Deleted Added
sdiff udiff text old ( 5358:e9acb84bbafb ) new ( 5543:3af77710f397 )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61 public:
62 // Typedef for the CPU.
63 typedef typename Impl::CPUType ImplCPU;
64 typedef typename ImplCPU::ImplState ImplState;
65
66 // Logical register index type.
67 typedef TheISA::RegIndex RegIndex;
68 // Integer register type.
69 typedef TheISA::IntReg IntReg;
70 // Floating point register type.
71 typedef TheISA::FloatReg FloatReg;
72
73 // The DynInstPtr type.
74 typedef typename Impl::DynInstPtr DynInstPtr;
75
76 // The list of instructions iterator type.
77 typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79 enum {
80 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
81 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
82 };
83
84 /** The StaticInst used by this BaseDynInst. */
85 StaticInstPtr staticInst;
86
87 ////////////////////////////////////////////
88 //
89 // INSTRUCTION EXECUTION
90 //
91 ////////////////////////////////////////////
92 /** InstRecord that tracks this instructions. */
93 Trace::InstRecord *traceData;
94
95 void demapPage(Addr vaddr, uint64_t asn)
96 {
97 cpu->demapPage(vaddr, asn);
98 }
99 void demapInstPage(Addr vaddr, uint64_t asn)
100 {
101 cpu->demapPage(vaddr, asn);
102 }
103 void demapDataPage(Addr vaddr, uint64_t asn)
104 {
105 cpu->demapPage(vaddr, asn);
106 }
107
108 /**
109 * Does a read to a given address.
110 * @param addr The address to read.
111 * @param data The read's data is written into this parameter.
112 * @param flags The request's flags.
113 * @return Returns any fault due to the read.
114 */
115 template <class T>
116 Fault read(Addr addr, T &data, unsigned flags);
117
118 Fault translateDataReadAddr(Addr vaddr, Addr &paddr,
119 int size, unsigned flags);
120
121 /**
122 * Does a write to a given address.
123 * @param data The data to be written.
124 * @param addr The address to write to.
125 * @param flags The request's flags.
126 * @param res The result of the write (for load locked/store conditionals).
127 * @return Returns any fault due to the write.
128 */
129 template <class T>
130 Fault write(T data, Addr addr, unsigned flags,
131 uint64_t *res);
132
133 Fault translateDataWriteAddr(Addr vaddr, Addr &paddr,
134 int size, unsigned flags);
135
136 void prefetch(Addr addr, unsigned flags);
137 void writeHint(Addr addr, int size, unsigned flags);
138 Fault copySrcTranslate(Addr src);
139 Fault copy(Addr dest);
140
141 /** @todo: Consider making this private. */
142 public:
143 /** The sequence number of the instruction. */
144 InstSeqNum seqNum;
145
146 enum Status {
147 IqEntry, /// Instruction is in the IQ
148 RobEntry, /// Instruction is in the ROB
149 LsqEntry, /// Instruction is in the LSQ
150 Completed, /// Instruction has completed
151 ResultReady, /// Instruction has its result
152 CanIssue, /// Instruction can issue and execute
153 Issued, /// Instruction has issued
154 Executed, /// Instruction has executed
155 CanCommit, /// Instruction can commit
156 AtCommit, /// Instruction has reached commit
157 Committed, /// Instruction has committed
158 Squashed, /// Instruction is squashed
159 SquashedInIQ, /// Instruction is squashed in the IQ
160 SquashedInLSQ, /// Instruction is squashed in the LSQ
161 SquashedInROB, /// Instruction is squashed in the ROB
162 RecoverInst, /// Is a recover instruction
163 BlockingInst, /// Is a blocking instruction
164 ThreadsyncWait, /// Is a thread synchronization instruction
165 SerializeBefore, /// Needs to serialize on
166 /// instructions ahead of it
167 SerializeAfter, /// Needs to serialize instructions behind it
168 SerializeHandled, /// Serialization has been handled
169 NumStatus
170 };
171
172 /** The status of this BaseDynInst. Several bits can be set. */
173 std::bitset<NumStatus> status;
174
175 /** The thread this instruction is from. */
176 short threadNumber;
177
178 /** data address space ID, for loads & stores. */
179 short asid;
180
181 /** How many source registers are ready. */
182 unsigned readyRegs;
183
184 /** Pointer to the Impl's CPU object. */
185 ImplCPU *cpu;
186
187 /** Pointer to the thread state. */
188 ImplState *thread;
189
190 /** The kind of fault this instruction has generated. */
191 Fault fault;
192
193 /** Pointer to the data for the memory access. */
194 uint8_t *memData;
195
196 /** The effective virtual address (lds & stores only). */
197 Addr effAddr;
198
199 /** Is the effective virtual address valid. */
200 bool effAddrValid;
201
202 /** The effective physical address. */
203 Addr physEffAddr;
204
205 /** Effective virtual address for a copy source. */
206 Addr copySrcEffAddr;
207
208 /** Effective physical address for a copy source. */
209 Addr copySrcPhysEffAddr;
210
211 /** The memory request flags (from translation). */
212 unsigned memReqFlags;
213
214 union Result {
215 uint64_t integer;
216// float fp;
217 double dbl;
218 };
219
220 /** The result of the instruction; assumes for now that there's only one
221 * destination register.
