1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder. You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42// Gabe Black
43
44////////////////////////////////////////////////////////////////////
45//
46// Load/store microops
47//
48
49let {{
50 microLdrUopCode = "IWRa = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
51 microLdrUopIop = InstObjParams('ldr_uop', 'MicroLdrUop',
52 'MicroMemOp',
53 {'memacc_code': microLdrUopCode,
54 'ea_code': 'EA = URb + (up ? imm : -imm);',
55 'predicate_test': predicateTest},
56 ['IsMicroop'])
57
58 microLdrFpUopCode = "Fa.uw = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
59 microLdrFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrFpUop',
60 'MicroMemOp',
61 {'memacc_code': microLdrFpUopCode,
62 'ea_code': vfpEnabledCheckCode +
63 'EA = URb + (up ? imm : -imm);',
64 'predicate_test': predicateTest},
65 ['IsMicroop'])
66
67 microLdrDBFpUopCode = "Fa.uw = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
68 microLdrDBFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrDBFpUop',
69 'MicroMemOp',
70 {'memacc_code': microLdrFpUopCode,
71 'ea_code': vfpEnabledCheckCode + '''
72 EA = URb + (up ? imm : -imm) +
73 (((CPSR)Cpsr).e ? 4 : 0);
74 ''',
75 'predicate_test': predicateTest},
76 ['IsMicroop'])
77
78 microLdrDTFpUopCode = "Fa.uw = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
79 microLdrDTFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrDTFpUop',
80 'MicroMemOp',
81 {'memacc_code': microLdrFpUopCode,
82 'ea_code': vfpEnabledCheckCode + '''
83 EA = URb + (up ? imm : -imm) -
84 (((CPSR)Cpsr).e ? 4 : 0);
85 ''',
86 'predicate_test': predicateTest},
87 ['IsMicroop'])
88
89 microRetUopCode = '''
90 CPSR cpsr = Cpsr;
91 SCTLR sctlr = Sctlr;
92 uint32_t newCpsr =
93 cpsrWriteByInstr(cpsr | CondCodes, Spsr, 0xF, true, sctlr.nmfi);
94 Cpsr = ~CondCodesMask & newCpsr;
95 CondCodes = CondCodesMask & newCpsr;
96 IWNPC = cSwap(%s, cpsr.e) | ((Spsr & 0x20) ? 1 : 0);
97 NextItState = ((((CPSR)Spsr).it2 << 2) & 0xFC)
98 | (((CPSR)Spsr).it1 & 0x3);
99 SevMailbox = 1;
100 '''
101
102 microLdrRetUopIop = InstObjParams('ldr_ret_uop', 'MicroLdrRetUop',
103 'MicroMemOp',
104 {'memacc_code':
105 microRetUopCode % 'Mem.uw',
106 'ea_code':
107 'EA = URb + (up ? imm : -imm);',
108 'predicate_test': condPredicateTest},
109 ['IsMicroop','IsNonSpeculative',
110 'IsSerializeAfter'])
111
112 microStrUopCode = "Mem = cSwap(URa.uw, ((CPSR)Cpsr).e);"
113 microStrUopIop = InstObjParams('str_uop', 'MicroStrUop',
114 'MicroMemOp',
115 {'memacc_code': microStrUopCode,
116 'postacc_code': "",
117 'ea_code': 'EA = URb + (up ? imm : -imm);',
118 'predicate_test': predicateTest},
119 ['IsMicroop'])
120
121 microStrFpUopCode = "Mem = cSwap(Fa.uw, ((CPSR)Cpsr).e);"
122 microStrFpUopIop = InstObjParams('strfp_uop', 'MicroStrFpUop',
123 'MicroMemOp',
124 {'memacc_code': microStrFpUopCode,
125 'postacc_code': "",
126 'ea_code': vfpEnabledCheckCode +
127 'EA = URb + (up ? imm : -imm);',
128 'predicate_test': predicateTest},
129 ['IsMicroop'])
130
131 microStrDBFpUopCode = "Mem = cSwap(Fa.uw, ((CPSR)Cpsr).e);"
132 microStrDBFpUopIop = InstObjParams('strfp_uop', 'MicroStrDBFpUop',
133 'MicroMemOp',
134 {'memacc_code': microStrFpUopCode,
135 'postacc_code': "",
136 'ea_code': vfpEnabledCheckCode + '''
137 EA = URb + (up ? imm : -imm) +
138 (((CPSR)Cpsr).e ? 4 : 0);
139 ''',
140 'predicate_test': predicateTest},
141 ['IsMicroop'])
142
143 microStrDTFpUopCode = "Mem = cSwap(Fa.uw, ((CPSR)Cpsr).e);"
144 microStrDTFpUopIop = InstObjParams('strfp_uop', 'MicroStrDTFpUop',
145 'MicroMemOp',
146 {'memacc_code': microStrFpUopCode,
147 'postacc_code': "",
