Deleted Added
sdiff udiff text old ( 6221:58a3c04e6344 ) new ( 6429:7ed8937e375a )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49#include "sim/tlb.hh"
50
51/**
52 * @file
53 * Defines a dynamic instruction context.
54 */
55
56// Forward declaration.
57class StaticInstPtr;
58
59template <class Impl>
60class BaseDynInst : public FastAlloc, public RefCounted
61{
62 public:
63 // Typedef for the CPU.
64 typedef typename Impl::CPUType ImplCPU;
65 typedef typename ImplCPU::ImplState ImplState;
66
67 // Logical register index type.
68 typedef TheISA::RegIndex RegIndex;
69 // Integer register type.
70 typedef TheISA::IntReg IntReg;
71 // Floating point register type.
72 typedef TheISA::FloatReg FloatReg;
73
74 // The DynInstPtr type.
75 typedef typename Impl::DynInstPtr DynInstPtr;
76
77 // The list of instructions iterator type.
78 typedef typename std::list<DynInstPtr>::iterator ListIt;
79
80 enum {
81 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
82 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
83 };
84
85 /** The StaticInst used by this BaseDynInst. */
86 StaticInstPtr staticInst;
87
88 ////////////////////////////////////////////
89 //
90 // INSTRUCTION EXECUTION
91 //
92 ////////////////////////////////////////////
93 /** InstRecord that tracks this instructions. */
94 Trace::InstRecord *traceData;
95
96 void demapPage(Addr vaddr, uint64_t asn)
97 {
98 cpu->demapPage(vaddr, asn);
99 }
100 void demapInstPage(Addr vaddr, uint64_t asn)
101 {
102 cpu->demapPage(vaddr, asn);
103 }
104 void demapDataPage(Addr vaddr, uint64_t asn)
105 {
106 cpu->demapPage(vaddr, asn);
107 }
108
109 /**
110 * Does a read to a given address.
111 * @param addr The address to read.
112 * @param data The read's data is written into this parameter.
113 * @param flags The request's flags.
114 * @return Returns any fault due to the read.
115 */
116 template <class T>
117 Fault read(Addr addr, T &data, unsigned flags);
118
119 /**
120 * Does a write to a given address.
121 * @param data The data to be written.
122 * @param addr The address to write to.
123 * @param flags The request's flags.
124 * @param res The result of the write (for load locked/store conditionals).
125 * @return Returns any fault due to the write.
126 */
127 template <class T>
128 Fault write(T data, Addr addr, unsigned flags,
129 uint64_t *res);
130
131 void prefetch(Addr addr, unsigned flags);
132 void writeHint(Addr addr, int size, unsigned flags);
133 Fault copySrcTranslate(Addr src);
134 Fault copy(Addr dest);
135
136 /** @todo: Consider making this private. */
137 public:
138 /** The sequence number of the instruction. */
139 InstSeqNum seqNum;
140
141 enum Status {
142 IqEntry, /// Instruction is in the IQ
143 RobEntry, /// Instruction is in the ROB
144 LsqEntry, /// Instruction is in the LSQ
145 Completed, /// Instruction has completed
146 ResultReady, /// Instruction has its result
147 CanIssue, /// Instruction can issue and execute
148 Issued, /// Instruction has issued
149 Executed, /// Instruction has executed
150 CanCommit, /// Instruction can commit
151 AtCommit, /// Instruction has reached commit
152 Committed, /// Instruction has committed
153 Squashed, /// Instruction is squashed
154 SquashedInIQ, /// Instruction is squashed in the IQ
155 SquashedInLSQ, /// Instruction is squashed in the LSQ
156 SquashedInROB, /// Instruction is squashed in the ROB
157 RecoverInst, /// Is a recover instruction
158 BlockingInst, /// Is a blocking instruction
159 ThreadsyncWait, /// Is a thread synchronization instruction
160 SerializeBefore, /// Needs to serialize on
161 /// instructions ahead of it
162 SerializeAfter, /// Needs to serialize instructions behind it
163 SerializeHandled, /// Serialization has been handled
164 NumStatus
165 };
166
167 /** The status of this BaseDynInst. Several bits can be set. */
168 std::bitset<NumStatus> status;
169
170 /** The thread this instruction is from. */