222 */
223 Result instResult;
224
225 /** Records changes to result? */
226 bool recordResult;
227
228 /** PC of this instruction. */
229 Addr PC;
230
231 /** Micro PC of this instruction. */
232 Addr microPC;
233
234 protected:
235 /** Next non-speculative PC. It is not filled in at fetch, but rather
236 * once the target of the branch is truly known (either decode or
237 * execute).
238 */
239 Addr nextPC;
240
241 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
242 Addr nextNPC;
243
244 /** Next non-speculative micro PC. */
245 Addr nextMicroPC;
246
247 /** Predicted next PC. */
248 Addr predPC;
249
250 /** Predicted next NPC. */
251 Addr predNPC;
252
253 /** Predicted next microPC */
254 Addr predMicroPC;
255
256 /** If this is a branch that was predicted taken */
257 bool predTaken;
258
259 public:
260
261 /** Count of total number of dynamic instructions. */
262 static int instcount;
263
264#ifdef DEBUG
265 void dumpSNList();
266#endif
267
268 /** Whether or not the source register is ready.
269 * @todo: Not sure this should be here vs the derived class.
270 */
271 bool _readySrcRegIdx[MaxInstSrcRegs];
272
273 protected:
274 /** Flattened register index of the destination registers of this
275 * instruction.
276 */
277 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
278
279 /** Flattened register index of the source registers of this
280 * instruction.
281 */
282 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
283
284 /** Physical register index of the destination registers of this
285 * instruction.
286 */
287 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
288
289 /** Physical register index of the source registers of this
290 * instruction.
291 */
292 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
293
294 /** Physical register index of the previous producers of the
295 * architected destinations.
296 */
297 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
298
299 public:
300
301 /** Returns the physical register index of the i'th destination
302 * register.
303 */
304 PhysRegIndex renamedDestRegIdx(int idx) const
305 {
306 return _destRegIdx[idx];
307 }
308
309 /** Returns the physical register index of the i'th source register. */
310 PhysRegIndex renamedSrcRegIdx(int idx) const
311 {
312 return _srcRegIdx[idx];
313 }
314
315 /** Returns the flattened register index of the i'th destination
316 * register.
317 */
318 TheISA::RegIndex flattenedDestRegIdx(int idx) const
319 {
320 return _flatDestRegIdx[idx];
321 }
322
323 /** Returns the flattened register index of the i'th source register */
324 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
325 {
326 return _flatSrcRegIdx[idx];
327 }
328
329 /** Returns the physical register index of the previous physical register
330 * that remapped to the same logical register index.
331 */
332 PhysRegIndex prevDestRegIdx(int idx) const
333 {
334 return _prevDestRegIdx[idx];
335 }
336
337 /** Renames a destination register to a physical register. Also records
338 * the previous physical register that the logical register mapped to.
