Deleted Added
sdiff udiff text old ( 5737:f43dbc09fad3 ) new ( 5890:bdef71accd68 )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61 public:
62 // Typedef for the CPU.
63 typedef typename Impl::CPUType ImplCPU;
64 typedef typename ImplCPU::ImplState ImplState;
65
66 // Logical register index type.
67 typedef TheISA::RegIndex RegIndex;
68 // Integer register type.
69 typedef TheISA::IntReg IntReg;
70 // Floating point register type.
71 typedef TheISA::FloatReg FloatReg;
72
73 // The DynInstPtr type.
74 typedef typename Impl::DynInstPtr DynInstPtr;
75
76 // The list of instructions iterator type.
77 typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79 enum {
80 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
81 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
82 };
83
84 /** The StaticInst used by this BaseDynInst. */
85 StaticInstPtr staticInst;
86
87 ////////////////////////////////////////////
88 //
89 // INSTRUCTION EXECUTION
90 //
91 ////////////////////////////////////////////
92 /** InstRecord that tracks this instructions. */
93 Trace::InstRecord *traceData;
94
95 void demapPage(Addr vaddr, uint64_t asn)
96 {
97 cpu->demapPage(vaddr, asn);
98 }
99 void demapInstPage(Addr vaddr, uint64_t asn)
100 {
101 cpu->demapPage(vaddr, asn);
102 }
103 void demapDataPage(Addr vaddr, uint64_t asn)
104 {
105 cpu->demapPage(vaddr, asn);
106 }
107
108 /**
109 * Does a read to a given address.
110 * @param addr The address to read.
111 * @param data The read's data is written into this parameter.
112 * @param flags The request's flags.
113 * @return Returns any fault due to the read.
114 */
115 template <class T>
116 Fault read(Addr addr, T &data, unsigned flags);
117
118 /**
119 * Does a write to a given address.
120 * @param data The data to be written.
121 * @param addr The address to write to.
122 * @param flags The request's flags.
123 * @param res The result of the write (for load locked/store conditionals).
124 * @return Returns any fault due to the write.
125 */
126 template <class T>
127 Fault write(T data, Addr addr, unsigned flags,
128 uint64_t *res);
129
130 void prefetch(Addr addr, unsigned flags);
131 void writeHint(Addr addr, int size, unsigned flags);
132 Fault copySrcTranslate(Addr src);
133 Fault copy(Addr dest);
134
135 /** @todo: Consider making this private. */
136 public:
137 /** The sequence number of the instruction. */
138 InstSeqNum seqNum;
139
140 enum Status {
141 IqEntry, /// Instruction is in the IQ
142 RobEntry, /// Instruction is in the ROB
143 LsqEntry, /// Instruction is in the LSQ
144 Completed, /// Instruction has completed
145 ResultReady, /// Instruction has its result
146 CanIssue, /// Instruction can issue and execute
147 Issued, /// Instruction has issued
148 Executed, /// Instruction has executed
149 CanCommit, /// Instruction can commit
150 AtCommit, /// Instruction has reached commit
151 Committed, /// Instruction has committed
152 Squashed, /// Instruction is squashed
153 SquashedInIQ, /// Instruction is squashed in the IQ
154 SquashedInLSQ, /// Instruction is squashed in the LSQ
155 SquashedInROB, /// Instruction is squashed in the ROB
156 RecoverInst, /// Is a recover instruction
157 BlockingInst, /// Is a blocking instruction
158 ThreadsyncWait, /// Is a thread synchronization instruction
159 SerializeBefore, /// Needs to serialize on
160 /// instructions ahead of it
161 SerializeAfter, /// Needs to serialize instructions behind it
162 SerializeHandled, /// Serialization has been handled
163 NumStatus
164 };
165
166 /** The status of this BaseDynInst. Several bits can be set. */
167 std::bitset<NumStatus> status;
168
169 /** The thread this instruction is from. */
170 short threadNumber;
171
172 /** data address space ID, for loads & stores. */
173 short asid;
174
175 /** How many source registers are ready. */
176 unsigned readyRegs;
177
178 /** Pointer to the Impl's CPU object. */
