Deleted Added
sdiff udiff text old ( 10934:5af8f40d8f2c ) new ( 10935:acd48ddd725f )
full compact
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <list>
52#include <string>
53#include <queue>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/o3/comm.hh"
61#include "cpu/exec_context.hh"
62#include "cpu/exetrace.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/op_class.hh"
65#include "cpu/static_inst.hh"
66#include "cpu/translation.hh"
67#include "mem/packet.hh"
68#include "sim/byteswap.hh"
69#include "sim/system.hh"
70
71/**
72 * @file
73 * Defines a dynamic instruction context.
74 */
75
76template <class Impl>
77class BaseDynInst : public ExecContext, public RefCounted
78{
79 public:
80 // Typedef for the CPU.
81 typedef typename Impl::CPUType ImplCPU;
82 typedef typename ImplCPU::ImplState ImplState;
83
84 // Logical register index type.
85 typedef TheISA::RegIndex RegIndex;
86
87 // The DynInstPtr type.
88 typedef typename Impl::DynInstPtr DynInstPtr;
89 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
90
91 // The list of instructions iterator type.
92 typedef typename std::list<DynInstPtr>::iterator ListIt;
93
94 enum {
95 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
96 MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
97 };
98
99 union Result {
100 uint64_t integer;
101 double dbl;
102
103 // I am assuming that vector register type is different from the two
104 // types used above. Else it seems useless to have a separate typedef
105 // for vector registers.
106 VectorReg vector;
107
108 void set(uint64_t i) { integer = i; }
109 void set(double d) { dbl = d; }
110 void set(const VectorReg &v) { vector = v; }
111
112 void get(uint64_t& i) { i = integer; }
113 void get(double& d) { d = dbl; }
114 void get(VectorReg& v) { v = vector; }
115 };
116
117 protected:
118 enum Status {
119 IqEntry, /// Instruction is in the IQ
120 RobEntry, /// Instruction is in the ROB
121 LsqEntry, /// Instruction is in the LSQ
122 Completed, /// Instruction has completed
123 ResultReady, /// Instruction has its result
124 CanIssue, /// Instruction can issue and execute
125 Issued, /// Instruction has issued
126 Executed, /// Instruction has executed
127 CanCommit, /// Instruction can commit
128 AtCommit, /// Instruction has reached commit
129 Committed, /// Instruction has committed
130 Squashed, /// Instruction is squashed
131 SquashedInIQ, /// Instruction is squashed in the IQ
132 SquashedInLSQ, /// Instruction is squashed in the LSQ
133 SquashedInROB, /// Instruction is squashed in the ROB
134 RecoverInst, /// Is a recover instruction
135 BlockingInst, /// Is a blocking instruction
136 ThreadsyncWait, /// Is a thread synchronization instruction
137 SerializeBefore, /// Needs to serialize on
138 /// instructions ahead of it
139 SerializeAfter, /// Needs to serialize instructions behind it
140 SerializeHandled, /// Serialization has been handled
141 NumStatus
142 };
143
144 enum Flags {
145 TranslationStarted,
146 TranslationCompleted,
147 PossibleLoadViolation,
148 HitExternalSnoop,
149 EffAddrValid,
150 RecordResult,
151 Predicate,
152 PredTaken,
153 /** Whether or not the effective address calculation is completed.
154 * @todo: Consider if this is necessary or not.
155 */
156 EACalcDone,
157 IsStrictlyOrdered,
158 ReqMade,
159 MemOpDone,
160 MaxFlags
161 };
162
163 public:
164 /** The sequence number of the instruction. */
165 InstSeqNum seqNum;
166
167 /** The StaticInst used by this BaseDynInst. */
168 const StaticInstPtr staticInst;
169
170 /** Pointer to the Impl's CPU object. */
171 ImplCPU *cpu;
172
173 BaseCPU *getCpuPtr() { return cpu; }
174
175 /** Pointer to the thread state. */
176 ImplState *thread;
177
178 /** The kind of fault this instruction has generated. */
179 Fault fault;
180
181 /** InstRecord that tracks this instructions. */
182 Trace::InstRecord *traceData;
183
184 protected:
185 /** The result of the instruction; assumes an instruction can have many
186 * destination registers.