171 ThreadID threadNumber;
172
173 /** data address space ID, for loads & stores. */
174 short asid;
175
176 /** How many source registers are ready. */
177 unsigned readyRegs;
178
179 /** Pointer to the Impl's CPU object. */
180 ImplCPU *cpu;
181
182 /** Pointer to the thread state. */
183 ImplState *thread;
184
185 /** The kind of fault this instruction has generated. */
186 Fault fault;
187
188 /** Pointer to the data for the memory access. */
189 uint8_t *memData;
190
191 /** The effective virtual address (lds & stores only). */
192 Addr effAddr;
193
194 /** Is the effective virtual address valid. */
195 bool effAddrValid;
196
197 /** The effective physical address. */
198 Addr physEffAddr;
199
200 /** Effective virtual address for a copy source. */
201 Addr copySrcEffAddr;
202
203 /** Effective physical address for a copy source. */
204 Addr copySrcPhysEffAddr;
205
206 /** The memory request flags (from translation). */
207 unsigned memReqFlags;
208
209 union Result {
210 uint64_t integer;
211// float fp;
212 double dbl;
213 };
214
215 /** The result of the instruction; assumes for now that there's only one
216 * destination register.
217 */
218 Result instResult;
219
220 /** Records changes to result? */
221 bool recordResult;
222
223 /** PC of this instruction. */
224 Addr PC;
225
226 /** Micro PC of this instruction. */
227 Addr microPC;
228
229 protected:
230 /** Next non-speculative PC. It is not filled in at fetch, but rather
231 * once the target of the branch is truly known (either decode or
232 * execute).
233 */
234 Addr nextPC;
235
236 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
237 Addr nextNPC;
238
239 /** Next non-speculative micro PC. */
240 Addr nextMicroPC;
241
242 /** Predicted next PC. */
243 Addr predPC;
244
245 /** Predicted next NPC. */
246 Addr predNPC;
247
248 /** Predicted next microPC */
249 Addr predMicroPC;
250
251 /** If this is a branch that was predicted taken */
252 bool predTaken;
253
254 public:
255
256#ifdef DEBUG
257 void dumpSNList();
258#endif
259
260 /** Whether or not the source register is ready.
261 * @todo: Not sure this should be here vs the derived class.
262 */
263 bool _readySrcRegIdx[MaxInstSrcRegs];
264
265 protected:
266 /** Flattened register index of the destination registers of this
267 * instruction.
268 */
269 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
270
271 /** Flattened register index of the source registers of this
272 * instruction.
273 */
274 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
275
276 /** Physical register index of the destination registers of this
277 * instruction.
278 */
279 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
280
281 /** Physical register index of the source registers of this
282 * instruction.
283 */
284 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
285
286 /** Physical register index of the previous producers of the
287 * architected destinations.
288 */
289 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
290
291 public:
292
293 /** Returns the physical register index of the i'th destination
294 * register.
295 */
296 PhysRegIndex renamedDestRegIdx(int idx) const
297 {
298 return _destRegIdx[idx];
299 }
300
301 /** Returns the physical register index of the i'th source register. */
302 PhysRegIndex renamedSrcRegIdx(int idx) const
303 {
304 return _srcRegIdx[idx];
305 }
306
307 /** Returns the flattened register index of the i'th destination
308 * register.
309 */
310 TheISA::RegIndex flattenedDestRegIdx(int idx) const
311 {
312 return _flatDestRegIdx[idx];
313 }
314
315 /** Returns the flattened register index of the i'th source register */
316 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
317 {
318 return _flatSrcRegIdx[idx];
319 }
320
321 /** Returns the physical register index of the previous physical register
322 * that remapped to the same logical register index.
