microasm.isa (4323:13ca4002d2ac) microasm.isa (4336:bd6ab22f8e11)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:
9//
10// The software must be used only for Non-Commercial Use which means any
11// use which is NOT directed to receiving any direct monetary
12// compensation for, or commercial advantage from such use. Illustrative
13// examples of non-commercial use are academic research, personal study,
14// teaching, education and corporate research & development.
15// Illustrative examples of commercial use are distributing products for
16// commercial advantage and providing services using the software for
17// commercial advantage.
18//
19// If you wish to use this software or functionality therein that may be
20// covered by patents for commercial use, please contact:
21// Director of Intellectual Property Licensing
22// Office of Strategy and Technology
23// Hewlett-Packard Company
24// 1501 Page Mill Road
25// Palo Alto, California 94304
26//
27// Redistributions of source code must retain the above copyright notice,
28// this list of conditions and the following disclaimer. Redistributions
29// in binary form must reproduce the above copyright notice, this list of
30// conditions and the following disclaimer in the documentation and/or
31// other materials provided with the distribution. Neither the name of
32// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33// contributors may be used to endorse or promote products derived from
34// this software without specific prior written permission. No right of
35// sublicense is granted herewith. Derivatives of the software and
36// output created using the software may be prepared, but only for
37// Non-Commercial Uses. Derivatives of the software may be shared with
38// others provided: (i) the others agree to abide by the list of
39// conditions herein which includes the Non-Commercial Use restrictions;
40// and (ii) such Derivatives of the software include the above copyright
41// notice to acknowledge the contribution from this software where
42// applicable, this list of conditions and the disclaimer below.
43//
44// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 The Hewlett-Packard Development Company
4// All rights reserved.
5//
6// Redistribution and use of this software in source and binary forms,
7// with or without modification, are permitted provided that the
8// following conditions are met:
9//
10// The software must be used only for Non-Commercial Use which means any
11// use which is NOT directed to receiving any direct monetary
12// compensation for, or commercial advantage from such use. Illustrative
13// examples of non-commercial use are academic research, personal study,
14// teaching, education and corporate research & development.
15// Illustrative examples of commercial use are distributing products for
16// commercial advantage and providing services using the software for
17// commercial advantage.
18//
19// If you wish to use this software or functionality therein that may be
20// covered by patents for commercial use, please contact:
21// Director of Intellectual Property Licensing
22// Office of Strategy and Technology
23// Hewlett-Packard Company
24// 1501 Page Mill Road
25// Palo Alto, California 94304
26//
27// Redistributions of source code must retain the above copyright notice,
28// this list of conditions and the following disclaimer. Redistributions
29// in binary form must reproduce the above copyright notice, this list of
30// conditions and the following disclaimer in the documentation and/or
31// other materials provided with the distribution. Neither the name of
32// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33// contributors may be used to endorse or promote products derived from
34// this software without specific prior written permission. No right of
35// sublicense is granted herewith. Derivatives of the software and
36// output created using the software may be prepared, but only for
37// Non-Commercial Uses. Derivatives of the software may be shared with
38// others provided: (i) the others agree to abide by the list of
39// conditions herein which includes the Non-Commercial Use restrictions;
40// and (ii) such Derivatives of the software include the above copyright
41// notice to acknowledge the contribution from this software where
42// applicable, this list of conditions and the disclaimer below.
43//
44// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55//
56// Authors: Gabe Black
57
58////////////////////////////////////////////////////////////////////
59//
60// Code to "assemble" microcode sequences
60// Code to "specialize" a microcode sequence to use a particular
61// variety of operands
61//
62
63let {{
62//
63
64let {{
64 class MicroOpStatement:
65 # This builds either a regular or macro op to implement the sequence of
66 # ops we give it.
67 def genInst(name, Name, ops):
68 # If we can implement this instruction with exactly one microop, just
69 # use that directly.
70 newStmnt = ''
71 if len(ops) == 1:
72 decode_block = "return (X86StaticInst *)(%s);" % \
73 ops[0].getAllocator()
74 return ('', '', decode_block, '')
75 else:
76 # Build a macroop to contain the sequence of microops we've
77 # been given.
78 return genMacroOp(name, Name, ops)
79}};
80
81let {{
82 # This code builds up a decode block which decodes based on switchval.
83 # vals is a dict which matches case values with what should be decoded to.
84 # builder is called on the exploded contents of "vals" values to generate
85 # whatever code should be used.
