Deleted Added
sdiff udiff text old ( 5003:2eb7f972aabf ) new ( 5177:4307a768e10e )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61 public:
62 // Typedef for the CPU.
63 typedef typename Impl::CPUType ImplCPU;
64 typedef typename ImplCPU::ImplState ImplState;
65
66 // Logical register index type.
67 typedef TheISA::RegIndex RegIndex;
68 // Integer register type.
69 typedef TheISA::IntReg IntReg;
70 // Floating point register type.
71 typedef TheISA::FloatReg FloatReg;
72
73 // The DynInstPtr type.
74 typedef typename Impl::DynInstPtr DynInstPtr;
75
76 // The list of instructions iterator type.
77 typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79 enum {
80 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
81 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
82 };
83
84 /** The StaticInst used by this BaseDynInst. */
85 StaticInstPtr staticInst;
86
87 ////////////////////////////////////////////
88 //
89 // INSTRUCTION EXECUTION
90 //
91 ////////////////////////////////////////////
92 /** InstRecord that tracks this instructions. */
93 Trace::InstRecord *traceData;
94
95 /**
96 * Does a read to a given address.
97 * @param addr The address to read.
98 * @param data The read's data is written into this parameter.
99 * @param flags The request's flags.
100 * @return Returns any fault due to the read.
101 */
102 template <class T>
103 Fault read(Addr addr, T &data, unsigned flags);
104
105 Fault translateDataReadAddr(Addr vaddr, Addr &paddr,
106 int size, unsigned flags);
107
108 /**
109 * Does a write to a given address.
110 * @param data The data to be written.
111 * @param addr The address to write to.
112 * @param flags The request's flags.
113 * @param res The result of the write (for load locked/store conditionals).
114 * @return Returns any fault due to the write.
115 */
116 template <class T>
117 Fault write(T data, Addr addr, unsigned flags,
118 uint64_t *res);
119
120 Fault translateDataWriteAddr(Addr vaddr, Addr &paddr,
121 int size, unsigned flags);
122
123 void prefetch(Addr addr, unsigned flags);
124 void writeHint(Addr addr, int size, unsigned flags);
125 Fault copySrcTranslate(Addr src);
126 Fault copy(Addr dest);
127
128 /** @todo: Consider making this private. */
129 public:
130 /** The sequence number of the instruction. */
131 InstSeqNum seqNum;
132
133 enum Status {
134 IqEntry, /// Instruction is in the IQ
135 RobEntry, /// Instruction is in the ROB
136 LsqEntry, /// Instruction is in the LSQ
137 Completed, /// Instruction has completed
138 ResultReady, /// Instruction has its result
139 CanIssue, /// Instruction can issue and execute
140 Issued, /// Instruction has issued
141 Executed, /// Instruction has executed
142 CanCommit, /// Instruction can commit
143 AtCommit, /// Instruction has reached commit
144 Committed, /// Instruction has committed
145 Squashed, /// Instruction is squashed
146 SquashedInIQ, /// Instruction is squashed in the IQ
147 SquashedInLSQ, /// Instruction is squashed in the LSQ
148 SquashedInROB, /// Instruction is squashed in the ROB
149 RecoverInst, /// Is a recover instruction
150 BlockingInst, /// Is a blocking instruction
151 ThreadsyncWait, /// Is a thread synchronization instruction
152 SerializeBefore, /// Needs to serialize on
153 /// instructions ahead of it
154 SerializeAfter, /// Needs to serialize instructions behind it
155 SerializeHandled, /// Serialization has been handled
156 NumStatus
157 };
158
159 /** The status of this BaseDynInst. Several bits can be set. */
160 std::bitset<NumStatus> status;
161
162 /** The thread this instruction is from. */
163 short threadNumber;
164
165 /** data address space ID, for loads & stores. */
166 short asid;
167
168 /** How many source registers are ready. */
169 unsigned readyRegs;
170
171 /** Pointer to the Impl's CPU object. */
172 ImplCPU *cpu;
173
174 /** Pointer to the thread state. */
175 ImplState *thread;
176
177 /** The kind of fault this instruction has generated. */
178 Fault fault;
179
180 /** Pointer to the data for the memory access. */
181 uint8_t *memData;
182
183 /** The effective virtual address (lds & stores only). */
184 Addr effAddr;
185
186 /** Is the effective virtual address valid. */
187 bool effAddrValid;
188
189 /** The effective physical address. */
190 Addr physEffAddr;
191
192 /** Effective virtual address for a copy source. */
193 Addr copySrcEffAddr;
194
195 /** Effective physical address for a copy source. */
196 Addr copySrcPhysEffAddr;
197
198 /** The memory request flags (from translation). */
199 unsigned memReqFlags;
200
201 union Result {
202 uint64_t integer;
203// float fp;
204 double dbl;
205 };
206
207 /** The result of the instruction; assumes for now that there's only one
208 * destination register.
