
971
972template<class Impl>
973inline void
974BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
975 RequestPtr &sreqHigh)
976{
977 // Check to see if the request crosses the next level block boundary.
978 unsigned block_size = cpu->cacheLineSize();
979 Addr addr = req->getVaddr();
980 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
981 assert(split_addr <= addr || split_addr - addr < block_size);
982
983 // Spans two blocks.
984 if (split_addr > addr) {
985 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
986 }
987}
988
989template<class Impl>
990inline void
991BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
992 RequestPtr sreqHigh, uint64_t *res,
993 BaseTLB::Mode mode)
994{
995 translationStarted(true);
996
997 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
998 WholeTranslationState *state =
999 new WholeTranslationState(req, NULL, res, mode);
1000
1001 // One translation if the request isn't split.
1002 DataTranslation<BaseDynInstPtr> *trans =
1003 new DataTranslation<BaseDynInstPtr>(this, state);
1004
1005 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1006
1007 if (!translationCompleted()) {
1008 // The translation isn't yet complete, so we can't possibly have a
1009 // fault. Overwrite any existing fault we might have from a previous
1010 // execution of this instruction (e.g. an uncachable load that
1011 // couldn't execute because it wasn't at the head of the ROB).
1012 fault = NoFault;
1013
1014 // Save memory requests.
1015 savedReq = state->mainReq;
1016 savedSreqLow = state->sreqLow;
1017 savedSreqHigh = state->sreqHigh;
1018 }
1019 } else {
1020 WholeTranslationState *state =
1021 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1022
1023 // Two translations when the request is split.
1024 DataTranslation<BaseDynInstPtr> *stransLow =
1025 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1026 DataTranslation<BaseDynInstPtr> *stransHigh =
1027 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1028
1029 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1030 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1031
1032 if (!translationCompleted()) {
1033 // The translation isn't yet complete, so we can't possibly have a
1034 // fault. Overwrite any existing fault we might have from a previous
1035 // execution of this instruction (e.g. an uncachable load that
1036 // couldn't execute because it wasn't at the head of the ROB).
1037 fault = NoFault;
1038
1039 // Save memory requests.
1040 savedReq = state->mainReq;
1041 savedSreqLow = state->sreqLow;
1042 savedSreqHigh = state->sreqHigh;
1043 }
1044 }
1045}
1046
1047template<class Impl>
1048inline void
1049BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1050{
1051 fault = state->getFault();
1052
1053 instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();
1054
1055 if (fault == NoFault) {
1056 // save Paddr for a single req
1057 physEffAddrLow = state->getPaddr();
1058
1059 // case for the request that has been split
1060 if (state->isSplit) {
1061 physEffAddrLow = state->sreqLow->getPaddr();
1062 physEffAddrHigh = state->sreqHigh->getPaddr();
1063 }
1064
1065 memReqFlags = state->getFlags();
1066
1067 if (state->mainReq->isCondSwap()) {
1068 assert(state->res);
1069 state->mainReq->setExtraData(*state->res);
1070 }
1071
1072 } else {
1073 state->deleteReqs();
1074 }
1075 delete state;
1076
1077 translationCompleted(true);
1078}
1079
1080#endif // __CPU_BASE_DYN_INST_HH__