323 */
324 PhysRegIndex prevDestRegIdx(int idx) const
325 {
326 return _prevDestRegIdx[idx];
327 }
328
329 /** Renames a destination register to a physical register. Also records
330 * the previous physical register that the logical register mapped to.
331 */
332 void renameDestReg(int idx,
333 PhysRegIndex renamed_dest,
334 PhysRegIndex previous_rename)
335 {
336 _destRegIdx[idx] = renamed_dest;
337 _prevDestRegIdx[idx] = previous_rename;
338 }
339
340 /** Renames a source logical register to the physical register which
341 * has/will produce that logical register's result.
342 * @todo: add in whether or not the source register is ready.
343 */
344 void renameSrcReg(int idx, PhysRegIndex renamed_src)
345 {
346 _srcRegIdx[idx] = renamed_src;
347 }
348
349 /** Flattens a source architectural register index into a logical index.
350 */
351 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
352 {
353 _flatSrcRegIdx[idx] = flattened_src;
354 }
355
356 /** Flattens a destination architectural register index into a logical
357 * index.
358 */
359 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
360 {
361 _flatDestRegIdx[idx] = flattened_dest;
362 }
363 /** BaseDynInst constructor given a binary instruction.
364 * @param staticInst A StaticInstPtr to the underlying instruction.
365 * @param PC The PC of the instruction.
366 * @param pred_PC The predicted next PC.
367 * @param pred_NPC The predicted next NPC.
368 * @param seq_num The sequence number of the instruction.
369 * @param cpu Pointer to the instruction's CPU.
370 */
371 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
372 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
373 InstSeqNum seq_num, ImplCPU *cpu);
374
375 /** BaseDynInst constructor given a binary instruction.
376 * @param inst The binary instruction.
377 * @param PC The PC of the instruction.
378 * @param pred_PC The predicted next PC.
379 * @param pred_NPC The predicted next NPC.
380 * @param seq_num The sequence number of the instruction.
381 * @param cpu Pointer to the instruction's CPU.
382 */
383 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
384 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
385 InstSeqNum seq_num, ImplCPU *cpu);
386
387 /** BaseDynInst constructor given a StaticInst pointer.
388 * @param _staticInst The StaticInst for this BaseDynInst.
389 */
390 BaseDynInst(StaticInstPtr &_staticInst);
391
392 /** BaseDynInst destructor. */
393 ~BaseDynInst();
394
395 private:
396 /** Function to initialize variables in the constructors. */
397 void initVars();
398
399 public:
400 /** Dumps out contents of this BaseDynInst. */
401 void dump();
402
403 /** Dumps out contents of this BaseDynInst into given string. */
404 void dump(std::string &outstring);
405
406 /** Read this CPU's ID. */
407 int cpuId() { return cpu->cpuId(); }
408
409 /** Read this context's system-wide ID **/
410 int contextId() { return thread->contextId(); }
411
412 /** Returns the fault type. */
413 Fault getFault() { return fault; }
414
415 /** Checks whether or not this instruction has had its branch target
416 * calculated yet. For now it is not utilized and is hacked to be
417 * always false.
418 * @todo: Actually use this instruction.
419 */
420 bool doneTargCalc() { return false; }
421
422 /** Returns the next PC. This could be the speculative next PC if it is
423 * called prior to the actual branch target being calculated.
424 */
425 Addr readNextPC() { return nextPC; }
426
427 /** Returns the next NPC. This could be the speculative next NPC if it is
428 * called prior to the actual branch target being calculated.