209 */
210 Result instResult;
211
212 /** Records changes to result? */
213 bool recordResult;
214
215 /** PC of this instruction. */
216 Addr PC;
217
218 /** Micro PC of this instruction. */
219 Addr microPC;
220
221 protected:
222 /** Next non-speculative PC. It is not filled in at fetch, but rather
223 * once the target of the branch is truly known (either decode or
224 * execute).
225 */
226 Addr nextPC;
227
228 /** Next non-speculative NPC. Target PC for Mips or Sparc. */
229 Addr nextNPC;
230
231 /** Next non-speculative micro PC. */
232 Addr nextMicroPC;
233
234 /** Predicted next PC. */
235 Addr predPC;
236
237 /** Predicted next NPC. */
238 Addr predNPC;
239
240 /** Predicted next microPC */
241 Addr predMicroPC;
242
243 /** If this is a branch that was predicted taken */
244 bool predTaken;
245
246 public:
247
248 /** Count of total number of dynamic instructions. */
249 static int instcount;
250
251#ifdef DEBUG
252 void dumpSNList();
253#endif
254
255 /** Whether or not the source register is ready.
256 * @todo: Not sure this should be here vs the derived class.
257 */
258 bool _readySrcRegIdx[MaxInstSrcRegs];
259
260 protected:
261 /** Flattened register index of the destination registers of this
262 * instruction.
263 */
264 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
265
266 /** Flattened register index of the source registers of this
267 * instruction.
268 */
269 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
270
271 /** Physical register index of the destination registers of this
272 * instruction.
273 */
274 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
275
276 /** Physical register index of the source registers of this
277 * instruction.
278 */
279 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
280
281 /** Physical register index of the previous producers of the
282 * architected destinations.
283 */
284 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
285
286 public:
287
288 /** Returns the physical register index of the i'th destination
289 * register.
290 */
291 PhysRegIndex renamedDestRegIdx(int idx) const
292 {
293 return _destRegIdx[idx];
294 }
295
296 /** Returns the physical register index of the i'th source register. */
297 PhysRegIndex renamedSrcRegIdx(int idx) const
298 {
299 return _srcRegIdx[idx];
300 }
301
302 /** Returns the flattened register index of the i'th destination
303 * register.
304 */
305 TheISA::RegIndex flattenedDestRegIdx(int idx) const
306 {
307 return _flatDestRegIdx[idx];
308 }
309
310 /** Returns the flattened register index of the i'th source register */
311 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
312 {
313 return _flatSrcRegIdx[idx];
314 }
315
316 /** Returns the physical register index of the previous physical register
317 * that remapped to the same logical register index.
318 */
319 PhysRegIndex prevDestRegIdx(int idx) const
320 {
321 return _prevDestRegIdx[idx];
322 }
323
324 /** Renames a destination register to a physical register. Also records
325 * the previous physical register that the logical register mapped to.
326 */
327 void renameDestReg(int idx,
328 PhysRegIndex renamed_dest,
329 PhysRegIndex previous_rename)
330 {
331 _destRegIdx[idx] = renamed_dest;
332 _prevDestRegIdx[idx] = previous_rename;
333 }
334
335 /** Renames a source logical register to the physical register which
336 * has/will produce that logical register's result.