86 def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
87 header_output = ''
88 decoder_output = ''
89 decode_block = 'switch(%s) {\n' % switchVal
90 exec_output = ''
91 for (val, todo) in vals.items():
92 (new_header_output,
93 new_decoder_output,
94 new_decode_block,
95 new_exec_output) = builder(name, Name, *todo)
96 header_output += new_header_output
97 decoder_output += new_decoder_output
98 decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
99 exec_output += new_exec_output
100 if default:
101 (new_header_output,
102 new_decoder_output,
103 new_decode_block,
104 new_exec_output) = builder(name, Name, *default)
105 header_output += new_header_output
106 decoder_output += new_decoder_output
107 decode_block += '\tdefault: %s\n' % new_decode_block
108 exec_output += new_exec_output
109 decode_block += '}\n'
110 return (header_output, decoder_output, decode_block, exec_output)
111}};
112
113let {{
114 class OpType(object):
115 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
116 def __init__(self, opTypeString):
117 match = OpType.parser.search(opTypeString)
118 if match == None:
119 raise Exception, "Problem parsing operand type %s" % opTypeString
120 self.reg = match.group("reg")
121 self.tag = match.group("tag")
122 self.size = match.group("size")
123}};
124
125let {{
126
127 # This function specializes the given piece of code to use a particular
128 # set of argument types described by "opTypes". These are "implemented"
129 # in reverse order.
130 def specializeInst(name, Name, code, opTypes):
131 opNum = len(opTypes) - 1
132 while len(opTypes):
133 # print "Building a composite op with tags", opTypes
134 # print "And code", code
135 opNum = len(opTypes) - 1
136 # A regular expression to find the operand placeholders we're
137 # interested in.
138 opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
139
140 # Parse the operand type strign we're working with
141 print "About to parse tag %s" % opTypes[opNum]
142 opType = OpType(opTypes[opNum])
143
144 if opType.reg:
145 #Figure out what to do with fixed register operands
146 if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
147 code = opRe.sub("{INTREG_R%s}" % opType.reg.upper(), code)
148 elif opType.reg == "Al":
149 # We need a way to specify register width
150 code = opRe.sub("{INTREG_RAX}", code)
151 else:
152 print "Didn't know how to encode fixed register %s!" % opType.reg
153 elif opType.tag == None or opType.size == None:
154 raise Exception, "Problem parsing operand tag: %s" % opType.tag
155 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
156 # Use the "reg" field of the ModRM byte to select the register
157 code = opRe.sub("{(uint8_t)MODRM_REG}", code)
158 elif opType.tag in ("E", "Q", "W"):
159 # This might refer to memory or to a register. We need to
160 # divide it up farther.
161 regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
162 regTypes = copy.copy(opTypes)
163 regTypes.pop(-1)
164 # This needs to refer to memory, but we'll fill in the details
165 # later. It needs to take into account unaligned memory
166 # addresses.
167 memCode = opRe.sub("0", code)
168 memTypes = copy.copy(opTypes)
169 memTypes.pop(-1)
170 return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
171 {"3" : (regCode, regTypes)}, (memCode, memTypes))
172 elif opType.tag in ("I", "J"):
173 # Immediates are already in the instruction, so don't leave in
174 # those parameters
175 code = opRe.sub("", code)
176 elif opType.tag == "M":
177 # This needs to refer to memory, but we'll fill in the details
178 # later. It needs to take into account unaligned memory
179 # addresses.
180 code = opRe.sub("0", code)
181 elif opType.tag in ("PR", "R", "VR"):
182 # There should probably be a check here to verify that mod
183 # is equal to 11b
184 code = opRe.sub("{(uint8_t)MODRM_RM}", code)
185 else:
186 raise Exception, "Unrecognized tag %s." % opType.tag
187 opTypes.pop(-1)
188
189 # At this point, we've built up "code" to have all the necessary extra
190 # instructions needed to implement whatever types of operands were
191 # specified. Now we'll assemble it it into a microOp sequence.
192 ops = assembleMicro(code)
193
194 # Build a macroop to contain the sequence of microops we've
195 # constructed. The decode block will be used to fill in our
196 # inner decode structure, and the rest will be concatenated and
197 # passed back.
198 return genInst(name, Name, ops)
199}};
200
201////////////////////////////////////////////////////////////////////
202//
203// The microcode assembler
204//
205
206let {{
207 class MicroOpStatement(object):
65 def __init__(self):
66 self.className = ''
67 self.label = ''
68 self.args = []
69
70 # This converts a list of python bools into
71 # a comma seperated list of C++ bools.