187 */
188 std::queue<Result> instResult;
189
190 /** PC state for this instruction. */
191 TheISA::PCState pc;
192
193 /* An amalgamation of a lot of boolean values into one */
194 std::bitset<MaxFlags> instFlags;
195
196 /** The status of this BaseDynInst. Several bits can be set. */
197 std::bitset<NumStatus> status;
198
199 /** Whether or not the source register is ready.
200 * @todo: Not sure this should be here vs the derived class.
201 */
202 std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
203
204 public:
205 /** The thread this instruction is from. */
206 ThreadID threadNumber;
207
208 /** Iterator pointing to this BaseDynInst in the list of all insts. */
209 ListIt instListIt;
210
211 ////////////////////// Branch Data ///////////////
212 /** Predicted PC state after this instruction. */
213 TheISA::PCState predPC;
214
215 /** The Macroop if one exists */
216 const StaticInstPtr macroop;
217
218 /** How many source registers are ready. */
219 uint8_t readyRegs;
220
221 public:
222 /////////////////////// Load Store Data //////////////////////
223 /** The effective virtual address (lds & stores only). */
224 Addr effAddr;
225
226 /** The effective physical address. */
227 Addr physEffAddr;
228
229 /** The memory request flags (from translation). */
230 unsigned memReqFlags;
231
232 /** data address space ID, for loads & stores. */
233 short asid;
234
235 /** The size of the request */
236 uint8_t effSize;
237
238 /** Pointer to the data for the memory access. */
239 uint8_t *memData;
240
241 /** Load queue index. */
242 int16_t lqIdx;
243
244 /** Store queue index. */
245 int16_t sqIdx;
246
247
248 /////////////////////// TLB Miss //////////////////////
249 /**
250 * Saved memory requests (needed when the DTB address translation is
251 * delayed due to a hw page table walk).
252 */
253 RequestPtr savedReq;
254 RequestPtr savedSreqLow;
255 RequestPtr savedSreqHigh;
256
257 /////////////////////// Checker //////////////////////
258 // Need a copy of main request pointer to verify on writes.
259 RequestPtr reqToVerify;
260
261 private:
262 /** Instruction effective address.
263 * @todo: Consider if this is necessary or not.
264 */
265 Addr instEffAddr;
266
267 protected:
268 /** Flattened register index of the destination registers of this
269 * instruction.
270 */
271 std::array<TheISA::RegIndex, TheISA::MaxInstDestRegs> _flatDestRegIdx;
272
273 /** Physical register index of the destination registers of this
274 * instruction.
275 */
276 std::array<PhysRegIndex, TheISA::MaxInstDestRegs> _destRegIdx;
277
278 /** Physical register index of the source registers of this
279 * instruction.
280 */
281 std::array<PhysRegIndex, TheISA::MaxInstSrcRegs> _srcRegIdx;
282
283 /** Physical register index of the previous producers of the
284 * architected destinations.
285 */
286 std::array<PhysRegIndex, TheISA::MaxInstDestRegs> _prevDestRegIdx;
287
288
289 public:
290 /** Records changes to result? */
291 void recordResult(bool f) { instFlags[RecordResult] = f; }
292
293 /** Is the effective virtual address valid. */
294 bool effAddrValid() const { return instFlags[EffAddrValid]; }
295
296 /** Whether or not the memory operation is done. */
297 bool memOpDone() const { return instFlags[MemOpDone]; }
298 void memOpDone(bool f) { instFlags[MemOpDone] = f; }
299
300
301 ////////////////////////////////////////////
302 //
303 // INSTRUCTION EXECUTION
304 //
305 ////////////////////////////////////////////
306
307 void demapPage(Addr vaddr, uint64_t asn)
308 {
309 cpu->demapPage(vaddr, asn);
310 }
311 void demapInstPage(Addr vaddr, uint64_t asn)
312 {
313 cpu->demapPage(vaddr, asn);
314 }
315 void demapDataPage(Addr vaddr, uint64_t asn)
316 {
317 cpu->demapPage(vaddr, asn);
318 }
319
320 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
321
322 Fault writeMem(uint8_t *data, unsigned size,
323 Addr addr, unsigned flags, uint64_t *res);
324
325 /** Splits a request in two if it crosses a dcache block. */
326 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
327 RequestPtr &sreqHigh);
328
329 /** Initiate a DTB address translation. */
330 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
331 RequestPtr sreqHigh, uint64_t *res,
332 BaseTLB::Mode mode);
333
334 /** Finish a DTB address translation. */
335 void finishTranslation(WholeTranslationState *state);
336
337 /** True if the DTB address translation has started. */
338 bool translationStarted() const { return instFlags[TranslationStarted]; }
339 void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
340
341 /** True if the DTB address translation has completed. */
342 bool translationCompleted() const { return instFlags[TranslationCompleted]; }
343 void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
344
345 /** True if this address was found to match a previous load and they issued
346 * out of order. If that happend, then it's only a problem if an incoming
347 * snoop invalidate modifies the line, in which case we need to squash.