337 * @todo: add in whether or not the source register is ready.
338 */
339 void renameSrcReg(int idx, PhysRegIndex renamed_src)
340 {
341 _srcRegIdx[idx] = renamed_src;
342 }
343
344 /** Flattens a source architectural register index into a logical index.
345 */
346 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
347 {
348 _flatSrcRegIdx[idx] = flattened_src;
349 }
350
351 /** Flattens a destination architectural register index into a logical
352 * index.
353 */
354 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
355 {
356 _flatDestRegIdx[idx] = flattened_dest;
357 }
358 /** BaseDynInst constructor given a binary instruction.
359 * @param staticInst A StaticInstPtr to the underlying instruction.
360 * @param PC The PC of the instruction.
361 * @param pred_PC The predicted next PC.
362 * @param pred_NPC The predicted next NPC.
363 * @param seq_num The sequence number of the instruction.
364 * @param cpu Pointer to the instruction's CPU.
365 */
366 BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
367 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
368 InstSeqNum seq_num, ImplCPU *cpu);
369
370 /** BaseDynInst constructor given a binary instruction.
371 * @param inst The binary instruction.
372 * @param PC The PC of the instruction.
373 * @param pred_PC The predicted next PC.
374 * @param pred_NPC The predicted next NPC.
375 * @param seq_num The sequence number of the instruction.
376 * @param cpu Pointer to the instruction's CPU.
377 */
378 BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
379 Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
380 InstSeqNum seq_num, ImplCPU *cpu);
381
382 /** BaseDynInst constructor given a StaticInst pointer.
383 * @param _staticInst The StaticInst for this BaseDynInst.
384 */
385 BaseDynInst(StaticInstPtr &_staticInst);
386
387 /** BaseDynInst destructor. */
388 ~BaseDynInst();
389
390 private:
391 /** Function to initialize variables in the constructors. */
392 void initVars();
393
394 public:
395 /** Dumps out contents of this BaseDynInst. */
396 void dump();
397
398 /** Dumps out contents of this BaseDynInst into given string. */
399 void dump(std::string &outstring);
400
401 /** Read this CPU's ID. */
402 int readCpuId() { return cpu->readCpuId(); }
403
404 /** Returns the fault type. */
405 Fault getFault() { return fault; }
406
407 /** Checks whether or not this instruction has had its branch target
408 * calculated yet. For now it is not utilized and is hacked to be
409 * always false.
410 * @todo: Actually use this instruction.
411 */
412 bool doneTargCalc() { return false; }
413
414 /** Returns the next PC. This could be the speculative next PC if it is
415 * called prior to the actual branch target being calculated.
416 */
417 Addr readNextPC() { return nextPC; }
418
419 /** Returns the next NPC. This could be the speculative next NPC if it is
420 * called prior to the actual branch target being calculated.
421 */
422 Addr readNextNPC()
423 {
424#if ISA_HAS_DELAY_SLOT
425 return nextNPC;
426#else
427 return nextPC + sizeof(TheISA::MachInst);
428#endif
429 }
430
431 Addr readNextMicroPC()
432 {
433 return nextMicroPC;
434 }
435
436 /** Set the predicted target of this current instruction. */
437 void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
438 Addr predicted_MicroPC)
439 {
440 predPC = predicted_PC;
441 predNPC = predicted_NPC;
442 predMicroPC = predicted_MicroPC;
443 }
444
445 /** Returns the predicted PC immediately after the branch. */
446 Addr readPredPC() { return predPC; }
447
448 /** Returns the predicted PC two instructions after the branch */
449 Addr readPredNPC() { return predNPC; }
450
451 /** Returns the predicted micro PC after the branch */
452 Addr readPredMicroPC() { return predMicroPC; }
453
454 /** Returns whether the instruction was predicted taken or not. */
455 bool readPredTaken()
456 {
457 return predTaken;
458 }
459
460 void setPredTaken(bool predicted_taken)
461 {
462 predTaken = predicted_taken;
463 }
464
465 /** Returns whether the instruction mispredicted. */
466 bool mispredicted()
467 {
468 return readPredPC() != readNextPC() ||
469 readPredNPC() != readNextNPC() ||
470 readPredMicroPC() != readNextMicroPC();
471 }
472
473 //
474 // Instruction types. Forward checks to StaticInst object.