429 */
430 Addr readNextNPC()
431 {
432#if ISA_HAS_DELAY_SLOT
433 return nextNPC;
434#else
435 return nextPC + sizeof(TheISA::MachInst);
436#endif
437 }
438
439 Addr readNextMicroPC()
440 {
441 return nextMicroPC;
442 }
443
444 /** Set the predicted target of this current instruction. */
445 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
446 Addr predicted_MicroPC)
447 {
448 predPC = predicted_PC;
449 predNPC = predicted_NPC;
450 predMicroPC = predicted_MicroPC;
451 }
452
453 /** Returns the predicted PC immediately after the branch. */
454 Addr readPredPC() { return predPC; }
455
456 /** Returns the predicted PC two instructions after the branch */
457 Addr readPredNPC() { return predNPC; }
458
459 /** Returns the predicted micro PC after the branch */
460 Addr readPredMicroPC() { return predMicroPC; }
461
462 /** Returns whether the instruction was predicted taken or not. */
463 bool readPredTaken()
464 {
465 return predTaken;
466 }
467
468 void setPredTaken(bool predicted_taken)
469 {
470 predTaken = predicted_taken;
471 }
472
473 /** Returns whether the instruction mispredicted. */
474 bool mispredicted()
475 {
476 return readPredPC() != readNextPC() ||
477 readPredNPC() != readNextNPC() ||
478 readPredMicroPC() != readNextMicroPC();
479 }
480
481 //
482 // Instruction types. Forward checks to StaticInst object.
483 //
484 bool isNop() const { return staticInst->isNop(); }
485 bool isMemRef() const { return staticInst->isMemRef(); }
486 bool isLoad() const { return staticInst->isLoad(); }
487 bool isStore() const { return staticInst->isStore(); }
488 bool isStoreConditional() const
489 { return staticInst->isStoreConditional(); }
490 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
491 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
492 bool isCopy() const { return staticInst->isCopy(); }
493 bool isInteger() const { return staticInst->isInteger(); }
494 bool isFloating() const { return staticInst->isFloating(); }
495 bool isControl() const { return staticInst->isControl(); }
496 bool isCall() const { return staticInst->isCall(); }
497 bool isReturn() const { return staticInst->isReturn(); }
498 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
499 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
500 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
501 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
502 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
503 bool isThreadSync() const { return staticInst->isThreadSync(); }
504 bool isSerializing() const { return staticInst->isSerializing(); }
505 bool isSerializeBefore() const
506 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
507 bool isSerializeAfter() const
508 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
509 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
510 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
511 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
512 bool isQuiesce() const { return staticInst->isQuiesce(); }
513 bool isIprAccess() const { return staticInst->isIprAccess(); }
514 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
515 bool isSyscall() const { return staticInst->isSyscall(); }
516 bool isMacroop() const { return staticInst->isMacroop(); }
517 bool isMicroop() const { return staticInst->isMicroop(); }
518 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
519 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
520 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
521 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
522
523 /** Temporarily sets this instruction as a serialize before instruction. */
524 void setSerializeBefore() { status.set(SerializeBefore); }
525
526 /** Clears the serializeBefore part of this instruction. */
527 void clearSerializeBefore() { status.reset(SerializeBefore); }
528
529 /** Checks if this serializeBefore is only temporarily set. */
530 bool isTempSerializeBefore() { return status[SerializeBefore]; }
531
532 /** Temporarily sets this instruction as a serialize after instruction. */
533 void setSerializeAfter() { status.set(SerializeAfter); }
534
535 /** Clears the serializeAfter part of this instruction.*/
536 void clearSerializeAfter() { status.reset(SerializeAfter); }
537
538 /** Checks if this serializeAfter is only temporarily set. */
539 bool isTempSerializeAfter() { return status[SerializeAfter]; }
540
541 /** Sets the serialization part of this instruction as handled. */
542 void setSerializeHandled() { status.set(SerializeHandled); }
543
544 /** Checks if the serialization part of this instruction has been
545 * handled. This does not apply to the temporary serializing
546 * state; it only applies to this instruction's own permanent
547 * serializing state.