348 * If nothing modified the line the order doesn't matter.
349 */
350 bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
351 void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
352
353 /** True if the address hit a external snoop while sitting in the LSQ.
354 * If this is true and a older instruction sees it, this instruction must
355 * reexecute
356 */
357 bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
358 void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
359
360 /**
361 * Returns true if the DTB address translation is being delayed due to a hw
362 * page table walk.
363 */
364 bool isTranslationDelayed() const
365 {
366 return (translationStarted() && !translationCompleted());
367 }
368
369 public:
370#ifdef DEBUG
371 void dumpSNList();
372#endif
373
374 /** Returns the physical register index of the i'th destination
375 * register.
376 */
377 PhysRegIndex renamedDestRegIdx(int idx) const
378 {
379 return _destRegIdx[idx];
380 }
381
382 /** Returns the physical register index of the i'th source register. */
383 PhysRegIndex renamedSrcRegIdx(int idx) const
384 {
385 assert(TheISA::MaxInstSrcRegs > idx);
386 return _srcRegIdx[idx];
387 }
388
389 /** Returns the flattened register index of the i'th destination
390 * register.
391 */
392 TheISA::RegIndex flattenedDestRegIdx(int idx) const
393 {
394 return _flatDestRegIdx[idx];
395 }
396
397 /** Returns the physical register index of the previous physical register
398 * that remapped to the same logical register index.
399 */
400 PhysRegIndex prevDestRegIdx(int idx) const
401 {
402 return _prevDestRegIdx[idx];
403 }
404
405 /** Renames a destination register to a physical register. Also records
406 * the previous physical register that the logical register mapped to.
407 */
408 void renameDestReg(int idx,
409 PhysRegIndex renamed_dest,
410 PhysRegIndex previous_rename)
411 {
412 _destRegIdx[idx] = renamed_dest;
413 _prevDestRegIdx[idx] = previous_rename;
414 }
415
416 /** Renames a source logical register to the physical register which
417 * has/will produce that logical register's result.
418 * @todo: add in whether or not the source register is ready.
419 */
420 void renameSrcReg(int idx, PhysRegIndex renamed_src)
421 {
422 _srcRegIdx[idx] = renamed_src;
423 }
424
425 /** Flattens a destination architectural register index into a logical
426 * index.
427 */
428 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
429 {
430 _flatDestRegIdx[idx] = flattened_dest;
431 }
432 /** BaseDynInst constructor given a binary instruction.
433 * @param staticInst A StaticInstPtr to the underlying instruction.
434 * @param pc The PC state for the instruction.
435 * @param predPC The predicted next PC state for the instruction.
436 * @param seq_num The sequence number of the instruction.
437 * @param cpu Pointer to the instruction's CPU.
438 */
439 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
440 TheISA::PCState pc, TheISA::PCState predPC,
441 InstSeqNum seq_num, ImplCPU *cpu);
442
443 /** BaseDynInst constructor given a StaticInst pointer.
444 * @param _staticInst The StaticInst for this BaseDynInst.