475 //
476 bool isNop() const { return staticInst->isNop(); }
477 bool isMemRef() const { return staticInst->isMemRef(); }
478 bool isLoad() const { return staticInst->isLoad(); }
479 bool isStore() const { return staticInst->isStore(); }
480 bool isStoreConditional() const
481 { return staticInst->isStoreConditional(); }
482 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
483 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
484 bool isCopy() const { return staticInst->isCopy(); }
485 bool isInteger() const { return staticInst->isInteger(); }
486 bool isFloating() const { return staticInst->isFloating(); }
487 bool isControl() const { return staticInst->isControl(); }
488 bool isCall() const { return staticInst->isCall(); }
489 bool isReturn() const { return staticInst->isReturn(); }
490 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
491 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
492 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
493 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
494 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
495 bool isThreadSync() const { return staticInst->isThreadSync(); }
496 bool isSerializing() const { return staticInst->isSerializing(); }
497 bool isSerializeBefore() const
498 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
499 bool isSerializeAfter() const
500 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
501 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
502 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
503 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
504 bool isQuiesce() const { return staticInst->isQuiesce(); }
505 bool isIprAccess() const { return staticInst->isIprAccess(); }
506 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
507 bool isSyscall() const { return staticInst->isSyscall(); }
508 bool isMacroop() const { return staticInst->isMacroop(); }
509 bool isMicroop() const { return staticInst->isMicroop(); }
510 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
511 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
512 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
513 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
514
515 /** Temporarily sets this instruction as a serialize before instruction. */
516 void setSerializeBefore() { status.set(SerializeBefore); }
517
518 /** Clears the serializeBefore part of this instruction. */
519 void clearSerializeBefore() { status.reset(SerializeBefore); }
520
521 /** Checks if this serializeBefore is only temporarily set. */
522 bool isTempSerializeBefore() { return status[SerializeBefore]; }
523
524 /** Temporarily sets this instruction as a serialize after instruction. */
525 void setSerializeAfter() { status.set(SerializeAfter); }
526
527 /** Clears the serializeAfter part of this instruction.*/
528 void clearSerializeAfter() { status.reset(SerializeAfter); }
529
530 /** Checks if this serializeAfter is only temporarily set. */
531 bool isTempSerializeAfter() { return status[SerializeAfter]; }
532
533 /** Sets the serialization part of this instruction as handled. */
534 void setSerializeHandled() { status.set(SerializeHandled); }
535
536 /** Checks if the serialization part of this instruction has been
537 * handled. This does not apply to the temporary serializing
538 * state; it only applies to this instruction's own permanent
539 * serializing state.