339 */
340 void renameDestReg(int idx,
341 PhysRegIndex renamed_dest,
342 PhysRegIndex previous_rename)
343 {
344 _destRegIdx[idx] = renamed_dest;
345 _prevDestRegIdx[idx] = previous_rename;
346 }
347
348 /** Renames a source logical register to the physical register which
349 * has/will produce that logical register's result.
350 * @todo: add in whether or not the source register is ready.
351 */
352 void renameSrcReg(int idx, PhysRegIndex renamed_src)
353 {
354 _srcRegIdx[idx] = renamed_src;
355 }
356
357 /** Flattens a source architectural register index into a logical index.
358 */
359 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
360 {
361 _flatSrcRegIdx[idx] = flattened_src;
362 }
363
364 /** Flattens a destination architectural register index into a logical
365 * index.
366 */
367 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
368 {
369 _flatDestRegIdx[idx] = flattened_dest;
370 }
371 /** BaseDynInst constructor given a binary instruction.
372 * @param staticInst A StaticInstPtr to the underlying instruction.
373 * @param PC The PC of the instruction.
374 * @param pred_PC The predicted next PC.
375 * @param pred_NPC The predicted next NPC.
376 * @param seq_num The sequence number of the instruction.
377 * @param cpu Pointer to the instruction's CPU.
378 */
379 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
380 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
381 InstSeqNum seq_num, ImplCPU *cpu);
382
383 /** BaseDynInst constructor given a binary instruction.
384 * @param inst The binary instruction.
385 * @param PC The PC of the instruction.
386 * @param pred_PC The predicted next PC.
387 * @param pred_NPC The predicted next NPC.
388 * @param seq_num The sequence number of the instruction.
389 * @param cpu Pointer to the instruction's CPU.
390 */
391 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
392 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
393 InstSeqNum seq_num, ImplCPU *cpu);
394
395 /** BaseDynInst constructor given a StaticInst pointer.
396 * @param _staticInst The StaticInst for this BaseDynInst.
397 */
398 BaseDynInst(StaticInstPtr &_staticInst);
399
400 /** BaseDynInst destructor. */
401 ~BaseDynInst();
402
403 private:
404 /** Function to initialize variables in the constructors. */
405 void initVars();
406
407 public:
408 /** Dumps out contents of this BaseDynInst. */
409 void dump();
410
411 /** Dumps out contents of this BaseDynInst into given string. */
412 void dump(std::string &outstring);
413
414 /** Read this CPU's ID. */
415 int readCpuId() { return cpu->readCpuId(); }
416
417 /** Returns the fault type. */
418 Fault getFault() { return fault; }
419
420 /** Checks whether or not this instruction has had its branch target
421 * calculated yet. For now it is not utilized and is hacked to be
422 * always false.
423 * @todo: Actually use this instruction.
424 */
425 bool doneTargCalc() { return false; }
426
427 /** Returns the next PC. This could be the speculative next PC if it is
428 * called prior to the actual branch target being calculated.
429 */
430 Addr readNextPC() { return nextPC; }
431
432 /** Returns the next NPC. This could be the speculative next NPC if it is
433 * called prior to the actual branch target being calculated.
434 */
435 Addr readNextNPC()
436 {
437#if ISA_HAS_DELAY_SLOT
438 return nextNPC;
439#else
440 return nextPC + sizeof(TheISA::MachInst);
441#endif
442 }
443
444 Addr readNextMicroPC()
445 {
446 return nextMicroPC;
447 }
448
449 /** Set the predicted target of this current instruction. */
450 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
451 Addr predicted_MicroPC)
452 {
453 predPC = predicted_PC;
454 predNPC = predicted_NPC;
455 predMicroPC = predicted_MicroPC;
456 }
457
458 /** Returns the predicted PC immediately after the branch. */
459 Addr readPredPC() { return predPC; }
460
461 /** Returns the predicted PC two instructions after the branch */
462 Addr readPredNPC() { return predNPC; }
463
464 /** Returns the predicted micro PC after the branch */
465 Addr readPredMicroPC() { return predMicroPC; }
466
467 /** Returns whether the instruction was predicted taken or not. */
468 bool readPredTaken()
469 {
470 return predTaken;
471 }
472
473 void setPredTaken(bool predicted_taken)
474 {
475 predTaken = predicted_taken;
476 }
477
478 /** Returns whether the instruction mispredicted. */
479 bool mispredicted()
480 {
481 return readPredPC() != readNextPC() ||
482 readPredNPC() != readNextNPC() ||
483 readPredMicroPC() != readNextMicroPC();
484 }
485
486 //
487 // Instruction types. Forward checks to StaticInst object.