445 */
446 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
447
448 /** BaseDynInst destructor. */
449 ~BaseDynInst();
450
451 private:
452 /** Function to initialize variables in the constructors. */
453 void initVars();
454
455 public:
456 /** Dumps out contents of this BaseDynInst. */
457 void dump();
458
459 /** Dumps out contents of this BaseDynInst into given string. */
460 void dump(std::string &outstring);
461
462 /** Read this CPU's ID. */
463 int cpuId() const { return cpu->cpuId(); }
464
465 /** Read this CPU's Socket ID. */
466 uint32_t socketId() const { return cpu->socketId(); }
467
468 /** Read this CPU's data requestor ID */
469 MasterID masterId() const { return cpu->dataMasterId(); }
470
471 /** Read this context's system-wide ID **/
472 int contextId() const { return thread->contextId(); }
473
474 /** Returns the fault type. */
475 Fault getFault() const { return fault; }
476
477 /** Checks whether or not this instruction has had its branch target
478 * calculated yet. For now it is not utilized and is hacked to be
479 * always false.
480 * @todo: Actually use this instruction.
481 */
482 bool doneTargCalc() { return false; }
483
484 /** Set the predicted target of this current instruction. */
485 void setPredTarg(const TheISA::PCState &_predPC)
486 {
487 predPC = _predPC;
488 }
489
490 const TheISA::PCState &readPredTarg() { return predPC; }
491
492 /** Returns the predicted PC immediately after the branch. */
493 Addr predInstAddr() { return predPC.instAddr(); }
494
495 /** Returns the predicted PC two instructions after the branch */
496 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
497
498 /** Returns the predicted micro PC after the branch */
499 Addr predMicroPC() { return predPC.microPC(); }
500
501 /** Returns whether the instruction was predicted taken or not. */
502 bool readPredTaken()
503 {
504 return instFlags[PredTaken];
505 }
506
507 void setPredTaken(bool predicted_taken)
508 {
509 instFlags[PredTaken] = predicted_taken;
510 }
511
512 /** Returns whether the instruction mispredicted. */
513 bool mispredicted()
514 {
515 TheISA::PCState tempPC = pc;
516 TheISA::advancePC(tempPC, staticInst);
517 return !(tempPC == predPC);
518 }
519
520 //
521 // Instruction types. Forward checks to StaticInst object.
522 //
523 bool isNop() const { return staticInst->isNop(); }
524 bool isMemRef() const { return staticInst->isMemRef(); }
525 bool isLoad() const { return staticInst->isLoad(); }
526 bool isStore() const { return staticInst->isStore(); }
527 bool isStoreConditional() const
528 { return staticInst->isStoreConditional(); }
529 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
530 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
531 bool isInteger() const { return staticInst->isInteger(); }
532 bool isFloating() const { return staticInst->isFloating(); }
533 bool isVector() const { return staticInst->isVector(); }
534 bool isCC() const { return staticInst->isCC(); }
535
536 bool isControl() const { return staticInst->isControl(); }
537 bool isCall() const { return staticInst->isCall(); }
538 bool isReturn() const { return staticInst->isReturn(); }
539 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
540 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
541 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
542 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
543 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
544 bool isThreadSync() const { return staticInst->isThreadSync(); }
545 bool isSerializing() const { return staticInst->isSerializing(); }
546 bool isSerializeBefore() const
547 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
548 bool isSerializeAfter() const
549 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
550 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
551 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
552 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
553 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
554 bool isQuiesce() const { return staticInst->isQuiesce(); }
555 bool isIprAccess() const { return staticInst->isIprAccess(); }
556 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
557 bool isSyscall() const { return staticInst->isSyscall(); }
558 bool isMacroop() const { return staticInst->isMacroop(); }
559 bool isMicroop() const { return staticInst->isMicroop(); }
560 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
561 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
562 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
563 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
564
565 void printFlags(std::ostream &outs, const std::string &separator) const
566 { staticInst->printFlags(outs, separator); }
567
568 std::string getName() const { return staticInst->getName(); }
569
570 /** Temporarily sets this instruction as a serialize before instruction. */
571 void setSerializeBefore() { status.set(SerializeBefore); }
572
573 /** Clears the serializeBefore part of this instruction. */
574 void clearSerializeBefore() { status.reset(SerializeBefore); }
575
576 /** Checks if this serializeBefore is only temporarily set. */
577 bool isTempSerializeBefore() { return status[SerializeBefore]; }
578
579 /** Temporarily sets this instruction as a serialize after instruction. */
580 void setSerializeAfter() { status.set(SerializeAfter); }
581
582 /** Clears the serializeAfter part of this instruction.*/
583 void clearSerializeAfter() { status.reset(SerializeAfter); }
584
585 /** Checks if this serializeAfter is only temporarily set. */
586 bool isTempSerializeAfter() { return status[SerializeAfter]; }
587
588 /** Sets the serialization part of this instruction as handled. */
589 void setSerializeHandled() { status.set(SerializeHandled); }
590
591 /** Checks if the serialization part of this instruction has been
592 * handled. This does not apply to the temporary serializing
593 * state; it only applies to this instruction's own permanent
594 * serializing state.
