microasm.isa (4323:13ca4002d2ac) microasm.isa (4336:bd6ab22f8e11)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:

--- 43 unchanged lines hidden (view full) ---

52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:

--- 43 unchanged lines hidden (view full) ---

52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
60// Code to "assemble" microcode sequences
60// Code to "specialize" a microcode sequence to use a particular
61// variety of operands
61//
62
63let {{
62//
63
64let {{
64 class MicroOpStatement:
65 # This builds either a regular or macro op to implement the sequence of
66 # ops we give it.
67 def genInst(name, Name, ops):
68 # If we can implement this instruction with exactly one microop, just
69 # use that directly.
70 newStmnt = ''
71 if len(ops) == 1:
72 decode_block = "return (X86StaticInst *)(%s);" % \
73 ops[0].getAllocator()
74 return ('', '', decode_block, '')
75 else:
76 # Build a macroop to contain the sequence of microops we've
77 # been given.
78 return genMacroOp(name, Name, ops)
79}};
80
81let {{
82 # This code builds up a decode block which decodes based on switchval.
83 # vals is a dict which matches case values with what should be decoded to.
84 # builder is called on the exploded contents of "vals" values to generate
85 # whatever code should be used.
86 def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
87 header_output = ''
88 decoder_output = ''
89 decode_block = 'switch(%s) {\n' % switchVal
90 exec_output = ''
91 for (val, todo) in vals.items():
92 (new_header_output,
93 new_decoder_output,
94 new_decode_block,
95 new_exec_output) = builder(name, Name, *todo)
96 header_output += new_header_output
97 decoder_output += new_decoder_output
98 decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
99 exec_output += new_exec_output
100 if default:
101 (new_header_output,
102 new_decoder_output,
103 new_decode_block,
104 new_exec_output) = builder(name, Name, *default)
105 header_output += new_header_output
106 decoder_output += new_decoder_output
107 decode_block += '\tdefault: %s\n' % new_decode_block
108 exec_output += new_exec_output
109 decode_block += '}\n'
110 return (header_output, decoder_output, decode_block, exec_output)
111}};
112
113let {{
114 class OpType(object):
115 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
116 def __init__(self, opTypeString):
117 match = OpType.parser.search(opTypeString)
118 if match == None:
119 raise Exception, "Problem parsing operand type %s" % opTypeString
120 self.reg = match.group("reg")
121 self.tag = match.group("tag")
122 self.size = match.group("size")
123}};
124
125let {{
126
127 # This function specializes the given piece of code to use a particular
128 # set of argument types described by "opTypes". These are "implemented"
129 # in reverse order.
130 def specializeInst(name, Name, code, opTypes):
131 opNum = len(opTypes) - 1
132 while len(opTypes):
133 # print "Building a composite op with tags", opTypes
134 # print "And code", code
135 opNum = len(opTypes) - 1
136 # A regular expression to find the operand placeholders we're
137 # interested in.
138 opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
139
140 # Parse the operand type strign we're working with
141 print "About to parse tag %s" % opTypes[opNum]
142 opType = OpType(opTypes[opNum])
143
144 if opType.reg:
145 #Figure out what to do with fixed register operands
146 if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
147 code = opRe.sub("{INTREG_R%s}" % opType.reg.upper(), code)
148 elif opType.reg == "Al":
149 # We need a way to specify register width
150 code = opRe.sub("{INTREG_RAX}", code)
151 else:
152 print "Didn't know how to encode fixed register %s!" % opType.reg
153 elif opType.tag == None or opType.size == None:
154 raise Exception, "Problem parsing operand tag: %s" % opType.tag
155 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
156 # Use the "reg" field of the ModRM byte to select the register
157 code = opRe.sub("{(uint8_t)MODRM_REG}", code)
158 elif opType.tag in ("E", "Q", "W"):
159 # This might refer to memory or to a register. We need to
160 # divide it up farther.
161 regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
162 regTypes = copy.copy(opTypes)
163 regTypes.pop(-1)
164 # This needs to refer to memory, but we'll fill in the details
165 # later. It needs to take into account unaligned memory
166 # addresses.
167 memCode = opRe.sub("0", code)
168 memTypes = copy.copy(opTypes)
169 memTypes.pop(-1)
170 return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
171 {"3" : (regCode, regTypes)}, (memCode, memTypes))
172 elif opType.tag in ("I", "J"):
173 # Immediates are already in the instruction, so don't leave in
174 # those parameters
175 code = opRe.sub("", code)
176 elif opType.tag == "M":
177 # This needs to refer to memory, but we'll fill in the details
178 # later. It needs to take into account unaligned memory
179 # addresses.
180 code = opRe.sub("0", code)
181 elif opType.tag in ("PR", "R", "VR"):
182 # There should probably be a check here to verify that mod
183 # is equal to 11b
184 code = opRe.sub("{(uint8_t)MODRM_RM}", code)
185 else:
186 raise Exception, "Unrecognized tag %s." % opType.tag
187 opTypes.pop(-1)
188
189 # At this point, we've built up "code" to have all the necessary extra
190 # instructions needed to implement whatever types of operands were
191 # specified. Now we'll assemble it it into a microOp sequence.
192 ops = assembleMicro(code)
193
194 # Build a macroop to contain the sequence of microops we've
195 # constructed. The decode block will be used to fill in our
196 # inner decode structure, and the rest will be concatenated and
197 # passed back.
198 return genInst(name, Name, ops)
199}};
200
201////////////////////////////////////////////////////////////////////
202//
203// The microcode assembler
204//
205
206let {{
207 class MicroOpStatement(object):
65 def __init__(self):
66 self.className = ''
67 self.label = ''
68 self.args = []
69
70 # This converts a list of python bools into
71 # a comma seperated list of C++ bools.
72 def microFlagsText(self, vals):

--- 23 unchanged lines hidden (view full) ---

96 def buildLabelDict(ops):
97 labels = {}
98 micropc = 0
99 for op in ops:
100 if op.label:
101 labels[op.label] = count
102 micropc += 1
103 return labels
208 def __init__(self):
209 self.className = ''
210 self.label = ''
211 self.args = []
212
213 # This converts a list of python bools into
214 # a comma seperated list of C++ bools.
215 def microFlagsText(self, vals):

--- 23 unchanged lines hidden (view full) ---

239 def buildLabelDict(ops):
240 labels = {}
241 micropc = 0
242 for op in ops:
243 if op.label:
244 labels[op.label] = count
245 micropc += 1
246 return labels
247}};
104
248
249let{{
105 def assembleMicro(code):
106 # This function takes in a block of microcode assembly and returns
107 # a python list of objects which describe it.
108
109 # Keep this around in case we need it later
110 orig_code = code
111 # A list of the statements we've found thus far
112 statements = []

--- 87 unchanged lines hidden ---
250 def assembleMicro(code):
251 # This function takes in a block of microcode assembly and returns
252 # a python list of objects which describe it.
253
254 # Keep this around in case we need it later
255 orig_code = code
256 # A list of the statements we've found thus far
257 statements = []

--- 87 unchanged lines hidden ---