179 ImplCPU *cpu;
180
181 /** Pointer to the thread state. */
182 ImplState *thread;
183
184 /** The kind of fault this instruction has generated. */
185 Fault fault;
186
187 /** Pointer to the data for the memory access. */
188 uint8_t *memData;
189
190 /** The effective virtual address (lds & stores only). */
191 Addr effAddr;
192
193 /** Is the effective virtual address valid. */
194 bool effAddrValid;
195
196 /** The effective physical address. */
197 Addr physEffAddr;
198
199 /** Effective virtual address for a copy source. */
200 Addr copySrcEffAddr;
201
202 /** Effective physical address for a copy source. */
203 Addr copySrcPhysEffAddr;
204
205 /** The memory request flags (from translation). */
206 unsigned memReqFlags;
207
208 union Result {
209 uint64_t integer;
210// float fp;
211 double dbl;
212 };
213
214 /** The result of the instruction; assumes for now that there's only one
215 * destination register.
216 */
217 Result instResult;
218
219 /** Records changes to result? */
220 bool recordResult;
221
222 /** PC of this instruction. */
223 Addr PC;
224
225 /** Micro PC of this instruction. */
226 Addr microPC;
227
228 protected:
229 /** Next non-speculative PC. It is not filled in at fetch, but rather
230 * once the target of the branch is truly known (either decode or
231 * execute).
232 */
233 Addr nextPC;
234
235 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
236 Addr nextNPC;
237
238 /** Next non-speculative micro PC. */
239 Addr nextMicroPC;
240
241 /** Predicted next PC. */
242 Addr predPC;
243
244 /** Predicted next NPC. */
245 Addr predNPC;
246
247 /** Predicted next microPC */
248 Addr predMicroPC;
249
250 /** If this is a branch that was predicted taken */
251 bool predTaken;
252
253 public:
254
255#ifdef DEBUG
256 void dumpSNList();
257#endif
258
259 /** Whether or not the source register is ready.
260 * @todo: Not sure this should be here vs the derived class.
261 */
262 bool _readySrcRegIdx[MaxInstSrcRegs];
263
264 protected:
265 /** Flattened register index of the destination registers of this
266 * instruction.
267 */
268 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
269
270 /** Flattened register index of the source registers of this
271 * instruction.
272 */
273 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
274
275 /** Physical register index of the destination registers of this
276 * instruction.
277 */
278 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
279
280 /** Physical register index of the source registers of this
281 * instruction.
282 */
283 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
284
285 /** Physical register index of the previous producers of the
286 * architected destinations.
287 */
288 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
289
290 public:
291
292 /** Returns the physical register index of the i'th destination
293 * register.
294 */
295 PhysRegIndex renamedDestRegIdx(int idx) const
296 {
297 return _destRegIdx[idx];
298 }
299
300 /** Returns the physical register index of the i'th source register. */
301 PhysRegIndex renamedSrcRegIdx(int idx) const
302 {
303 return _srcRegIdx[idx];
304 }
305
306 /** Returns the flattened register index of the i'th destination
307 * register.
308 */
309 TheISA::RegIndex flattenedDestRegIdx(int idx) const
310 {
311 return _flatDestRegIdx[idx];
312 }
313
314 /** Returns the flattened register index of the i'th source register */
315 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
316 {
317 return _flatSrcRegIdx[idx];
318 }
319
320 /** Returns the physical register index of the previous physical register
321 * that remapped to the same logical register index.
322 */
323 PhysRegIndex prevDestRegIdx(int idx) const
324 {
325 return _prevDestRegIdx[idx];
326 }
327
328 /** Renames a destination register to a physical register. Also records
329 * the previous physical register that the logical register mapped to.
