specialize.isa (4532:106c0fb74f7c) specialize.isa (4542:f6ca2384b304)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:

--- 53 unchanged lines hidden (view full) ---

62//
63
64let {{
65 # This code builds up a decode block which decodes based on switchval.
66 # vals is a dict which matches case values with what should be decoded to.
67 # builder is called on the exploded contents of "vals" values to generate
68 # whatever code should be used.
69 def doSplitDecode(Name, builder, switchVal, vals, default = None):
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:

--- 53 unchanged lines hidden (view full) ---

62//
63
64let {{
65 # This code builds up a decode block which decodes based on switchval.
66 # vals is a dict which matches case values with what should be decoded to.
67 # builder is called on the exploded contents of "vals" values to generate
68 # whatever code should be used.
69 def doSplitDecode(Name, builder, switchVal, vals, default = None):
70 decode_block = 'switch(%s) {\n' % switchVal
70 blocks = OutputBlocks()
71 blocks.decode_block = 'switch(%s) {\n' % switchVal
71 for (val, todo) in vals.items():
72 for (val, todo) in vals.items():
72 new_block = builder(Name, *todo)
73 new_block = '\tcase %s: %s\n' % (val, new_block)
74 decode_block += new_block
73 new_blocks = builder(Name, *todo)
74 new_blocks.decode_block = \
75 '\tcase %s: %s\n' % (val, new_blocks.decode_block)
76 blocks.append(new_blocks)
75 if default:
77 if default:
76 new_block = builder(Name, *default)
77 new_block = '\tdefault: %s\n' % new_block
78 decode_block += new_block
79 decode_block += '}\n'
80 return decode_block
78 new_blocks = builder(Name, *default)
79 new_blocks.decode_block = \
80 '\tdefault: %s\n' % new_blocks.decode_block
81 blocks.append(new_blocks)
82 blocks.decode_block += '}\n'
83 return blocks
81}};
82
83let {{
84 class OpType(object):
85 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Z0-9])(?P<rsize>[a-z]*))")
86 def __init__(self, opTypeString):
87 match = OpType.parser.search(opTypeString)
88 if match == None:
89 raise Exception, "Problem parsing operand type %s" % opTypeString
90 self.reg = match.group("reg")
91 self.tag = match.group("tag")
92 self.size = match.group("size")
93 self.rsize = match.group("rsize")
94
95 # This function specializes the given piece of code to use a particular
96 # set of argument types described by "opTypes".
97 def specializeInst(Name, opTypes, env):
84}};
85
86let {{
87 class OpType(object):
88 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Z0-9])(?P<rsize>[a-z]*))")
89 def __init__(self, opTypeString):
90 match = OpType.parser.search(opTypeString)
91 if match == None:
92 raise Exception, "Problem parsing operand type %s" % opTypeString
93 self.reg = match.group("reg")
94 self.tag = match.group("tag")
95 self.size = match.group("size")
96 self.rsize = match.group("rsize")
97
98 # This function specializes the given piece of code to use a particular
99 # set of argument types described by "opTypes".
100 def specializeInst(Name, opTypes, env):
101 print "Specializing %s with opTypes %s" % (Name, opTypes)
98 while len(opTypes):
102 while len(opTypes):
99 # print "Building a composite op with tags", opTypes
100 # print "And code", code
101 opNum = len(opTypes) - 1
102
103 # Parse the operand type string we're working with
103 # Parse the operand type string we're working with
104 opType = OpType(opTypes[opNum])
104 opType = OpType(opTypes[0])
105
106 if opType.reg:
107 #Figure out what to do with fixed register operands
108 #This is the index to use, so we should stick it some place.
105
106 if opType.reg:
107 #Figure out what to do with fixed register operands
108 #This is the index to use, so we should stick it some place.