148 'ea_code': vfpEnabledCheckCode + '''
149 EA = URb + (up ? imm : -imm) -
150 (((CPSR)Cpsr).e ? 4 : 0);
151 ''',
152 'predicate_test': predicateTest},
153 ['IsMicroop'])
154
155 header_output = decoder_output = exec_output = ''
156
157 loadIops = (microLdrUopIop, microLdrRetUopIop,
158 microLdrFpUopIop, microLdrDBFpUopIop, microLdrDTFpUopIop)
159 storeIops = (microStrUopIop, microStrFpUopIop,
160 microStrDBFpUopIop, microStrDTFpUopIop)
161 for iop in loadIops + storeIops:
162 header_output += MicroMemDeclare.subst(iop)
163 decoder_output += MicroMemConstructor.subst(iop)
164 for iop in loadIops:
165 exec_output += LoadExecute.subst(iop) + \
166 LoadInitiateAcc.subst(iop) + \
167 LoadCompleteAcc.subst(iop)
168 for iop in storeIops:
169 exec_output += StoreExecute.subst(iop) + \
170 StoreInitiateAcc.subst(iop) + \
171 StoreCompleteAcc.subst(iop)
172}};
173
174let {{
175 exec_output = header_output = ''
176
177 eaCode = 'EA = URa + imm;'
178
179 for size in (1, 2, 3, 4, 6, 8, 12, 16):
180 # Set up the memory access.
181 regs = (size + 3) // 4
182 subst = { "size" : size, "regs" : regs }
183 memDecl = '''
184 union MemUnion {
185 uint8_t bytes[%(size)d];
186 Element elements[%(size)d / sizeof(Element)];
187 uint32_t floatRegBits[%(regs)d];
188 };
189 ''' % subst
190
191 # Do endian conversion for all the elements.
192 convCode = '''
193 const unsigned eCount = sizeof(memUnion.elements) /
194 sizeof(memUnion.elements[0]);
195 if (((CPSR)Cpsr).e) {
196 for (unsigned i = 0; i < eCount; i++) {
197 memUnion.elements[i] = gtobe(memUnion.elements[i]);
198 }
199 } else {
200 for (unsigned i = 0; i < eCount; i++) {
201 memUnion.elements[i] = gtole(memUnion.elements[i]);
202 }
203 }
204 '''
205
206 # Offload everything into registers
207 regSetCode = ''
208 for reg in range(regs):
209 mask = ''
210 if reg == regs - 1:
211 mask = ' & mask(%d)' % (32 - 8 * (regs * 4 - size))
212 regSetCode += '''
213 FpDestP%(reg)d.uw = gtoh(memUnion.floatRegBits[%(reg)d])%(mask)s;
214 ''' % { "reg" : reg, "mask" : mask }
215
216 # Pull everything in from registers
217 regGetCode = ''
218 for reg in range(regs):
219 regGetCode += '''
220 memUnion.floatRegBits[%(reg)d] = htog(FpDestP%(reg)d.uw);
221 ''' % { "reg" : reg }
222
223 loadMemAccCode = convCode + regSetCode
224 storeMemAccCode = regGetCode + convCode
225
226 loadIop = InstObjParams('ldrneon%(size)d_uop' % subst,
227 'MicroLdrNeon%(size)dUop' % subst,
228 'MicroNeonMemOp',
229 { 'mem_decl' : memDecl,
230 'size' : size,
231 'memacc_code' : loadMemAccCode,
232 'ea_code' : simdEnabledCheckCode + eaCode,
233 'predicate_test' : predicateTest },
234 [ 'IsMicroop', 'IsMemRef', 'IsLoad' ])
235 storeIop = InstObjParams('strneon%(size)d_uop' % subst,
236 'MicroStrNeon%(size)dUop' % subst,
237 'MicroNeonMemOp',
238 { 'mem_decl' : memDecl,
239 'size' : size,
240 'memacc_code' : storeMemAccCode,
241 'ea_code' : simdEnabledCheckCode + eaCode,
242 'predicate_test' : predicateTest },
243 [ 'IsMicroop', 'IsMemRef', 'IsStore' ])
244
245 exec_output += NeonLoadExecute.subst(loadIop) + \
246 NeonLoadInitiateAcc.subst(loadIop) + \
247 NeonLoadCompleteAcc.subst(loadIop) + \
248 NeonStoreExecute.subst(storeIop) + \
249 NeonStoreInitiateAcc.subst(storeIop) + \
250 NeonStoreCompleteAcc.subst(storeIop)
251 header_output += MicroNeonMemDeclare.subst(loadIop) + \
252 MicroNeonMemDeclare.subst(storeIop)
253}};
254
255let {{
256 exec_output = ''
257 for eSize, type in (1, 'uint8_t'), \
258 (2, 'uint16_t'), \
259 (4, 'uint32_t'), \
260 (8, 'uint64_t'):
261 size = eSize
262 # An instruction handles no more than 16 bytes and no more than
263 # 4 elements, or the number of elements needed to fill 8 or 16 bytes.