595 */
596 bool isSerializeHandled() { return status[SerializeHandled]; }
597
598 /** Returns the opclass of this instruction. */
599 OpClass opClass() const { return staticInst->opClass(); }
600
601 /** Returns the branch target address. */
602 TheISA::PCState branchTarget() const
603 { return staticInst->branchTarget(pc); }
604
605 /** Returns the number of source registers. */
606 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
607
608 /** Returns the number of destination registers. */
609 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
610
611 // the following are used to track physical register usage
612 // for machines with separate int & FP reg files
613 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
614 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
615 int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
616 int8_t numVectorDestRegs() const
617 { return staticInst->numVectorDestRegs(); }
618
619 /** Returns the logical register index of the i'th destination register. */
620 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
621
622 /** Returns the logical register index of the i'th source register. */
623 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
624
625 /** Pops a result off the instResult queue */
626 template <class T>
627 void popResult(T& t)
628 {
629 if (!instResult.empty()) {
630 instResult.front().get(t);
631 instResult.pop();
632 }
633 }
634
635 /** Read the most recent result stored by this instruction */
636 template <class T>
637 void readResult(T& t)
638 {
639 instResult.back().get(t);
640 }
641
642 /** Pushes a result onto the instResult queue */
643 template <class T>
644 void setResult(T t)
645 {
646 if (instFlags[RecordResult]) {
647 Result instRes;
648 instRes.set(t);
649 instResult.push(instRes);
650 }
651 }
652
653 /** Records an integer register being set to a value. */
654 void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
655 {
656 setResult<uint64_t>(val);
657 }
658
659 /** Records a CC register being set to a value. */
660 void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
661 {
662 setResult<uint64_t>(val);
663 }
664
665 /** Records an fp register being set to a value. */
666 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
667 {
668 setResult<double>(val);
669 }
670
671 /** Records an fp register being set to an integer value. */
672 void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
673 {
674 setResult<uint64_t>(val);
675 }
676
677 /** Records a vector register being set to a value. */
678 void setVectorRegOperand(const StaticInst *si, int idx,
679 const VectorReg &val)
680 {
681 setResult<const VectorReg &>(val);
682 }
683
684 /** Records that one of the source registers is ready. */
685 void markSrcRegReady();
686
687 /** Marks a specific register as ready. */
688 void markSrcRegReady(RegIndex src_idx);
689
690 /** Returns if a source register is ready. */
691 bool isReadySrcRegIdx(int idx) const
692 {
693 return this->_readySrcRegIdx[idx];
694 }
695
696 /** Sets this instruction as completed. */
697 void setCompleted() { status.set(Completed); }
698
699 /** Returns whether or not this instruction is completed. */
700 bool isCompleted() const { return status[Completed]; }
701
702 /** Marks the result as ready. */
703 void setResultReady() { status.set(ResultReady); }
704
705 /** Returns whether or not the result is ready. */
706 bool isResultReady() const { return status[ResultReady]; }
707
708 /** Sets this instruction as ready to issue. */
709 void setCanIssue() { status.set(CanIssue); }
710
711 /** Returns whether or not this instruction is ready to issue. */
712 bool readyToIssue() const { return status[CanIssue]; }
713
714 /** Clears this instruction being able to issue. */
715 void clearCanIssue() { status.reset(CanIssue); }
716