109 print "INTREG_R%s" % (opType.reg + opType.size.upper())
109 if opType.reg in ("A", "B", "C", "D"):
110 env.addReg("INTREG_R%sX" % opType.reg)
111 else:
112 env.addReg("INTREG_R%s" % opType.reg)
110 if opType.size:
111 if opType.rsize in ("l", "h", "b"):
112 print "byte"
113 elif opType.rsize == "x":
114 print "word"
115 else:
116 print "Didn't recognize fixed register size %s!" % opType.rsize
117 elif opType.tag == None or opType.size == None:
118 raise Exception, "Problem parsing operand tag: %s" % opType.tag
119 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
120 # Use the "reg" field of the ModRM byte to select the register
113 if opType.size:
114 if opType.rsize in ("l", "h", "b"):
115 print "byte"
116 elif opType.rsize == "x":
117 print "word"
118 else:
119 print "Didn't recognize fixed register size %s!" % opType.rsize
120 elif opType.tag == None or opType.size == None:
121 raise Exception, "Problem parsing operand tag: %s" % opType.tag
122 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
123 # Use the "reg" field of the ModRM byte to select the register
121 print "(uint8_t)MODRM_REG"
124 env.addReg("(uint8_t)MODRM_REG")
122 elif opType.tag in ("E", "Q", "W"):
123 # This might refer to memory or to a register. We need to
124 # divide it up farther.
125 elif opType.tag in ("E", "Q", "W"):
126 # This might refer to memory or to a register. We need to
127 # divide it up farther.
125 print "(uint8_t)MODRM_RM"
126 regTypes = copy.copy(opTypes)
127 regTypes.pop(0)
128 regEnv = copy.copy(env)
128 regTypes = copy.copy(opTypes)
129 regTypes.pop(0)
130 regEnv = copy.copy(env)
131 regEnv.addReg("(uint8_t)MODRM_RM")
129 # This needs to refer to memory, but we'll fill in the details
130 # later. It needs to take into account unaligned memory
131 # addresses.
132 # This needs to refer to memory, but we'll fill in the details
133 # later. It needs to take into account unaligned memory
134 # addresses.
132 print "%0"
133 memTypes = copy.copy(opTypes)
134 memTypes.pop(0)
135 memEnv = copy.copy(env)
135 memTypes = copy.copy(opTypes)
136 memTypes.pop(0)
137 memEnv = copy.copy(env)
138 print "%0"
136 return doSplitDecode(Name, specializeInst, "MODRM_MOD",
139 return doSplitDecode(Name, specializeInst, "MODRM_MOD",
137 {"3" : (regTypes, memEnv)}, (memTypes, memEnv))
140 {"3" : (regTypes, regEnv)}, (memTypes, memEnv))
138 elif opType.tag in ("I", "J"):
139 # Immediates
140 print "IMMEDIATE"
141 elif opType.tag == "M":
142 # This needs to refer to memory, but we'll fill in the details
143 # later. It needs to take into account unaligned memory
144 # addresses.
145 print "%0"
146 elif opType.tag in ("PR", "R", "VR"):
147 # There should probably be a check here to verify that mod
148 # is equal to 11b
141 elif opType.tag in ("I", "J"):
142 # Immediates
143 print "IMMEDIATE"
144 elif opType.tag == "M":
145 # This needs to refer to memory, but we'll fill in the details
146 # later. It needs to take into account unaligned memory
147 # addresses.
148 print "%0"
149 elif opType.tag in ("PR", "R", "VR"):
150 # There should probably be a check here to verify that mod
151 # is equal to 11b
149 print "(uint8_t)MODRM_RM"
152 env.addReg("(uint8_t)MODRM_RM")
150 else:
151 raise Exception, "Unrecognized tag %s." % opType.tag
152 opTypes.pop(0)
153
154 # Generate code to return a macroop of the given name which will
155 # operate in the given "emulation environment"
156 return genMacroop(Name, env)
157}};
153 else:
154 raise Exception, "Unrecognized tag %s." % opType.tag
155 opTypes.pop(0)
156
157 # Generate code to return a macroop of the given name which will
158 # operate in the given "emulation environment"
159 return genMacroop(Name, env)
160}};