488 //
489 bool isNop() const { return staticInst->isNop(); }
490 bool isMemRef() const { return staticInst->isMemRef(); }
491 bool isLoad() const { return staticInst->isLoad(); }
492 bool isStore() const { return staticInst->isStore(); }
493 bool isStoreConditional() const
494 { return staticInst->isStoreConditional(); }
495 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
496 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
497 bool isCopy() const { return staticInst->isCopy(); }
498 bool isInteger() const { return staticInst->isInteger(); }
499 bool isFloating() const { return staticInst->isFloating(); }
500 bool isControl() const { return staticInst->isControl(); }
501 bool isCall() const { return staticInst->isCall(); }
502 bool isReturn() const { return staticInst->isReturn(); }
503 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
504 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
505 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
506 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
507 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
508 bool isThreadSync() const { return staticInst->isThreadSync(); }
509 bool isSerializing() const { return staticInst->isSerializing(); }
510 bool isSerializeBefore() const
511 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
512 bool isSerializeAfter() const
513 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
514 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
515 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
516 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
517 bool isQuiesce() const { return staticInst->isQuiesce(); }
518 bool isIprAccess() const { return staticInst->isIprAccess(); }
519 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
520 bool isSyscall() const { return staticInst->isSyscall(); }
521 bool isMacroop() const { return staticInst->isMacroop(); }
522 bool isMicroop() const { return staticInst->isMicroop(); }
523 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
524 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
525 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
526 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
527
528 /** Temporarily sets this instruction as a serialize before instruction. */
529 void setSerializeBefore() { status.set(SerializeBefore); }
530
531 /** Clears the serializeBefore part of this instruction. */
532 void clearSerializeBefore() { status.reset(SerializeBefore); }
533
534 /** Checks if this serializeBefore is only temporarily set. */
535 bool isTempSerializeBefore() { return status[SerializeBefore]; }
536
537 /** Temporarily sets this instruction as a serialize after instruction. */
538 void setSerializeAfter() { status.set(SerializeAfter); }
539
540 /** Clears the serializeAfter part of this instruction.*/
541 void clearSerializeAfter() { status.reset(SerializeAfter); }
542
543 /** Checks if this serializeAfter is only temporarily set. */
544 bool isTempSerializeAfter() { return status[SerializeAfter]; }
545
546 /** Sets the serialization part of this instruction as handled. */
547 void setSerializeHandled() { status.set(SerializeHandled); }
548
549 /** Checks if the serialization part of this instruction has been
550 * handled. This does not apply to the temporary serializing
551 * state; it only applies to this instruction's own permanent
552 * serializing state.