540 */
541 bool isSerializeHandled() { return status[SerializeHandled]; }
542
543 /** Returns the opclass of this instruction. */
544 OpClass opClass() const { return staticInst->opClass(); }
545
546 /** Returns the branch target address. */
547 Addr branchTarget() const { return staticInst->branchTarget(PC); }
548
549 /** Returns the number of source registers. */
550 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
551
552 /** Returns the number of destination registers. */
553 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
554
555 // the following are used to track physical register usage
556 // for machines with separate int & FP reg files
557 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
558 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
559
560 /** Returns the logical register index of the i'th destination register. */
561 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
562
563 /** Returns the logical register index of the i'th source register. */
564 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
565
566 /** Returns the result of an integer instruction. */
567 uint64_t readIntResult() { return instResult.integer; }
568
569 /** Returns the result of a floating point instruction. */
570 float readFloatResult() { return (float)instResult.dbl; }
571
572 /** Returns the result of a floating point (double) instruction. */
573 double readDoubleResult() { return instResult.dbl; }
574
575 /** Records an integer register being set to a value. */
576 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
577 {
578 if (recordResult)
579 instResult.integer = val;
580 }
581
582 /** Records an fp register being set to a value. */
583 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
584 int width)
585 {
586 if (recordResult) {
587 if (width == 32)
588 instResult.dbl = (double)val;
589 else if (width == 64)
590 instResult.dbl = val;
591 else
592 panic("Unsupported width!");
593 }
594 }
595
596 /** Records an fp register being set to a value. */
597 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
598 {
599 if (recordResult)
600 instResult.dbl = (double)val;
601 }
602
603 /** Records an fp register being set to an integer value. */
604 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
605 int width)
606 {
607 if (recordResult)
608 instResult.integer = val;
609 }
610
611 /** Records an fp register being set to an integer value. */
612 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
613 {
614 if (recordResult)
615 instResult.integer = val;
616 }
617
618 /** Records that one of the source registers is ready. */
619 void markSrcRegReady();
620
621 /** Marks a specific register as ready. */
622 void markSrcRegReady(RegIndex src_idx);
623
624 /** Returns if a source register is ready. */
625 bool isReadySrcRegIdx(int idx) const
626 {
627 return this->_readySrcRegIdx[idx];
628 }
629
630 /** Sets this instruction as completed. */
631 void setCompleted() { status.set(Completed); }
632
633 /** Returns whether or not this instruction is completed. */
634 bool isCompleted() const { return status[Completed]; }
635
636 /** Marks the result as ready. */
637 void setResultReady() { status.set(ResultReady); }
638
639 /** Returns whether or not the result is ready. */
640 bool isResultReady() const { return status[ResultReady]; }
641
642 /** Sets this instruction as ready to issue. */
643 void setCanIssue() { status.set(CanIssue); }
644
645 /** Returns whether or not this instruction is ready to issue. */
646 bool readyToIssue() const { return status[CanIssue]; }
647
648 /** Clears this instruction being able to issue. */
649 void clearCanIssue() { status.reset(CanIssue); }
650
651 /** Sets this instruction as issued from the IQ. */
652 void setIssued() { status.set(Issued); }
653
654 /** Returns whether or not this instruction has issued. */
655 bool isIssued() const { return status[Issued]; }
656
657 /** Clears this instruction as being issued. */
658 void clearIssued() { status.reset(Issued); }
659
660 /** Sets this instruction as executed. */
661 void setExecuted() { status.set(Executed); }
662
663 /** Returns whether or not this instruction has executed. */
664 bool isExecuted() const { return status[Executed]; }
665
666 /** Sets this instruction as ready to commit. */
667 void setCanCommit() { status.set(CanCommit); }
668
669 /** Clears this instruction as being ready to commit. */
670 void clearCanCommit() { status.reset(CanCommit); }
671
672 /** Returns whether or not this instruction is ready to commit. */