330 */
331 void renameDestReg(int idx,
332 PhysRegIndex renamed_dest,
333 PhysRegIndex previous_rename)
334 {
335 _destRegIdx[idx] = renamed_dest;
336 _prevDestRegIdx[idx] = previous_rename;
337 }
338
339 /** Renames a source logical register to the physical register which
340 * has/will produce that logical register's result.
341 * @todo: add in whether or not the source register is ready.
342 */
343 void renameSrcReg(int idx, PhysRegIndex renamed_src)
344 {
345 _srcRegIdx[idx] = renamed_src;
346 }
347
348 /** Flattens a source architectural register index into a logical index.
349 */
350 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
351 {
352 _flatSrcRegIdx[idx] = flattened_src;
353 }
354
355 /** Flattens a destination architectural register index into a logical
356 * index.
357 */
358 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
359 {
360 _flatDestRegIdx[idx] = flattened_dest;
361 }
362 /** BaseDynInst constructor given a binary instruction.
363 * @param staticInst A StaticInstPtr to the underlying instruction.
364 * @param PC The PC of the instruction.
365 * @param pred_PC The predicted next PC.
366 * @param pred_NPC The predicted next NPC.
367 * @param seq_num The sequence number of the instruction.
368 * @param cpu Pointer to the instruction's CPU.
369 */
370 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
371 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
372 InstSeqNum seq_num, ImplCPU *cpu);
373
374 /** BaseDynInst constructor given a binary instruction.
375 * @param inst The binary instruction.
376 * @param PC The PC of the instruction.
377 * @param pred_PC The predicted next PC.
378 * @param pred_NPC The predicted next NPC.
379 * @param seq_num The sequence number of the instruction.
380 * @param cpu Pointer to the instruction's CPU.
381 */
382 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
383 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
384 InstSeqNum seq_num, ImplCPU *cpu);
385
386 /** BaseDynInst constructor given a StaticInst pointer.
387 * @param _staticInst The StaticInst for this BaseDynInst.
388 */
389 BaseDynInst(StaticInstPtr &_staticInst);
390
391 /** BaseDynInst destructor. */
392 ~BaseDynInst();
393
394 private:
395 /** Function to initialize variables in the constructors. */
396 void initVars();
397
398 public:
399 /** Dumps out contents of this BaseDynInst. */
400 void dump();
401
402 /** Dumps out contents of this BaseDynInst into given string. */
403 void dump(std::string &outstring);
404
405 /** Read this CPU's ID. */
406 int cpuId() { return cpu->cpuId(); }
407
408 /** Read this context's system-wide ID **/
409 int contextId() { return thread->contextId(); }
410
411 /** Returns the fault type. */
412 Fault getFault() { return fault; }
413
414 /** Checks whether or not this instruction has had its branch target
415 * calculated yet. For now it is not utilized and is hacked to be
416 * always false.
417 * @todo: Actually use this instruction.
418 */
419 bool doneTargCalc() { return false; }
420
421 /** Returns the next PC. This could be the speculative next PC if it is
422 * called prior to the actual branch target being calculated.
423 */
424 Addr readNextPC() { return nextPC; }
425
426 /** Returns the next NPC. This could be the speculative next NPC if it is
427 * called prior to the actual branch target being calculated.