264 sizes = set((16, 8))
265 for count in 1, 2, 3, 4:
266 size = count * eSize
267 if size <= 16:
268 sizes.add(size)
269 for size in sizes:
270 substDict = {
271 "class_name" : "MicroLdrNeon%dUop" % size,
272 "targs" : type
273 }
274 exec_output += MicroNeonMemExecDeclare.subst(substDict)
275 substDict["class_name"] = "MicroStrNeon%dUop" % size
276 exec_output += MicroNeonMemExecDeclare.subst(substDict)
277 size += eSize
278}};
279
280////////////////////////////////////////////////////////////////////
281//
282// Neon (de)interlacing microops
283//
284
285let {{
286 header_output = exec_output = ''
287 for dRegs in (2, 3, 4):
288 loadConv = ''
289 unloadConv = ''
290 for dReg in range(dRegs):
291 loadConv += '''
292 conv1.cRegs[%(sReg0)d] = htog(FpOp1P%(sReg0)d.uw);
293 conv1.cRegs[%(sReg1)d] = htog(FpOp1P%(sReg1)d.uw);
294 ''' % { "sReg0" : (dReg * 2), "sReg1" : (dReg * 2 + 1) }
295 unloadConv += '''
296 FpDestS%(dReg)dP0.uw = gtoh(conv2.cRegs[2 * %(dReg)d + 0]);
297 FpDestS%(dReg)dP1.uw = gtoh(conv2.cRegs[2 * %(dReg)d + 1]);
298 ''' % { "dReg" : dReg }
299 microDeintNeonCode = '''
300 const unsigned dRegs = %(dRegs)d;
301 const unsigned regs = 2 * dRegs;
302 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
303 sizeof(Element);
304 union convStruct {
305 FloatRegBits cRegs[regs];
306 Element elements[dRegs * perDReg];
307 } conv1, conv2;
308
309 %(loadConv)s
310
311 unsigned srcElem = 0;
312 for (unsigned destOffset = 0;
313 destOffset < perDReg; destOffset++) {
314 for (unsigned dReg = 0; dReg < dRegs; dReg++) {
315 conv2.elements[dReg * perDReg + destOffset] =
316 conv1.elements[srcElem++];
317 }
318 }
319
320 %(unloadConv)s
321 ''' % { "dRegs" : dRegs,
322 "loadConv" : loadConv,
323 "unloadConv" : unloadConv }
324 microDeintNeonIop = \
325 InstObjParams('deintneon%duop' % (dRegs * 2),
326 'MicroDeintNeon%dUop' % (dRegs * 2),
327 'MicroNeonMixOp',
328 { 'predicate_test': predicateTest,
329 'code' : microDeintNeonCode },
330 ['IsMicroop'])
331 header_output += MicroNeonMixDeclare.subst(microDeintNeonIop)
332 exec_output += MicroNeonMixExecute.subst(microDeintNeonIop)
333
334 loadConv = ''
335 unloadConv = ''
336 for dReg in range(dRegs):
337 loadConv += '''
338 conv1.cRegs[2 * %(dReg)d + 0] = htog(FpOp1S%(dReg)dP0.uw);
339 conv1.cRegs[2 * %(dReg)d + 1] = htog(FpOp1S%(dReg)dP1.uw);
340 ''' % { "dReg" : dReg }
341 unloadConv += '''
342 FpDestP%(sReg0)d.uw = gtoh(conv2.cRegs[%(sReg0)d]);
343 FpDestP%(sReg1)d.uw = gtoh(conv2.cRegs[%(sReg1)d]);
344 ''' % { "sReg0" : (dReg * 2), "sReg1" : (dReg * 2 + 1) }
345 microInterNeonCode = '''
346 const unsigned dRegs = %(dRegs)d;
347 const unsigned regs = 2 * dRegs;
348 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
349 sizeof(Element);
350 union convStruct {
351 FloatRegBits cRegs[regs];
352 Element elements[dRegs * perDReg];