72 def microFlagsText(self, vals):
73 text = ""
74 for val in vals:
75 if val:
76 text += ", true"
77 else:
78 text += ", false"
79 return text
80
81 def getAllocator(self, *microFlags):
82 args = ''
83 for arg in self.args:
84 if arg.has_key("operandConst"):
85 args += ", %s" % arg["operandConst"]
86 elif arg.has_key("operandCode"):
87 args += ", %s" % arg["operandCode"]
88 elif arg.has_key("operandLabel"):
89 raise Exception, "Found a label while creating allocator string."
90 else:
91 raise Exception, "Unrecognized operand type."
92 return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
93}};
94
95let {{
96 def buildLabelDict(ops):
97 labels = {}
98 micropc = 0
99 for op in ops:
100 if op.label:
101 labels[op.label] = count
102 micropc += 1
103 return labels
208 def __init__(self):
209 self.className = ''
210 self.label = ''
211 self.args = []
212
213 # This converts a list of python bools into
214 # a comma seperated list of C++ bools.
215 def microFlagsText(self, vals):
216 text = ""
217 for val in vals:
218 if val:
219 text += ", true"
220 else:
221 text += ", false"
222 return text
223
224 def getAllocator(self, *microFlags):
225 args = ''
226 for arg in self.args:
227 if arg.has_key("operandConst"):
228 args += ", %s" % arg["operandConst"]
229 elif arg.has_key("operandCode"):
230 args += ", %s" % arg["operandCode"]
231 elif arg.has_key("operandLabel"):
232 raise Exception, "Found a label while creating allocator string."
233 else:
234 raise Exception, "Unrecognized operand type."
235 return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
236}};
237
238let {{
239 def buildLabelDict(ops):
240 labels = {}
241 micropc = 0
242 for op in ops:
243 if op.label:
244 labels[op.label] = count
245 micropc += 1
246 return labels
247}};
104
248
249let{{
105 def assembleMicro(code):
106 # This function takes in a block of microcode assembly and returns
107 # a python list of objects which describe it.
108
109 # Keep this around in case we need it later
110 orig_code = code
111 # A list of the statements we've found thus far
112 statements = []
113
114 # Regular expressions to pull each piece of the statement out at a
115 # time. Each expression expects the thing it's looking for to be at
116 # the beginning of the line, so the previous component is stripped
117 # before continuing.
118 labelRe = re.compile(r'^[ \t]*(?P<label>[a-zA-Z_]\w*)[ \t]:')
119 lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
120 classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
121 # This recognizes three different flavors of operands:
122 # 1. Raw decimal numbers composed of digits between 0 and 9
123 # 2. Code beginning with "{" and continuing until the first "}"
124 # ^ This one might need revising
125 # 3. A label, which starts with a capital or small letter, or
126 # underscore, which is optionally followed by a sequence of
127 # capital or small letters, underscores, or digts between 0 and 9
128 opRe = re.compile( \
129 r'^[ \t]*((?P<operandLabel>[a-zA-Z_]\w*)|(?P<operandConst>[0-9][0-9]*)|(\{(?P<operandCode>[^}]*)\}))')
130 lineMatch = lineRe.search(code)
131 while lineMatch != None:
132 statement = MicroOpStatement()
133 # Get a line and seperate it from the rest of the code
134 line = lineMatch.group("line")
135 orig_line = line
136 # print "Parsing line %s" % line
137 code = lineRe.sub('', code, 1)
138
139 # Find the label, if any
140 labelMatch = labelRe.search(line)
141 if labelMatch != None:
142 statement.label = labelMatch.group("label")
143 # print "Found label %s." % statement.label
144 # Clear the label from the statement
145 line = labelRe.sub('', line, 1)
146
147 # Find the class name which is roughly equivalent to the op name
148 classMatch = classRe.search(line)
149 if classMatch == None:
150 raise Exception, "Couldn't find class name in statement: %s" \
151 % orig_line
152 else:
153 statement.className = classMatch.group("className")
154 # print "Found class name %s." % statement.className
155
156 # Clear the class name from the statement
157 line = classRe.sub('', line, 1)
158
159 #Find as many arguments as you can
160 statement.args = []
161 opMatch = opRe.search(line)
162 while opMatch is not None:
163 statement.args.append({})
164 # args is a list of dicts which collect different
165 # representations of operand values. Different forms might be
166 # needed in different places, for instance to replace a label
167 # with an offset.