428 */
429 Addr readNextNPC()
430 {
431#if ISA_HAS_DELAY_SLOT
432 return nextNPC;
433#else
434 return nextPC + sizeof(TheISA::MachInst);
435#endif
436 }
437
438 Addr readNextMicroPC()
439 {
440 return nextMicroPC;
441 }
442
443 /** Set the predicted target of this current instruction. */
444 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
445 Addr predicted_MicroPC)
446 {
447 predPC = predicted_PC;
448 predNPC = predicted_NPC;
449 predMicroPC = predicted_MicroPC;
450 }
451
452 /** Returns the predicted PC immediately after the branch. */
453 Addr readPredPC() { return predPC; }
454
455 /** Returns the predicted PC two instructions after the branch */
456 Addr readPredNPC() { return predNPC; }
457
458 /** Returns the predicted micro PC after the branch */
459 Addr readPredMicroPC() { return predMicroPC; }
460
461 /** Returns whether the instruction was predicted taken or not. */
462 bool readPredTaken()
463 {
464 return predTaken;
465 }
466
467 void setPredTaken(bool predicted_taken)
468 {
469 predTaken = predicted_taken;
470 }
471
472 /** Returns whether the instruction mispredicted. */
473 bool mispredicted()
474 {
475 return readPredPC() != readNextPC() ||
476 readPredNPC() != readNextNPC() ||
477 readPredMicroPC() != readNextMicroPC();
478 }
479
480 //
481 // Instruction types. Forward checks to StaticInst object.
482 //
483 bool isNop() const { return staticInst->isNop(); }
484 bool isMemRef() const { return staticInst->isMemRef(); }
485 bool isLoad() const { return staticInst->isLoad(); }
486 bool isStore() const { return staticInst->isStore(); }
487 bool isStoreConditional() const
488 { return staticInst->isStoreConditional(); }
489 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
490 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
491 bool isCopy() const { return staticInst->isCopy(); }
492 bool isInteger() const { return staticInst->isInteger(); }
493 bool isFloating() const { return staticInst->isFloating(); }
494 bool isControl() const { return staticInst->isControl(); }
495 bool isCall() const { return staticInst->isCall(); }
496 bool isReturn() const { return staticInst->isReturn(); }
497 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
498 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
499 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
500 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
501 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
502 bool isThreadSync() const { return staticInst->isThreadSync(); }
503 bool isSerializing() const { return staticInst->isSerializing(); }
504 bool isSerializeBefore() const
505 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
506 bool isSerializeAfter() const
507 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
508 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
509 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
510 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
511 bool isQuiesce() const { return staticInst->isQuiesce(); }
512 bool isIprAccess() const { return staticInst->isIprAccess(); }
513 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
514 bool isSyscall() const { return staticInst->isSyscall(); }
515 bool isMacroop() const { return staticInst->isMacroop(); }
516 bool isMicroop() const { return staticInst->isMicroop(); }
517 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
518 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
519 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
520 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
521
522 /** Temporarily sets this instruction as a serialize before instruction. */
523 void setSerializeBefore() { status.set(SerializeBefore); }
524
525 /** Clears the serializeBefore part of this instruction. */
526 void clearSerializeBefore() { status.reset(SerializeBefore); }
527
528 /** Checks if this serializeBefore is only temporarily set. */
529 bool isTempSerializeBefore() { return status[SerializeBefore]; }
530
531 /** Temporarily sets this instruction as a serialize after instruction. */
532 void setSerializeAfter() { status.set(SerializeAfter); }
533
534 /** Clears the serializeAfter part of this instruction.*/
535 void clearSerializeAfter() { status.reset(SerializeAfter); }
536
537 /** Checks if this serializeAfter is only temporarily set. */
538 bool isTempSerializeAfter() { return status[SerializeAfter]; }
539
540 /** Sets the serialization part of this instruction as handled. */
541 void setSerializeHandled() { status.set(SerializeHandled); }
542
543 /** Checks if the serialization part of this instruction has been
544 * handled. This does not apply to the temporary serializing
545 * state; it only applies to this instruction's own permanent
546 * serializing state.