548 */
549 bool isSerializeHandled() { return status[SerializeHandled]; }
550
551 /** Returns the opclass of this instruction. */
552 OpClass opClass() const { return staticInst->opClass(); }
553
554 /** Returns the branch target address. */
555 Addr branchTarget() const { return staticInst->branchTarget(PC); }
556
557 /** Returns the number of source registers. */
558 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
559
560 /** Returns the number of destination registers. */
561 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
562
563 // the following are used to track physical register usage
564 // for machines with separate int & FP reg files
565 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
566 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
567
568 /** Returns the logical register index of the i'th destination register. */
569 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
570
571 /** Returns the logical register index of the i'th source register. */
572 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
573
574 /** Returns the result of an integer instruction. */
575 uint64_t readIntResult() { return instResult.integer; }
576
577 /** Returns the result of a floating point instruction. */
578 float readFloatResult() { return (float)instResult.dbl; }
579
580 /** Returns the result of a floating point (double) instruction. */
581 double readDoubleResult() { return instResult.dbl; }
582
583 /** Records an integer register being set to a value. */
584 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
585 {
586 if (recordResult)
587 instResult.integer = val;
588 }
589
590 /** Records an fp register being set to a value. */
591 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
592 int width)
593 {
594 if (recordResult) {
595 if (width == 32)
596 instResult.dbl = (double)val;
597 else if (width == 64)
598 instResult.dbl = val;
599 else
600 panic("Unsupported width!");
601 }
602 }
603
604 /** Records an fp register being set to a value. */
605 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
606 {
607 if (recordResult)
608 instResult.dbl = (double)val;
609 }
610
611 /** Records an fp register being set to an integer value. */
612 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
613 int width)
614 {
615 if (recordResult)
616 instResult.integer = val;
617 }
618
619 /** Records an fp register being set to an integer value. */
620 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
621 {
622 if (recordResult)
623 instResult.integer = val;
624 }
625
626 /** Records that one of the source registers is ready. */
627 void markSrcRegReady();
628
629 /** Marks a specific register as ready. */
630 void markSrcRegReady(RegIndex src_idx);
631
632 /** Returns if a source register is ready. */
633 bool isReadySrcRegIdx(int idx) const
634 {
635 return this->_readySrcRegIdx[idx];
636 }
637
638 /** Sets this instruction as completed. */
639 void setCompleted() { status.set(Completed); }
640
641 /** Returns whether or not this instruction is completed. */
642 bool isCompleted() const { return status[Completed]; }
643
644 /** Marks the result as ready. */
645 void setResultReady() { status.set(ResultReady); }
646
647 /** Returns whether or not the result is ready. */
648 bool isResultReady() const { return status[ResultReady]; }
649
650 /** Sets this instruction as ready to issue. */
651 void setCanIssue() { status.set(CanIssue); }
652
653 /** Returns whether or not this instruction is ready to issue. */
654 bool readyToIssue() const { return status[CanIssue]; }
655
656 /** Clears this instruction being able to issue. */
657 void clearCanIssue() { status.reset(CanIssue); }
658
659 /** Sets this instruction as issued from the IQ. */
660 void setIssued() { status.set(Issued); }
661
662 /** Returns whether or not this instruction has issued. */
663 bool isIssued() const { return status[Issued]; }
664
665 /** Clears this instruction as being issued. */
666 void clearIssued() { status.reset(Issued); }
667
668 /** Sets this instruction as executed. */
669 void setExecuted() { status.set(Executed); }
670
671 /** Returns whether or not this instruction has executed. */