553 */
554 bool isSerializeHandled() { return status[SerializeHandled]; }
555
556 /** Returns the opclass of this instruction. */
557 OpClass opClass() const { return staticInst->opClass(); }
558
559 /** Returns the branch target address. */
560 Addr branchTarget() const { return staticInst->branchTarget(PC); }
561
562 /** Returns the number of source registers. */
563 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
564
565 /** Returns the number of destination registers. */
566 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
567
568 // the following are used to track physical register usage
569 // for machines with separate int & FP reg files
570 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
571 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
572
573 /** Returns the logical register index of the i'th destination register. */
574 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
575
576 /** Returns the logical register index of the i'th source register. */
577 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
578
579 /** Returns the result of an integer instruction. */
580 uint64_t readIntResult() { return instResult.integer; }
581
582 /** Returns the result of a floating point instruction. */
583 float readFloatResult() { return (float)instResult.dbl; }
584
585 /** Returns the result of a floating point (double) instruction. */
586 double readDoubleResult() { return instResult.dbl; }
587
588 /** Records an integer register being set to a value. */
589 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
590 {
591 if (recordResult)
592 instResult.integer = val;
593 }
594
595 /** Records an fp register being set to a value. */
596 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
597 int width)
598 {
599 if (recordResult) {
600 if (width == 32)
601 instResult.dbl = (double)val;
602 else if (width == 64)
603 instResult.dbl = val;
604 else
605 panic("Unsupported width!");
606 }
607 }
608
609 /** Records an fp register being set to a value. */
610 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
611 {
612 if (recordResult)
613 instResult.dbl = (double)val;
614 }
615
616 /** Records an fp register being set to an integer value. */
617 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
618 int width)
619 {
620 if (recordResult)
621 instResult.integer = val;
622 }
623
624 /** Records an fp register being set to an integer value. */
625 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
626 {
627 if (recordResult)
628 instResult.integer = val;
629 }
630
631 /** Records that one of the source registers is ready. */
632 void markSrcRegReady();
633
634 /** Marks a specific register as ready. */
635 void markSrcRegReady(RegIndex src_idx);
636
637 /** Returns if a source register is ready. */
638 bool isReadySrcRegIdx(int idx) const
639 {
640 return this->_readySrcRegIdx[idx];
641 }
642
643 /** Sets this instruction as completed. */
644 void setCompleted() { status.set(Completed); }
645
646 /** Returns whether or not this instruction is completed. */
647 bool isCompleted() const { return status[Completed]; }
648
649 /** Marks the result as ready. */
650 void setResultReady() { status.set(ResultReady); }
651
652 /** Returns whether or not the result is ready. */
653 bool isResultReady() const { return status[ResultReady]; }
654
655 /** Sets this instruction as ready to issue. */
656 void setCanIssue() { status.set(CanIssue); }
657
658 /** Returns whether or not this instruction is ready to issue. */
659 bool readyToIssue() const { return status[CanIssue]; }
660
661 /** Clears this instruction being able to issue. */
662 void clearCanIssue() { status.reset(CanIssue); }
663
664 /** Sets this instruction as issued from the IQ. */
665 void setIssued() { status.set(Issued); }
666
667 /** Returns whether or not this instruction has issued. */
668 bool isIssued() const { return status[Issued]; }
669
670 /** Clears this instruction as being issued. */
671 void clearIssued() { status.reset(Issued); }
672
673 /** Sets this instruction as executed. */
674 void setExecuted() { status.set(Executed); }
675
676 /** Returns whether or not this instruction has executed. */
677 bool isExecuted() const { return status[Executed]; }
678
679 /** Sets this instruction as ready to commit. */
680 void setCanCommit() { status.set(CanCommit); }
681
682 /** Clears this instruction as being ready to commit. */
683 void clearCanCommit() { status.reset(CanCommit); }
684
685 /** Returns whether or not this instruction is ready to commit. */