547 */
548 bool isSerializeHandled() { return status[SerializeHandled]; }
549
550 /** Returns the opclass of this instruction. */
551 OpClass opClass() const { return staticInst->opClass(); }
552
553 /** Returns the branch target address. */
554 Addr branchTarget() const { return staticInst->branchTarget(PC); }
555
556 /** Returns the number of source registers. */
557 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
558
559 /** Returns the number of destination registers. */
560 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
561
562 // the following are used to track physical register usage
563 // for machines with separate int & FP reg files
564 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
565 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
566
567 /** Returns the logical register index of the i'th destination register. */
568 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
569
570 /** Returns the logical register index of the i'th source register. */
571 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
572
573 /** Returns the result of an integer instruction. */
574 uint64_t readIntResult() { return instResult.integer; }
575
576 /** Returns the result of a floating point instruction. */
577 float readFloatResult() { return (float)instResult.dbl; }
578
579 /** Returns the result of a floating point (double) instruction. */
580 double readDoubleResult() { return instResult.dbl; }
581
582 /** Records an integer register being set to a value. */
583 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
584 {
585 if (recordResult)
586 instResult.integer = val;
587 }
588
589 /** Records an fp register being set to a value. */
590 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
591 int width)
592 {
593 if (recordResult) {
594 if (width == 32)
595 instResult.dbl = (double)val;
596 else if (width == 64)
597 instResult.dbl = val;
598 else
599 panic("Unsupported width!");
600 }
601 }
602
603 /** Records an fp register being set to a value. */
604 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
605 {
606 if (recordResult)
607 instResult.dbl = (double)val;
608 }
609
610 /** Records an fp register being set to an integer value. */
611 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
612 int width)
613 {
614 if (recordResult)
615 instResult.integer = val;
616 }
617
618 /** Records an fp register being set to an integer value. */
619 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
620 {
621 if (recordResult)
622 instResult.integer = val;
623 }
624
625 /** Records that one of the source registers is ready. */
626 void markSrcRegReady();
627
628 /** Marks a specific register as ready. */
629 void markSrcRegReady(RegIndex src_idx);
630
631 /** Returns if a source register is ready. */
632 bool isReadySrcRegIdx(int idx) const
633 {
634 return this->_readySrcRegIdx[idx];
635 }
636
637 /** Sets this instruction as completed. */
638 void setCompleted() { status.set(Completed); }
639
640 /** Returns whether or not this instruction is completed. */
641 bool isCompleted() const { return status[Completed]; }
642
643 /** Marks the result as ready. */
644 void setResultReady() { status.set(ResultReady); }
645
646 /** Returns whether or not the result is ready. */
647 bool isResultReady() const { return status[ResultReady]; }
648
649 /** Sets this instruction as ready to issue. */
650 void setCanIssue() { status.set(CanIssue); }
651
652 /** Returns whether or not this instruction is ready to issue. */
653 bool readyToIssue() const { return status[CanIssue]; }
654
655 /** Clears this instruction being able to issue. */
656 void clearCanIssue() { status.reset(CanIssue); }
657
658 /** Sets this instruction as issued from the IQ. */
659 void setIssued() { status.set(Issued); }
660
661 /** Returns whether or not this instruction has issued. */
662 bool isIssued() const { return status[Issued]; }
663
664 /** Clears this instruction as being issued. */
665 void clearIssued() { status.reset(Issued); }
666
667 /** Sets this instruction as executed. */
668 void setExecuted() { status.set(Executed); }
669
670 /** Returns whether or not this instruction has executed. */