673 bool readyToCommit() const { return status[CanCommit]; }
674
675 void setAtCommit() { status.set(AtCommit); }
676
677 bool isAtCommit() { return status[AtCommit]; }
678
679 /** Sets this instruction as committed. */
680 void setCommitted() { status.set(Committed); }
681
682 /** Returns whether or not this instruction is committed. */
683 bool isCommitted() const { return status[Committed]; }
684
685 /** Sets this instruction as squashed. */
686 void setSquashed() { status.set(Squashed); }
687
688 /** Returns whether or not this instruction is squashed. */
689 bool isSquashed() const { return status[Squashed]; }
690
691 //Instruction Queue Entry
692 //-----------------------
693 /** Sets this instruction as a entry the IQ. */
694 void setInIQ() { status.set(IqEntry); }
695
696 /** Sets this instruction as a entry the IQ. */
697 void clearInIQ() { status.reset(IqEntry); }
698
699 /** Returns whether or not this instruction has issued. */
700 bool isInIQ() const { return status[IqEntry]; }
701
702 /** Sets this instruction as squashed in the IQ. */
703 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
704
705 /** Returns whether or not this instruction is squashed in the IQ. */
706 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
707
708
709 //Load / Store Queue Functions
710 //-----------------------
711 /** Sets this instruction as a entry the LSQ. */
712 void setInLSQ() { status.set(LsqEntry); }
713
714 /** Sets this instruction as a entry the LSQ. */
715 void removeInLSQ() { status.reset(LsqEntry); }
716
717 /** Returns whether or not this instruction is in the LSQ. */
718 bool isInLSQ() const { return status[LsqEntry]; }
719
720 /** Sets this instruction as squashed in the LSQ. */
721 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
722
723 /** Returns whether or not this instruction is squashed in the LSQ. */
724 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
725
726
727 //Reorder Buffer Functions
728 //-----------------------
729 /** Sets this instruction as a entry the ROB. */
730 void setInROB() { status.set(RobEntry); }
731
732 /** Sets this instruction as a entry the ROB. */
733 void clearInROB() { status.reset(RobEntry); }
734
735 /** Returns whether or not this instruction is in the ROB. */
736 bool isInROB() const { return status[RobEntry]; }
737
738 /** Sets this instruction as squashed in the ROB. */
739 void setSquashedInROB() { status.set(SquashedInROB); }
740
741 /** Returns whether or not this instruction is squashed in the ROB. */
742 bool isSquashedInROB() const { return status[SquashedInROB]; }
743
744 /** Read the PC of this instruction. */
745 const Addr readPC() const { return PC; }
746
747 /**Read the micro PC of this instruction. */
748 const Addr readMicroPC() const { return microPC; }
749
750 /** Set the next PC of this instruction (its actual target). */
751 void setNextPC(Addr val)
752 {
753 nextPC = val;
754 }
755
756 /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
757 void setNextNPC(Addr val)
758 {
759#if ISA_HAS_DELAY_SLOT
760 nextNPC = val;
761#endif
762 }
763
764 void setNextMicroPC(Addr val)
765 {
766 nextMicroPC = val;
767 }
768
769 /** Sets the ASID. */
770 void setASID(short addr_space_id) { asid = addr_space_id; }
771
772 /** Sets the thread id. */
773 void setTid(unsigned tid) { threadNumber = tid; }
774
775 /** Sets the pointer to the thread state. */
776 void setThreadState(ImplState *state) { thread = state; }
777
778 /** Returns the thread context. */
779 ThreadContext *tcBase() { return thread->getTC(); }
780
781 private:
782 /** Instruction effective address.
783 * @todo: Consider if this is necessary or not.
784 */
785 Addr instEffAddr;
786
787 /** Whether or not the effective address calculation is completed.
788 * @todo: Consider if this is necessary or not.
789 */
790 bool eaCalcDone;
791
792 /** Is this instruction's memory access uncacheable. */
793 bool isUncacheable;
794
795 /** Has this instruction generated a memory request. */
796 bool reqMade;
797
798 public:
799 /** Sets the effective address. */
800 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
801
802 /** Returns the effective address. */
803 const Addr &getEA() const { return instEffAddr; }
804
805 /** Returns whether or not the eff. addr. calculation has been completed. */
806 bool doneEACalc() { return eaCalcDone; }
807
808 /** Returns whether or not the eff. addr. source registers are ready. */
809 bool eaSrcsReady();
810