686 bool readyToCommit() const { return status[CanCommit]; }
687
688 void setAtCommit() { status.set(AtCommit); }
689
690 bool isAtCommit() { return status[AtCommit]; }
691
692 /** Sets this instruction as committed. */
693 void setCommitted() { status.set(Committed); }
694
695 /** Returns whether or not this instruction is committed. */
696 bool isCommitted() const { return status[Committed]; }
697
698 /** Sets this instruction as squashed. */
699 void setSquashed() { status.set(Squashed); }
700
701 /** Returns whether or not this instruction is squashed. */
702 bool isSquashed() const { return status[Squashed]; }
703
704 //Instruction Queue Entry
705 //-----------------------
706 /** Sets this instruction as a entry the IQ. */
707 void setInIQ() { status.set(IqEntry); }
708
709 /** Sets this instruction as a entry the IQ. */
710 void clearInIQ() { status.reset(IqEntry); }
711
712 /** Returns whether or not this instruction has issued. */
713 bool isInIQ() const { return status[IqEntry]; }
714
715 /** Sets this instruction as squashed in the IQ. */
716 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
717
718 /** Returns whether or not this instruction is squashed in the IQ. */
719 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
720
721
722 //Load / Store Queue Functions
723 //-----------------------
724 /** Sets this instruction as a entry the LSQ. */
725 void setInLSQ() { status.set(LsqEntry); }
726
727 /** Sets this instruction as a entry the LSQ. */
728 void removeInLSQ() { status.reset(LsqEntry); }
729
730 /** Returns whether or not this instruction is in the LSQ. */
731 bool isInLSQ() const { return status[LsqEntry]; }
732
733 /** Sets this instruction as squashed in the LSQ. */
734 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
735
736 /** Returns whether or not this instruction is squashed in the LSQ. */
737 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
738
739
740 //Reorder Buffer Functions
741 //-----------------------
742 /** Sets this instruction as a entry the ROB. */
743 void setInROB() { status.set(RobEntry); }
744
745 /** Sets this instruction as a entry the ROB. */
746 void clearInROB() { status.reset(RobEntry); }
747
748 /** Returns whether or not this instruction is in the ROB. */
749 bool isInROB() const { return status[RobEntry]; }
750
751 /** Sets this instruction as squashed in the ROB. */
752 void setSquashedInROB() { status.set(SquashedInROB); }
753
754 /** Returns whether or not this instruction is squashed in the ROB. */
755 bool isSquashedInROB() const { return status[SquashedInROB]; }
756
757 /** Read the PC of this instruction. */
758 const Addr readPC() const { return PC; }
759
760 /**Read the micro PC of this instruction. */
761 const Addr readMicroPC() const { return microPC; }
762
763 /** Set the next PC of this instruction (its actual target). */
764 void setNextPC(Addr val)
765 {
766 nextPC = val;
767 }
768
769 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
770 void setNextNPC(Addr val)
771 {
772#if ISA_HAS_DELAY_SLOT
773 nextNPC = val;
774#endif
775 }
776
777 void setNextMicroPC(Addr val)
778 {
779 nextMicroPC = val;
780 }
781
782 /** Sets the ASID. */
783 void setASID(short addr_space_id) { asid = addr_space_id; }
784
785 /** Sets the thread id. */
786 void setTid(unsigned tid) { threadNumber = tid; }
787
788 /** Sets the pointer to the thread state. */
789 void setThreadState(ImplState *state) { thread = state; }
790
791 /** Returns the thread context. */
792 ThreadContext *tcBase() { return thread->getTC(); }
793
794 private:
795 /** Instruction effective address.
796 * @todo: Consider if this is necessary or not.
797 */
798 Addr instEffAddr;
799
800 /** Whether or not the effective address calculation is completed.
801 * @todo: Consider if this is necessary or not.
802 */
803 bool eaCalcDone;
804
805 /** Is this instruction's memory access uncacheable. */
806 bool isUncacheable;
807
808 /** Has this instruction generated a memory request. */
809 bool reqMade;
810
811 public:
812 /** Sets the effective address. */
813 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
814
815 /** Returns the effective address. */
816 const Addr &getEA() const { return instEffAddr; }
817
818 /** Returns whether or not the eff. addr. calculation has been completed. */
819 bool doneEACalc() { return eaCalcDone; }
820
821 /** Returns whether or not the eff. addr. source registers are ready. */
822 bool eaSrcsReady();
823