671 bool isExecuted() const { return status[Executed]; }
672
673 /** Sets this instruction as ready to commit. */
674 void setCanCommit() { status.set(CanCommit); }
675
676 /** Clears this instruction as being ready to commit. */
677 void clearCanCommit() { status.reset(CanCommit); }
678
679 /** Returns whether or not this instruction is ready to commit. */
680 bool readyToCommit() const { return status[CanCommit]; }
681
682 void setAtCommit() { status.set(AtCommit); }
683
684 bool isAtCommit() { return status[AtCommit]; }
685
686 /** Sets this instruction as committed. */
687 void setCommitted() { status.set(Committed); }
688
689 /** Returns whether or not this instruction is committed. */
690 bool isCommitted() const { return status[Committed]; }
691
692 /** Sets this instruction as squashed. */
693 void setSquashed() { status.set(Squashed); }
694
695 /** Returns whether or not this instruction is squashed. */
696 bool isSquashed() const { return status[Squashed]; }
697
698 //Instruction Queue Entry
699 //-----------------------
700 /** Sets this instruction as a entry the IQ. */
701 void setInIQ() { status.set(IqEntry); }
702
703 /** Sets this instruction as a entry the IQ. */
704 void clearInIQ() { status.reset(IqEntry); }
705
706 /** Returns whether or not this instruction has issued. */
707 bool isInIQ() const { return status[IqEntry]; }
708
709 /** Sets this instruction as squashed in the IQ. */
710 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
711
712 /** Returns whether or not this instruction is squashed in the IQ. */
713 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
714
715
716 //Load / Store Queue Functions
717 //-----------------------
718 /** Sets this instruction as a entry the LSQ. */
719 void setInLSQ() { status.set(LsqEntry); }
720
721 /** Sets this instruction as a entry the LSQ. */
722 void removeInLSQ() { status.reset(LsqEntry); }
723
724 /** Returns whether or not this instruction is in the LSQ. */
725 bool isInLSQ() const { return status[LsqEntry]; }
726
727 /** Sets this instruction as squashed in the LSQ. */
728 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
729
730 /** Returns whether or not this instruction is squashed in the LSQ. */
731 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
732
733
734 //Reorder Buffer Functions
735 //-----------------------
736 /** Sets this instruction as a entry the ROB. */
737 void setInROB() { status.set(RobEntry); }
738
739 /** Sets this instruction as a entry the ROB. */
740 void clearInROB() { status.reset(RobEntry); }
741
742 /** Returns whether or not this instruction is in the ROB. */
743 bool isInROB() const { return status[RobEntry]; }
744
745 /** Sets this instruction as squashed in the ROB. */
746 void setSquashedInROB() { status.set(SquashedInROB); }
747
748 /** Returns whether or not this instruction is squashed in the ROB. */
749 bool isSquashedInROB() const { return status[SquashedInROB]; }
750
751 /** Read the PC of this instruction. */
752 const Addr readPC() const { return PC; }
753
754 /**Read the micro PC of this instruction. */
755 const Addr readMicroPC() const { return microPC; }
756
757 /** Set the next PC of this instruction (its actual target). */
758 void setNextPC(Addr val)
759 {
760 nextPC = val;
761 }
762
763 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
764 void setNextNPC(Addr val)
765 {
766#if ISA_HAS_DELAY_SLOT
767 nextNPC = val;
768#endif
769 }
770
771 void setNextMicroPC(Addr val)
772 {
773 nextMicroPC = val;
774 }
775
776 /** Sets the ASID. */
777 void setASID(short addr_space_id) { asid = addr_space_id; }
778
779 /** Sets the thread id. */
780 void setTid(unsigned tid) { threadNumber = tid; }
781
782 /** Sets the pointer to the thread state. */
783 void setThreadState(ImplState *state) { thread = state; }
784
785 /** Returns the thread context. */
786 ThreadContext *tcBase() { return thread->getTC(); }
787
788 private:
789 /** Instruction effective address.
790 * @todo: Consider if this is necessary or not.
791 */
792 Addr instEffAddr;
793
794 /** Whether or not the effective address calculation is completed.
795 * @todo: Consider if this is necessary or not.