672 bool isExecuted() const { return status[Executed]; }
673
674 /** Sets this instruction as ready to commit. */
675 void setCanCommit() { status.set(CanCommit); }
676
677 /** Clears this instruction as being ready to commit. */
678 void clearCanCommit() { status.reset(CanCommit); }
679
680 /** Returns whether or not this instruction is ready to commit. */
681 bool readyToCommit() const { return status[CanCommit]; }
682
683 void setAtCommit() { status.set(AtCommit); }
684
685 bool isAtCommit() { return status[AtCommit]; }
686
687 /** Sets this instruction as committed. */
688 void setCommitted() { status.set(Committed); }
689
690 /** Returns whether or not this instruction is committed. */
691 bool isCommitted() const { return status[Committed]; }
692
693 /** Sets this instruction as squashed. */
694 void setSquashed() { status.set(Squashed); }
695
696 /** Returns whether or not this instruction is squashed. */
697 bool isSquashed() const { return status[Squashed]; }
698
699 //Instruction Queue Entry
700 //-----------------------
701 /** Sets this instruction as a entry the IQ. */
702 void setInIQ() { status.set(IqEntry); }
703
704 /** Sets this instruction as a entry the IQ. */
705 void clearInIQ() { status.reset(IqEntry); }
706
707 /** Returns whether or not this instruction has issued. */
708 bool isInIQ() const { return status[IqEntry]; }
709
710 /** Sets this instruction as squashed in the IQ. */
711 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
712
713 /** Returns whether or not this instruction is squashed in the IQ. */
714 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
715
716
717 //Load / Store Queue Functions
718 //-----------------------
719 /** Sets this instruction as a entry the LSQ. */
720 void setInLSQ() { status.set(LsqEntry); }
721
722 /** Sets this instruction as a entry the LSQ. */
723 void removeInLSQ() { status.reset(LsqEntry); }
724
725 /** Returns whether or not this instruction is in the LSQ. */
726 bool isInLSQ() const { return status[LsqEntry]; }
727
728 /** Sets this instruction as squashed in the LSQ. */
729 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
730
731 /** Returns whether or not this instruction is squashed in the LSQ. */
732 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
733
734
735 //Reorder Buffer Functions
736 //-----------------------
737 /** Sets this instruction as a entry the ROB. */
738 void setInROB() { status.set(RobEntry); }
739
740 /** Sets this instruction as a entry the ROB. */
741 void clearInROB() { status.reset(RobEntry); }
742
743 /** Returns whether or not this instruction is in the ROB. */
744 bool isInROB() const { return status[RobEntry]; }
745
746 /** Sets this instruction as squashed in the ROB. */
747 void setSquashedInROB() { status.set(SquashedInROB); }
748
749 /** Returns whether or not this instruction is squashed in the ROB. */
750 bool isSquashedInROB() const { return status[SquashedInROB]; }
751
752 /** Read the PC of this instruction. */
753 const Addr readPC() const { return PC; }
754
755 /**Read the micro PC of this instruction. */
756 const Addr readMicroPC() const { return microPC; }
757
758 /** Set the next PC of this instruction (its actual target). */
759 void setNextPC(Addr val)
760 {
761 nextPC = val;
762 }
763
764 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
765 void setNextNPC(Addr val)
766 {
767#if ISA_HAS_DELAY_SLOT
768 nextNPC = val;
769#endif
770 }
771
772 void setNextMicroPC(Addr val)
773 {
774 nextMicroPC = val;
775 }
776
777 /** Sets the ASID. */
778 void setASID(short addr_space_id) { asid = addr_space_id; }
779
780 /** Sets the thread id. */
781 void setTid(ThreadID tid) { threadNumber = tid; }
782
783 /** Sets the pointer to the thread state. */
784 void setThreadState(ImplState *state) { thread = state; }
785
786 /** Returns the thread context. */
787 ThreadContext *tcBase() { return thread->getTC(); }
788
789 private:
790 /** Instruction effective address.
791 * @todo: Consider if this is necessary or not.
792 */
793 Addr instEffAddr;
794
795 /** Whether or not the effective address calculation is completed.
796 * @todo: Consider if this is necessary or not.