824 /** Whether or not the memory operation is done. */
825 bool memOpDone;
826
827 /** Is this instruction's memory access uncacheable. */
828 bool uncacheable() { return isUncacheable; }
829
830 /** Has this instruction generated a memory request. */
831 bool hasRequest() { return reqMade; }
832
833 public:
834 /** Load queue index. */
835 int16_t lqIdx;
836
837 /** Store queue index. */
838 int16_t sqIdx;
839
840 /** Iterator pointing to this BaseDynInst in the list of all insts. */
841 ListIt instListIt;
842
843 /** Returns iterator to this instruction in the list of all insts. */
844 ListIt &getInstListIt() { return instListIt; }
845
846 /** Sets iterator for this instruction in the list of all insts. */
847 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
848
849 public:
850 /** Returns the number of consecutive store conditional failures. */
851 unsigned readStCondFailures()
852 { return thread->storeCondFailures; }
853
854 /** Sets the number of consecutive store conditional failures. */
855 void setStCondFailures(unsigned sc_failures)
856 { thread->storeCondFailures = sc_failures; }
857};
858
859template<class Impl>
860Fault
861BaseDynInst<Impl>::translateDataReadAddr(Addr vaddr, Addr &paddr,
862 int size, unsigned flags)
863{
864 if (traceData) {
865 traceData->setAddr(vaddr);
866 }
867
868 reqMade = true;
869 Request *req = new Request();
870 req->setVirt(asid, vaddr, size, flags, PC);
871 req->setThreadContext(thread->readCpuId(), threadNumber);
872
873 fault = cpu->translateDataReadReq(req, thread);
874
875 if (fault == NoFault)
876 paddr = req->getPaddr();
877
878 delete req;
879 return fault;
880}
881
882template<class Impl>
883template<class T>
884inline Fault
885BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
886{
887 reqMade = true;
888 Request *req = new Request();
889 req->setVirt(asid, addr, sizeof(T), flags, this->PC);
890 req->setThreadContext(thread->readCpuId(), threadNumber);
891
892 fault = cpu->translateDataReadReq(req, thread);
893
894 if (req->isUncacheable())
895 isUncacheable = true;
896
897 if (fault == NoFault) {
898 effAddr = req->getVaddr();
899 effAddrValid = true;
900 physEffAddr = req->getPaddr();
901 memReqFlags = req->getFlags();
902
903#if 0
904 if (cpu->system->memctrl->badaddr(physEffAddr)) {
905 fault = TheISA::genMachineCheckFault();
906 data = (T)-1;
907 this->setExecuted();
908 } else {
909 fault = cpu->read(req, data, lqIdx);
910 }
911#else
912 fault = cpu->read(req, data, lqIdx);
913#endif
914 } else {
915 // Return a fixed value to keep simulation deterministic even
916 // along misspeculated paths.
917 data = (T)-1;
918
919 // Commit will have to clean up whatever happened. Set this
920 // instruction as executed.
921 this->setExecuted();
922 delete req;
923 }
924
925 if (traceData) {
926 traceData->setAddr(addr);
927 traceData->setData(data);
928 }
929
930 return fault;
931}
932
933template<class Impl>
934Fault
935BaseDynInst<Impl>::translateDataWriteAddr(Addr vaddr, Addr &paddr,
936 int size, unsigned flags)
937{
938 if (traceData) {
939 traceData->setAddr(vaddr);
940 }
941
942 reqMade = true;
943 Request *req = new Request();
944 req->setVirt(asid, vaddr, size, flags, PC);
945 req->setThreadContext(thread->readCpuId(), threadNumber);
946
947 fault = cpu->translateDataWriteReq(req, thread);
948
949 if (fault == NoFault)
950 paddr = req->getPaddr();
951
952 delete req;
953 return fault;
954}
955
956template<class Impl>
957template<class T>
958inline Fault
959BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
960{
961 if (traceData) {
962 traceData->setAddr(addr);
963 traceData->setData(data);
964 }
965
966 reqMade = true;
967 Request *req = new Request();
968 req->setVirt(asid, addr, sizeof(T), flags, this->PC);
969 req->setThreadContext(thread->readCpuId(), threadNumber);
970
971 fault = cpu->translateDataWriteReq(req, thread);
972
973 if (req->isUncacheable())
974 isUncacheable = true;
975
976 if (fault == NoFault) {
977 effAddr = req->getVaddr();
978 effAddrValid = true;
979 physEffAddr = req->getPaddr();
980 memReqFlags = req->getFlags();
981
982 if (req->isCondSwap()) {
983 assert(res);
984 req->setExtraData(*res);
985 }
986#if 0
987 if (cpu->system->memctrl->badaddr(physEffAddr)) {
988 fault = TheISA::genMachineCheckFault();
989 } else {
990 fault = cpu->write(req, data, sqIdx);
991 }
992#else
993 fault = cpu->write(req, data, sqIdx);
994#endif
995 } else {
996 delete req;
997 }
998
999 return fault;
1000}
1001
1002#endif // __CPU_BASE_DYN_INST_HH__