717 /** Sets this instruction as issued from the IQ. */
718 void setIssued() { status.set(Issued); }
719
720 /** Returns whether or not this instruction has issued. */
721 bool isIssued() const { return status[Issued]; }
722
723 /** Clears this instruction as being issued. */
724 void clearIssued() { status.reset(Issued); }
725
726 /** Sets this instruction as executed. */
727 void setExecuted() { status.set(Executed); }
728
729 /** Returns whether or not this instruction has executed. */
730 bool isExecuted() const { return status[Executed]; }
731
732 /** Sets this instruction as ready to commit. */
733 void setCanCommit() { status.set(CanCommit); }
734
735 /** Clears this instruction as being ready to commit. */
736 void clearCanCommit() { status.reset(CanCommit); }
737
738 /** Returns whether or not this instruction is ready to commit. */
739 bool readyToCommit() const { return status[CanCommit]; }
740
741 void setAtCommit() { status.set(AtCommit); }
742
743 bool isAtCommit() { return status[AtCommit]; }
744
745 /** Sets this instruction as committed. */
746 void setCommitted() { status.set(Committed); }
747
748 /** Returns whether or not this instruction is committed. */
749 bool isCommitted() const { return status[Committed]; }
750
751 /** Sets this instruction as squashed. */
752 void setSquashed() { status.set(Squashed); }
753
754 /** Returns whether or not this instruction is squashed. */
755 bool isSquashed() const { return status[Squashed]; }
756
757 //Instruction Queue Entry
758 //-----------------------
759 /** Sets this instruction as a entry the IQ. */
760 void setInIQ() { status.set(IqEntry); }
761
762 /** Sets this instruction as a entry the IQ. */
763 void clearInIQ() { status.reset(IqEntry); }
764
765 /** Returns whether or not this instruction has issued. */
766 bool isInIQ() const { return status[IqEntry]; }
767
768 /** Sets this instruction as squashed in the IQ. */
769 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
770
771 /** Returns whether or not this instruction is squashed in the IQ. */
772 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
773
774
775 //Load / Store Queue Functions
776 //-----------------------
777 /** Sets this instruction as a entry the LSQ. */
778 void setInLSQ() { status.set(LsqEntry); }
779
780 /** Sets this instruction as a entry the LSQ. */
781 void removeInLSQ() { status.reset(LsqEntry); }
782
783 /** Returns whether or not this instruction is in the LSQ. */
784 bool isInLSQ() const { return status[LsqEntry]; }
785
786 /** Sets this instruction as squashed in the LSQ. */
787 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
788
789 /** Returns whether or not this instruction is squashed in the LSQ. */
790 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
791
792
793 //Reorder Buffer Functions
794 //-----------------------
795 /** Sets this instruction as a entry the ROB. */
796 void setInROB() { status.set(RobEntry); }
797
798 /** Sets this instruction as a entry the ROB. */
799 void clearInROB() { status.reset(RobEntry); }
800
801 /** Returns whether or not this instruction is in the ROB. */
802 bool isInROB() const { return status[RobEntry]; }
803
804 /** Sets this instruction as squashed in the ROB. */
805 void setSquashedInROB() { status.set(SquashedInROB); }
806
807 /** Returns whether or not this instruction is squashed in the ROB. */
808 bool isSquashedInROB() const { return status[SquashedInROB]; }
809
810 /** Read the PC state of this instruction. */
811 TheISA::PCState pcState() const { return pc; }
812
813 /** Set the PC state of this instruction. */
814 void pcState(const TheISA::PCState &val) { pc = val; }
815
816 /** Read the PC of this instruction. */
817 const Addr instAddr() const { return pc.instAddr(); }
818
819 /** Read the PC of the next instruction. */