353 } conv1, conv2;
354
355 %(loadConv)s
356
357 unsigned destElem = 0;
358 for (unsigned srcOffset = 0;
359 srcOffset < perDReg; srcOffset++) {
360 for (unsigned dReg = 0; dReg < dRegs; dReg++) {
361 conv2.elements[destElem++] =
362 conv1.elements[dReg * perDReg + srcOffset];
363 }
364 }
365
366 %(unloadConv)s
367 ''' % { "dRegs" : dRegs,
368 "loadConv" : loadConv,
369 "unloadConv" : unloadConv }
370 microInterNeonIop = \
371 InstObjParams('interneon%duop' % (dRegs * 2),
372 'MicroInterNeon%dUop' % (dRegs * 2),
373 'MicroNeonMixOp',
374 { 'predicate_test': predicateTest,
375 'code' : microInterNeonCode },
376 ['IsMicroop'])
377 header_output += MicroNeonMixDeclare.subst(microInterNeonIop)
378 exec_output += MicroNeonMixExecute.subst(microInterNeonIop)
379}};
380
381let {{
382 exec_output = ''
383 for type in ('uint8_t', 'uint16_t', 'uint32_t', 'uint64_t'):
384 for dRegs in (2, 3, 4):
385 Name = "MicroDeintNeon%dUop" % (dRegs * 2)
386 substDict = { "class_name" : Name, "targs" : type }
387 exec_output += MicroNeonExecDeclare.subst(substDict)
388 Name = "MicroInterNeon%dUop" % (dRegs * 2)
389 substDict = { "class_name" : Name, "targs" : type }
390 exec_output += MicroNeonExecDeclare.subst(substDict)
391}};
392
393////////////////////////////////////////////////////////////////////
394//
395// Neon microops to pack/unpack a single lane
396//
397
398let {{
399 header_output = exec_output = ''
400 for sRegs in 1, 2:
401 baseLoadRegs = ''
402 for reg in range(sRegs):
403 baseLoadRegs += '''
404 sourceRegs.fRegs[%(reg0)d] = htog(FpOp1P%(reg0)d.uw);
405 sourceRegs.fRegs[%(reg1)d] = htog(FpOp1P%(reg1)d.uw);
406 ''' % { "reg0" : (2 * reg + 0),
407 "reg1" : (2 * reg + 1) }
408 for dRegs in range(sRegs, 5):
409 unloadRegs = ''
410 loadRegs = baseLoadRegs
411 for reg in range(dRegs):
412 loadRegs += '''
413 destRegs[%(reg)d].fRegs[0] = htog(FpDestS%(reg)dP0.uw);
414 destRegs[%(reg)d].fRegs[1] = htog(FpDestS%(reg)dP1.uw);
415 ''' % { "reg" : reg }
416 unloadRegs += '''
417 FpDestS%(reg)dP0.uw = gtoh(destRegs[%(reg)d].fRegs[0]);
418 FpDestS%(reg)dP1.uw = gtoh(destRegs[%(reg)d].fRegs[1]);
419 ''' % { "reg" : reg }
420 microUnpackNeonCode = '''
421 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
422 sizeof(Element);
423
424 union SourceRegs {
425 FloatRegBits fRegs[2 * %(sRegs)d];
426 Element elements[%(sRegs)d * perDReg];
427 } sourceRegs;
428
429 union DestReg {
430 FloatRegBits fRegs[2];
431 Element elements[perDReg];
432 } destRegs[%(dRegs)d];
433
434 %(loadRegs)s
435
436 for (unsigned i = 0; i < %(dRegs)d; i++) {
437 destRegs[i].elements[lane] = sourceRegs.elements[i];
438 }
439
440 %(unloadRegs)s
441 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
442 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
443
444 microUnpackNeonIop = \
445 InstObjParams('unpackneon%dto%duop' % (sRegs * 2, dRegs * 2),
