specialize.isa (4371:c5003760793e) specialize.isa (4528:f0b19ee67a7b)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:

--- 52 unchanged lines hidden (view full) ---

61// variety of operands
62//
63
64let {{
65 # This code builds up a decode block which decodes based on switchval.
66 # vals is a dict which matches case values with what should be decoded to.
67 # builder is called on the exploded contents of "vals" values to generate
68 # whatever code should be used.
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:

--- 52 unchanged lines hidden (view full) ---

61// variety of operands
62//
63
64let {{
65 # This code builds up a decode block which decodes based on switchval.
66 # vals is a dict which matches case values with what should be decoded to.
67 # builder is called on the exploded contents of "vals" values to generate
68 # whatever code should be used.
69 def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
70 blocks = OutputBlocks()
71 blocks.decode_block += 'switch(%s) {\n' % switchVal
69 def doSplitDecode(Name, builder, switchVal, vals, default = None):
70 decode_block = 'switch(%s) {\n' % switchVal
72 for (val, todo) in vals.items():
71 for (val, todo) in vals.items():
73 built = builder(name, Name, *todo)
74 built.decode_block = '\tcase %s: %s\n' % (val, built.decode_block)
75 blocks.append(built)
72 new_block = builder(Name, *todo)
73 new_block = '\tcase %s: %s\n' % (val, new_block)
74 decode_block += new_block
76 if default:
75 if default:
77 built = builder(name, Name, *default)
78 built.decode_block = '\tdefault: %s\n' % built.decode_block
79 blocks.append(built)
80 blocks.decode_block += '}\n'
81 return blocks
76 new_block = builder(Name, *default)
77 new_block = '\tdefault: %s\n' % new_block
78 decode_block += new_block
79 decode_block += '}\n'
80 return decode_block
82}};
83
84let {{
85 class OpType(object):
81}};
82
83let {{
84 class OpType(object):
86 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
85 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Z0-9])(?P<rsize>[a-z]*))")
87 def __init__(self, opTypeString):
88 match = OpType.parser.search(opTypeString)
89 if match == None:
90 raise Exception, "Problem parsing operand type %s" % opTypeString
91 self.reg = match.group("reg")
92 self.tag = match.group("tag")
93 self.size = match.group("size")
86 def __init__(self, opTypeString):
87 match = OpType.parser.search(opTypeString)
88 if match == None:
89 raise Exception, "Problem parsing operand type %s" % opTypeString
90 self.reg = match.group("reg")
91 self.tag = match.group("tag")
92 self.size = match.group("size")
93 self.rsize = match.group("rsize")
94
95 # This function specializes the given piece of code to use a particular
94
95 # This function specializes the given piece of code to use a particular
96 # set of argument types described by "opTypes". These are "implemented"
97 # in reverse order.
98 def specializeInst(name, Name, code, opTypes):
99 opNum = len(opTypes) - 1
96 # set of argument types described by "opTypes".
97 def specializeInst(Name, opTypes, env):
100 while len(opTypes):
101 # print "Building a composite op with tags", opTypes
102 # print "And code", code
103 opNum = len(opTypes) - 1
98 while len(opTypes):
99 # print "Building a composite op with tags", opTypes
100 # print "And code", code
101 opNum = len(opTypes) - 1
104 # A regular expression to find the operand placeholders we're
105 # interested in.
106 opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
107
102
108 # Parse the operand type strign we're working with
103 # Parse the operand type string we're working with
109 opType = OpType(opTypes[opNum])
110
111 if opType.reg:
112 #Figure out what to do with fixed register operands
104 opType = OpType(opTypes[opNum])
105
106 if opType.reg:
107 #Figure out what to do with fixed register operands
113 if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
114 code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
115 elif opType.reg == "Al":
116 # We need a way to specify register width
117 code = opRe.sub("%{INTREG_RAX}", code)
118 else:
119 print "Didn't know how to encode fixed register %s!" % opType.reg