811 /** Whether or not the memory operation is done. */
812 bool memOpDone;
813
814 /** Is this instruction's memory access uncacheable. */
815 bool uncacheable() { return isUncacheable; }
816
817 /** Has this instruction generated a memory request. */
818 bool hasRequest() { return reqMade; }
819
820 public:
821 /** Load queue index. */
822 int16_t lqIdx;
823
824 /** Store queue index. */
825 int16_t sqIdx;
826
827 /** Iterator pointing to this BaseDynInst in the list of all insts. */
828 ListIt instListIt;
829
830 /** Returns iterator to this instruction in the list of all insts. */
831 ListIt &getInstListIt() { return instListIt; }
832
833 /** Sets iterator for this instruction in the list of all insts. */
834 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
835
836 public:
837 /** Returns the number of consecutive store conditional failures. */
838 unsigned readStCondFailures()
839 { return thread->storeCondFailures; }
840
841 /** Sets the number of consecutive store conditional failures. */
842 void setStCondFailures(unsigned sc_failures)
843 { thread->storeCondFailures = sc_failures; }
844};
845
846template<class Impl>
847Fault
848BaseDynInst<Impl>::translateDataReadAddr(Addr vaddr, Addr &paddr,
849 int size, unsigned flags)
850{
851 if (traceData) {
852 traceData->setAddr(vaddr);
853 }
854
855 reqMade = true;
856 Request *req = new Request();
857 req->setVirt(asid, vaddr, size, flags, PC);
858 req->setThreadContext(thread->readCpuId(), threadNumber);
859
860 fault = cpu->translateDataReadReq(req, thread);
861
862 if (fault == NoFault)
863 paddr = req->getPaddr();
864
865 delete req;
866 return fault;
867}
868
869template<class Impl>
870template<class T>
871inline Fault
872BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
873{
874 reqMade = true;
875 Request *req = new Request();
876 req->setVirt(asid, addr, sizeof(T), flags, this->PC);
877 req->setThreadContext(thread->readCpuId(), threadNumber);
878
879 fault = cpu->translateDataReadReq(req, thread);
880
881 if (req->isUncacheable())
882 isUncacheable = true;
883
884 if (fault == NoFault) {
885 effAddr = req->getVaddr();
886 effAddrValid = true;
887 physEffAddr = req->getPaddr();
888 memReqFlags = req->getFlags();
889
890#if 0
891 if (cpu->system->memctrl->badaddr(physEffAddr)) {
892 fault = TheISA::genMachineCheckFault();
893 data = (T)-1;
894 this->setExecuted();
895 } else {
896 fault = cpu->read(req, data, lqIdx);
897 }
898#else
899 fault = cpu->read(req, data, lqIdx);
900#endif
901 } else {
902 // Return a fixed value to keep simulation deterministic even
903 // along misspeculated paths.
904 data = (T)-1;
905
906 // Commit will have to clean up whatever happened. Set this
907 // instruction as executed.
908 this->setExecuted();
909 delete req;
910 }
911
912 if (traceData) {
913 traceData->setAddr(addr);
914 traceData->setData(data);
915 }
916
917 return fault;
918}
919
920template<class Impl>
921Fault
922BaseDynInst<Impl>::translateDataWriteAddr(Addr vaddr, Addr &paddr,
923 int size, unsigned flags)
924{
925 if (traceData) {
926 traceData->setAddr(vaddr);
927 }
928
929 reqMade = true;
930 Request *req = new Request();
931 req->setVirt(asid, vaddr, size, flags, PC);
932 req->setThreadContext(thread->readCpuId(), threadNumber);
933
934 fault = cpu->translateDataWriteReq(req, thread);
935
936 if (fault == NoFault)
937 paddr = req->getPaddr();
938
939 delete req;
940 return fault;
941}
942
943template<class Impl>
944template<class T>
945inline Fault
946BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
947{
948 if (traceData) {
949 traceData->setAddr(addr);
950 traceData->setData(data);
951 }
952
953 reqMade = true;
954 Request *req = new Request();
955 req->setVirt(asid, addr, sizeof(T), flags, this->PC);
956 req->setThreadContext(thread->readCpuId(), threadNumber);
957
958 fault = cpu->translateDataWriteReq(req, thread);
959
960 if (req->isUncacheable())
961 isUncacheable = true;
962
963 if (fault == NoFault) {
964 effAddr = req->getVaddr();
965 effAddrValid = true;
966 physEffAddr = req->getPaddr();
967 memReqFlags = req->getFlags();
968
969 if (req->isCondSwap()) {
970 assert(res);
971 req->setExtraData(*res);
972 }
973#if 0
974 if (cpu->system->memctrl->badaddr(physEffAddr)) {
975 fault = TheISA::genMachineCheckFault();
976 } else {
977 fault = cpu->write(req, data, sqIdx);
978 }
979#else
980 fault = cpu->write(req, data, sqIdx);
981#endif
982 } else {
983 delete req;
984 }
985
986 return fault;
987}
988
989#endif // __CPU_BASE_DYN_INST_HH__