820 const Addr nextInstAddr() const { return pc.nextInstAddr(); }
821
822 /**Read the micro PC of this instruction. */
823 const Addr microPC() const { return pc.microPC(); }
824
825 bool readPredicate()
826 {
827 return instFlags[Predicate];
828 }
829
830 void setPredicate(bool val)
831 {
832 instFlags[Predicate] = val;
833
834 if (traceData) {
835 traceData->setPredicate(val);
836 }
837 }
838
839 /** Sets the ASID. */
840 void setASID(short addr_space_id) { asid = addr_space_id; }
841
842 /** Sets the thread id. */
843 void setTid(ThreadID tid) { threadNumber = tid; }
844
845 /** Sets the pointer to the thread state. */
846 void setThreadState(ImplState *state) { thread = state; }
847
848 /** Returns the thread context. */
849 ThreadContext *tcBase() { return thread->getTC(); }
850
851 public:
852 /** Sets the effective address. */
853 void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
854
855 /** Returns the effective address. */
856 Addr getEA() const { return instEffAddr; }
857
858 /** Returns whether or not the eff. addr. calculation has been completed. */
859 bool doneEACalc() { return instFlags[EACalcDone]; }
860
861 /** Returns whether or not the eff. addr. source registers are ready. */
862 bool eaSrcsReady();
863
864 /** Is this instruction's memory access strictly ordered? */
865 bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
866
867 /** Has this instruction generated a memory request. */
868 bool hasRequest() { return instFlags[ReqMade]; }
869
870 /** Returns iterator to this instruction in the list of all insts. */
871 ListIt &getInstListIt() { return instListIt; }
872
873 /** Sets iterator for this instruction in the list of all insts. */
874 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
875
876 public:
877 /** Returns the number of consecutive store conditional failures. */
878 unsigned int readStCondFailures() const
879 { return thread->storeCondFailures; }
880
881 /** Sets the number of consecutive store conditional failures. */
882 void setStCondFailures(unsigned int sc_failures)
883 { thread->storeCondFailures = sc_failures; }
884
885 public:
886 // monitor/mwait funtions
887 void armMonitor(Addr address) { cpu->armMonitor(address); }
888 bool mwait(PacketPtr pkt) { return cpu->mwait(pkt); }
889 void mwaitAtomic(ThreadContext *tc)
890 { return cpu->mwaitAtomic(tc, cpu->dtb); }
891 AddressMonitor *getAddrMonitor() { return cpu->getCpuAddrMonitor(); }
892};
893
894template<class Impl>
895Fault
896BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
897 unsigned size, unsigned flags)
898{
899 instFlags[ReqMade] = true;
900 Request *req = NULL;
901 Request *sreqLow = NULL;
902 Request *sreqHigh = NULL;
903
904 if (instFlags[ReqMade] && translationStarted()) {
905 req = savedReq;
906 sreqLow = savedSreqLow;
907 sreqHigh = savedSreqHigh;
908 } else {
909 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
910 thread->contextId(), threadNumber);
911
912 req->taskId(cpu->taskId());
913
914 // Only split the request if the ISA supports unaligned accesses.
915 if (TheISA::HasUnalignedMemAcc) {
916 splitRequest(req, sreqLow, sreqHigh);
917 }
918 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
919 }
920
921 if (translationCompleted()) {
922 if (fault == NoFault) {
923 effAddr = req->getVaddr();
924 effSize = size;
925 instFlags[EffAddrValid] = true;
926
927 if (cpu->checker) {
928 if (reqToVerify != NULL) {
929 delete reqToVerify;
930 }
931 reqToVerify = new Request(*req);
932 }
933 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
934 } else {
935 // Commit will have to clean up whatever happened. Set this
936 // instruction as executed.
937 this->setExecuted();
938 }
939
940 if (fault != NoFault) {
941 // Return a fixed value to keep simulation deterministic even
942 // along misspeculated paths.