796 */
797 bool eaCalcDone;
798
799 /** Is this instruction's memory access uncacheable. */
800 bool isUncacheable;
801
802 /** Has this instruction generated a memory request. */
803 bool reqMade;
804
805 public:
806 /** Sets the effective address. */
807 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
808
809 /** Returns the effective address. */
810 const Addr &getEA() const { return instEffAddr; }
811
812 /** Returns whether or not the eff. addr. calculation has been completed. */
813 bool doneEACalc() { return eaCalcDone; }
814
815 /** Returns whether or not the eff. addr. source registers are ready. */
816 bool eaSrcsReady();
817
818 /** Whether or not the memory operation is done. */
819 bool memOpDone;
820
821 /** Is this instruction's memory access uncacheable. */
822 bool uncacheable() { return isUncacheable; }
823
824 /** Has this instruction generated a memory request. */
825 bool hasRequest() { return reqMade; }
826
827 public:
828 /** Load queue index. */
829 int16_t lqIdx;
830
831 /** Store queue index. */
832 int16_t sqIdx;
833
834 /** Iterator pointing to this BaseDynInst in the list of all insts. */
835 ListIt instListIt;
836
837 /** Returns iterator to this instruction in the list of all insts. */
838 ListIt &getInstListIt() { return instListIt; }
839
840 /** Sets iterator for this instruction in the list of all insts. */
841 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
842
843 public:
844 /** Returns the number of consecutive store conditional failures. */
845 unsigned readStCondFailures()
846 { return thread->storeCondFailures; }
847
848 /** Sets the number of consecutive store conditional failures. */
849 void setStCondFailures(unsigned sc_failures)
850 { thread->storeCondFailures = sc_failures; }
851};
852
853template<class Impl>
854template<class T>
855inline Fault
856BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
857{
858 reqMade = true;
859 Request *req = new Request();
860 req->setVirt(asid, addr, sizeof(T), flags, this->PC);
861 req->setThreadContext(thread->contextId(), threadNumber);
862
863 fault = cpu->dtb->translate(req, thread->getTC(), false);
864
865 if (req->isUncacheable())
866 isUncacheable = true;
867
868 if (fault == NoFault) {
869 effAddr = req->getVaddr();
870 effAddrValid = true;
871 physEffAddr = req->getPaddr();
872 memReqFlags = req->getFlags();
873
874#if 0
875 if (cpu->system->memctrl->badaddr(physEffAddr)) {
876 fault = TheISA::genMachineCheckFault();
877 data = (T)-1;
878 this->setExecuted();
879 } else {
880 fault = cpu->read(req, data, lqIdx);
881 }
882#else
883 fault = cpu->read(req, data, lqIdx);
884#endif
885 } else {
886 // Return a fixed value to keep simulation deterministic even
887 // along misspeculated paths.
888 data = (T)-1;
889
890 // Commit will have to clean up whatever happened. Set this
891 // instruction as executed.
892 this->setExecuted();
893 delete req;
894 }
895
896 if (traceData) {
897 traceData->setAddr(addr);
898 traceData->setData(data);
899 }
900
901 return fault;
902}
903
904template<class Impl>
905template<class T>
906inline Fault
907BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
908{
909 if (traceData) {
910 traceData->setAddr(addr);
911 traceData->setData(data);
912 }
913
914 reqMade = true;
915 Request *req = new Request();
916 req->setVirt(asid, addr, sizeof(T), flags, this->PC);
917 req->setThreadContext(thread->contextId(), threadNumber);
918
919 fault = cpu->dtb->translate(req, thread->getTC(), true);
920
921 if (req->isUncacheable())
922 isUncacheable = true;
923
924 if (fault == NoFault) {
925 effAddr = req->getVaddr();
926 effAddrValid = true;
927 physEffAddr = req->getPaddr();
928 memReqFlags = req->getFlags();
929
930 if (req->isCondSwap()) {
931 assert(res);
932 req->setExtraData(*res);
933 }
934#if 0
935 if (cpu->system->memctrl->badaddr(physEffAddr)) {
936 fault = TheISA::genMachineCheckFault();
937 } else {
938 fault = cpu->write(req, data, sqIdx);
939 }
940#else
941 fault = cpu->write(req, data, sqIdx);
942#endif
943 } else {
944 delete req;
945 }
946
947 return fault;
948}
949
950#endif // __CPU_BASE_DYN_INST_HH__