797 */
798 bool eaCalcDone;
799
800 /** Is this instruction's memory access uncacheable. */
801 bool isUncacheable;
802
803 /** Has this instruction generated a memory request. */
804 bool reqMade;
805
806 public:
807 /** Sets the effective address. */
808 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
809
810 /** Returns the effective address. */
811 const Addr &getEA() const { return instEffAddr; }
812
813 /** Returns whether or not the eff. addr. calculation has been completed. */
814 bool doneEACalc() { return eaCalcDone; }
815
816 /** Returns whether or not the eff. addr. source registers are ready. */
817 bool eaSrcsReady();
818
819 /** Whether or not the memory operation is done. */
820 bool memOpDone;
821
822 /** Is this instruction's memory access uncacheable. */
823 bool uncacheable() { return isUncacheable; }
824
825 /** Has this instruction generated a memory request. */
826 bool hasRequest() { return reqMade; }
827
828 public:
829 /** Load queue index. */
830 int16_t lqIdx;
831
832 /** Store queue index. */
833 int16_t sqIdx;
834
835 /** Iterator pointing to this BaseDynInst in the list of all insts. */
836 ListIt instListIt;
837
838 /** Returns iterator to this instruction in the list of all insts. */
839 ListIt &getInstListIt() { return instListIt; }
840
841 /** Sets iterator for this instruction in the list of all insts. */
842 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
843
844 public:
845 /** Returns the number of consecutive store conditional failures. */
846 unsigned readStCondFailures()
847 { return thread->storeCondFailures; }
848
849 /** Sets the number of consecutive store conditional failures. */
850 void setStCondFailures(unsigned sc_failures)
851 { thread->storeCondFailures = sc_failures; }
852};
853
854template<class Impl>
855template<class T>
856inline Fault
857BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
858{
859 reqMade = true;
860 Request *req = new Request(asid, addr, sizeof(T), flags, this->PC,
861 thread->contextId(), threadNumber);
862
863 fault = cpu->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Read);
864
865 if (req->isUncacheable())
866 isUncacheable = true;
867
868 if (fault == NoFault) {
869 effAddr = req->getVaddr();
870 effAddrValid = true;
871 physEffAddr = req->getPaddr();
872 memReqFlags = req->getFlags();
873
874#if 0
875 if (cpu->system->memctrl->badaddr(physEffAddr)) {
876 fault = TheISA::genMachineCheckFault();
877 data = (T)-1;
878 this->setExecuted();
879 } else {
880 fault = cpu->read(req, data, lqIdx);
881 }
882#else
883 fault = cpu->read(req, data, lqIdx);
884#endif
885 } else {
886 // Return a fixed value to keep simulation deterministic even
887 // along misspeculated paths.
888 data = (T)-1;
889
890 // Commit will have to clean up whatever happened. Set this
891 // instruction as executed.
892 this->setExecuted();
893 delete req;
894 }
895
896 if (traceData) {
897 traceData->setAddr(addr);
898 traceData->setData(data);
899 }
900
901 return fault;
902}
903
904template<class Impl>
905template<class T>
906inline Fault
907BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
908{
909 if (traceData) {
910 traceData->setAddr(addr);
911 traceData->setData(data);
912 }
913
914 reqMade = true;
915 Request *req = new Request(asid, addr, sizeof(T), flags, this->PC,
916 thread->contextId(), threadNumber);
917
918 fault = cpu->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
919
920 if (req->isUncacheable())
921 isUncacheable = true;
922
923 if (fault == NoFault) {
924 effAddr = req->getVaddr();
925 effAddrValid = true;
926 physEffAddr = req->getPaddr();
927 memReqFlags = req->getFlags();
928
929 if (req->isCondSwap()) {
930 assert(res);
931 req->setExtraData(*res);
932 }
933#if 0
934 if (cpu->system->memctrl->badaddr(physEffAddr)) {
935 fault = TheISA::genMachineCheckFault();
936 } else {
937 fault = cpu->write(req, data, sqIdx);
938 }
939#else
940 fault = cpu->write(req, data, sqIdx);
941#endif
942 } else {
943 delete req;
944 }
945
946 return fault;
947}
948
949#endif // __CPU_BASE_DYN_INST_HH__