943 if (data)
944 bzero(data, size);
945 }
946 }
947
948 if (traceData)
949 traceData->setMem(addr, size, flags);
950
951 return fault;
952}
953
954template<class Impl>
955Fault
956BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
957 Addr addr, unsigned flags, uint64_t *res)
958{
959 if (traceData)
960 traceData->setMem(addr, size, flags);
961
962 instFlags[ReqMade] = true;
963 Request *req = NULL;
964 Request *sreqLow = NULL;
965 Request *sreqHigh = NULL;
966
967 if (instFlags[ReqMade] && translationStarted()) {
968 req = savedReq;
969 sreqLow = savedSreqLow;
970 sreqHigh = savedSreqHigh;
971 } else {
972 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
973 thread->contextId(), threadNumber);
974
975 req->taskId(cpu->taskId());
976
977 // Only split the request if the ISA supports unaligned accesses.
978 if (TheISA::HasUnalignedMemAcc) {
979 splitRequest(req, sreqLow, sreqHigh);
980 }
981 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
982 }
983
984 if (fault == NoFault && translationCompleted()) {
985 effAddr = req->getVaddr();
986 effSize = size;
987 instFlags[EffAddrValid] = true;
988
989 if (cpu->checker) {
990 if (reqToVerify != NULL) {
991 delete reqToVerify;
992 }
993 reqToVerify = new Request(*req);
994 }
995 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
996 }
997
998 return fault;
999}
1000
1001template<class Impl>
1002inline void
1003BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
1004 RequestPtr &sreqHigh)
1005{
1006 // Check to see if the request crosses the next level block boundary.
1007 unsigned block_size = cpu->cacheLineSize();
1008 Addr addr = req->getVaddr();
1009 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
1010 assert(split_addr <= addr || split_addr - addr < block_size);
1011
1012 // Spans two blocks.
1013 if (split_addr > addr) {
1014 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1015 }
1016}
1017
1018template<class Impl>
1019inline void
1020BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1021 RequestPtr sreqHigh, uint64_t *res,
1022 BaseTLB::Mode mode)
1023{
1024 translationStarted(true);
1025
1026 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1027 WholeTranslationState *state =
1028 new WholeTranslationState(req, NULL, res, mode);
1029
1030 // One translation if the request isn't split.
1031 DataTranslation<BaseDynInstPtr> *trans =
1032 new DataTranslation<BaseDynInstPtr>(this, state);
1033
1034 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1035
1036 if (!translationCompleted()) {
1037 // The translation isn't yet complete, so we can't possibly have a
1038 // fault. Overwrite any existing fault we might have from a previous
1039 // execution of this instruction (e.g. an uncachable load that
1040 // couldn't execute because it wasn't at the head of the ROB).
1041 fault = NoFault;
1042
1043 // Save memory requests.
1044 savedReq = state->mainReq;
1045 savedSreqLow = state->sreqLow;
1046 savedSreqHigh = state->sreqHigh;
1047 }
1048 } else {
1049 WholeTranslationState *state =
1050 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1051
1052 // Two translations when the request is split.
1053 DataTranslation<BaseDynInstPtr> *stransLow =
1054 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1055 DataTranslation<BaseDynInstPtr> *stransHigh =
1056 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1057
1058 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1059 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1060
1061 if (!translationCompleted()) {
1062 // The translation isn't yet complete, so we can't possibly have a
1063 // fault. Overwrite any existing fault we might have from a previous
1064 // execution of this instruction (e.g. an uncachable load that
1065 // couldn't execute because it wasn't at the head of the ROB).
1066 fault = NoFault;
1067
1068 // Save memory requests.
1069 savedReq = state->mainReq;
1070 savedSreqLow = state->sreqLow;
1071 savedSreqHigh = state->sreqHigh;
1072 }
1073 }
1074}
1075
1076template<class Impl>
1077inline void
1078BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1079{
1080 fault = state->getFault();
1081
1082 instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();
1083
1084 if (fault == NoFault) {
1085 physEffAddr = state->getPaddr();
1086 memReqFlags = state->getFlags();
1087
1088 if (state->mainReq->isCondSwap()) {
1089 assert(state->res);
1090 state->mainReq->setExtraData(*state->res);
1091 }
1092
1093 } else {
1094 state->deleteReqs();
1095 }
1096 delete state;
1097
1098 translationCompleted(true);
1099}
1100
1101#endif // __CPU_BASE_DYN_INST_HH__