168 for opType in ("operandLabel", "operandConst", "operandCode"):
169 if opMatch.group(opType):
170 statement.args[-1][opType] = opMatch.group(opType)
171 if len(statement.args[-1]) == 0:
172 print "Problem parsing operand in statement: %s" \
173 % orig_line
174 line = opRe.sub('', line, 1)
175 # print "Found operand %s." % statement.args[-1]
176 opMatch = opRe.search(line)
177 # print "Found operands", statement.args
178
179 # Add this statement to our collection
180 statements.append(statement)
181
182 # Get the next line
183 lineMatch = lineRe.search(code)
184
185 # Decode the labels into displacements
186 labels = buildLabelDict(statements)
187 micropc = 0
188 for statement in statements:
189 for arg in statement.args:
190 if arg.has_key("operandLabel"):
191 if not labels.has_key(arg["operandLabel"]):
192 raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
193 # This is assuming that intra microcode branches go to
194 # the next micropc + displacement, or
195 # micropc + 1 + displacement.
196 arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
197 micropc += 1
198 return statements
199}};
250 def assembleMicro(code):
251 # This function takes in a block of microcode assembly and returns
252 # a python list of objects which describe it.
253
254 # Keep this around in case we need it later
255 orig_code = code
256 # A list of the statements we've found thus far
257 statements = []
258
259 # Regular expressions to pull each piece of the statement out at a
260 # time. Each expression expects the thing it's looking for to be at
261 # the beginning of the line, so the previous component is stripped
262 # before continuing.
263 labelRe = re.compile(r'^[ \t]*(?P<label>[a-zA-Z_]\w*)[ \t]:')
264 lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
265 classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
266 # This recognizes three different flavors of operands:
267 # 1. Raw decimal numbers composed of digits between 0 and 9
268 # 2. Code beginning with "{" and continuing until the first "}"
269 # ^ This one might need revising
270 # 3. A label, which starts with a capital or small letter, or
271 # underscore, which is optionally followed by a sequence of
272 # capital or small letters, underscores, or digts between 0 and 9
273 opRe = re.compile( \
274 r'^[ \t]*((?P<operandLabel>[a-zA-Z_]\w*)|(?P<operandConst>[0-9][0-9]*)|(\{(?P<operandCode>[^}]*)\}))')
275 lineMatch = lineRe.search(code)
276 while lineMatch != None:
277 statement = MicroOpStatement()
278 # Get a line and seperate it from the rest of the code
279 line = lineMatch.group("line")
280 orig_line = line
281 # print "Parsing line %s" % line
282 code = lineRe.sub('', code, 1)
283
284 # Find the label, if any
285 labelMatch = labelRe.search(line)
286 if labelMatch != None:
287 statement.label = labelMatch.group("label")
288 # print "Found label %s." % statement.label
289 # Clear the label from the statement
290 line = labelRe.sub('', line, 1)
291
292 # Find the class name which is roughly equivalent to the op name
293 classMatch = classRe.search(line)
294 if classMatch == None:
295 raise Exception, "Couldn't find class name in statement: %s" \
296 % orig_line
297 else:
298 statement.className = classMatch.group("className")
299 # print "Found class name %s." % statement.className
300
301 # Clear the class name from the statement
302 line = classRe.sub('', line, 1)
303
304 #Find as many arguments as you can
305 statement.args = []
306 opMatch = opRe.search(line)
307 while opMatch is not None:
308 statement.args.append({})
309 # args is a list of dicts which collect different
310 # representations of operand values. Different forms might be
311 # needed in different places, for instance to replace a label
312 # with an offset.
313 for opType in ("operandLabel", "operandConst", "operandCode"):
314 if opMatch.group(opType):
315 statement.args[-1][opType] = opMatch.group(opType)
316 if len(statement.args[-1]) == 0:
317 print "Problem parsing operand in statement: %s" \
318 % orig_line
319 line = opRe.sub('', line, 1)
320 # print "Found operand %s." % statement.args[-1]
321 opMatch = opRe.search(line)
322 # print "Found operands", statement.args
323
324 # Add this statement to our collection
325 statements.append(statement)
326
327 # Get the next line
328 lineMatch = lineRe.search(code)
329
330 # Decode the labels into displacements
331 labels = buildLabelDict(statements)
332 micropc = 0
333 for statement in statements:
334 for arg in statement.args:
335 if arg.has_key("operandLabel"):
336 if not labels.has_key(arg["operandLabel"]):
337 raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
338 # This is assuming that intra microcode branches go to
339 # the next micropc + displacement, or
340 # micropc + 1 + displacement.
341 arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
342 micropc += 1
343 return statements
344}};