108 #This is the index to use, so we should stick it some place.
109 print "INTREG_R%s" % (opType.reg + opType.size.upper())
110 if opType.size:
111 if opType.rsize in ("l", "h", "b"):
112 print "byte"
113 elif opType.rsize == "x":
114 print "word"
115 else:
116 print "Didn't recognize fixed register size %s!" % opType.rsize
120 elif opType.tag == None or opType.size == None:
121 raise Exception, "Problem parsing operand tag: %s" % opType.tag
122 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
123 # Use the "reg" field of the ModRM byte to select the register
117 elif opType.tag == None or opType.size == None:
118 raise Exception, "Problem parsing operand tag: %s" % opType.tag
119 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
120 # Use the "reg" field of the ModRM byte to select the register
124 code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
121 print "(uint8_t)MODRM_REG"
125 elif opType.tag in ("E", "Q", "W"):
126 # This might refer to memory or to a register. We need to
127 # divide it up farther.
122 elif opType.tag in ("E", "Q", "W"):
123 # This might refer to memory or to a register. We need to
124 # divide it up farther.
128 regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
125 print "(uint8_t)MODRM_RM"
129 regTypes = copy.copy(opTypes)
126 regTypes = copy.copy(opTypes)
130 regTypes.pop(-1)
127 regTypes.pop(0)
128 regEnv = copy.copy(env)
131 # This needs to refer to memory, but we'll fill in the details
132 # later. It needs to take into account unaligned memory
133 # addresses.
129 # This needs to refer to memory, but we'll fill in the details
130 # later. It needs to take into account unaligned memory
131 # addresses.
134 code = "GenFault ${new UnimpInstFault}\n" + code
135 memCode = opRe.sub("%0", code)
132 # code = "GenFault #${new UnimpInstFault}#\n" + code
133 print "%0"
136 memTypes = copy.copy(opTypes)
134 memTypes = copy.copy(opTypes)
137 memTypes.pop(-1)
138 return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
139 {"3" : (regCode, regTypes)}, (memCode, memTypes))
135 memTypes.pop(0)
136 memEnv = copy.copy(env)
137 return doSplitDecode(Name, specializeInst, "MODRM_MOD",
138 {"3" : (regTypes, memEnv)}, (memTypes, memEnv))
140 elif opType.tag in ("I", "J"):
141 # Immediates are already in the instruction, so don't leave in
142 # those parameters
139 elif opType.tag in ("I", "J"):
140 # Immediates are already in the instruction, so don't leave in
141 # those parameters
143 code = opRe.sub("${IMMEDIATE}", code)
142 print "IMMEDIATE"
144 elif opType.tag == "M":
145 # This needs to refer to memory, but we'll fill in the details
146 # later. It needs to take into account unaligned memory
147 # addresses.
143 elif opType.tag == "M":
144 # This needs to refer to memory, but we'll fill in the details
145 # later. It needs to take into account unaligned memory
146 # addresses.
148 code = "GenFault ${new UnimpInstFault}\n" + code
149 code = opRe.sub("%0", code)
147 #code = "GenFault #${new UnimpInstFault}#\n" + code
148 print "%0"
150 elif opType.tag in ("PR", "R", "VR"):
151 # There should probably be a check here to verify that mod
152 # is equal to 11b
149 elif opType.tag in ("PR", "R", "VR"):
150 # There should probably be a check here to verify that mod
151 # is equal to 11b
153 code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
152 print "(uint8_t)MODRM_RM"
154 else:
155 raise Exception, "Unrecognized tag %s." % opType.tag
153 else:
154 raise Exception, "Unrecognized tag %s." % opType.tag
156 opTypes.pop(-1)
155 opTypes.pop(0)
157
158 # At this point, we've built up "code" to have all the necessary extra
159 # instructions needed to implement whatever types of operands were
160 # specified. Now we'll assemble it it into a StaticInst.
156
157 # At this point, we've built up "code" to have all the necessary extra
158 # instructions needed to implement whatever types of operands were
159 # specified. Now we'll assemble it it into a StaticInst.
161 blocks = OutputBlocks()
162 blocks.append(assembleMicro(name, Name, code))
163 return blocks
160 return genMacroop(Name, env)
164}};
161}};