446 'MicroUnpackNeon%dto%dUop' %
447 (sRegs * 2, dRegs * 2),
448 'MicroNeonMixLaneOp',
449 { 'predicate_test': predicateTest,
450 'code' : microUnpackNeonCode },
451 ['IsMicroop'])
452 header_output += MicroNeonMixLaneDeclare.subst(microUnpackNeonIop)
453 exec_output += MicroNeonMixExecute.subst(microUnpackNeonIop)
454
455 for sRegs in 1, 2:
456 loadRegs = ''
457 for reg in range(sRegs):
458 loadRegs += '''
459 sourceRegs.fRegs[%(reg0)d] = htog(FpOp1P%(reg0)d.uw);
460 sourceRegs.fRegs[%(reg1)d] = htog(FpOp1P%(reg1)d.uw);
461 ''' % { "reg0" : (2 * reg + 0),
462 "reg1" : (2 * reg + 1) }
463 for dRegs in range(sRegs, 5):
464 unloadRegs = ''
465 for reg in range(dRegs):
466 unloadRegs += '''
467 FpDestS%(reg)dP0.uw = gtoh(destRegs[%(reg)d].fRegs[0]);
468 FpDestS%(reg)dP1.uw = gtoh(destRegs[%(reg)d].fRegs[1]);
469 ''' % { "reg" : reg }
470 microUnpackAllNeonCode = '''
471 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
472 sizeof(Element);
473
474 union SourceRegs {
475 FloatRegBits fRegs[2 * %(sRegs)d];
476 Element elements[%(sRegs)d * perDReg];
477 } sourceRegs;
478
479 union DestReg {
480 FloatRegBits fRegs[2];
481 Element elements[perDReg];
482 } destRegs[%(dRegs)d];
483
484 %(loadRegs)s
485
486 for (unsigned i = 0; i < %(dRegs)d; i++) {
487 for (unsigned j = 0; j < perDReg; j++)
488 destRegs[i].elements[j] = sourceRegs.elements[i];
489 }
490
491 %(unloadRegs)s
492 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
493 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
494
495 microUnpackAllNeonIop = \
496 InstObjParams('unpackallneon%dto%duop' % (sRegs * 2, dRegs * 2),
497 'MicroUnpackAllNeon%dto%dUop' %
498 (sRegs * 2, dRegs * 2),
499 'MicroNeonMixOp',
500 { 'predicate_test': predicateTest,
501 'code' : microUnpackAllNeonCode },
502 ['IsMicroop'])
503 header_output += MicroNeonMixDeclare.subst(microUnpackAllNeonIop)
504 exec_output += MicroNeonMixExecute.subst(microUnpackAllNeonIop)
505
506 for dRegs in 1, 2:
507 unloadRegs = ''
508 for reg in range(dRegs):
509 unloadRegs += '''
510 FpDestP%(reg0)d.uw = gtoh(destRegs.fRegs[%(reg0)d]);
511 FpDestP%(reg1)d.uw = gtoh(destRegs.fRegs[%(reg1)d]);
512 ''' % { "reg0" : (2 * reg + 0),
513 "reg1" : (2 * reg + 1) }
514 for sRegs in range(dRegs, 5):
515 loadRegs = ''
516 for reg in range(sRegs):
517 loadRegs += '''
518 sourceRegs[%(reg)d].fRegs[0] = htog(FpOp1S%(reg)dP0.uw);
519 sourceRegs[%(reg)d].fRegs[1] = htog(FpOp1S%(reg)dP1.uw);
520 ''' % { "reg" : reg }
521 microPackNeonCode = '''
522 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
523 sizeof(Element);
524
525 union SourceReg {
526 FloatRegBits fRegs[2];
527 Element elements[perDReg];
528 } sourceRegs[%(sRegs)d];
529
530 union DestRegs {
531 FloatRegBits fRegs[2 * %(dRegs)d];
532 Element elements[%(dRegs)d * perDReg];
533 } destRegs;
534
535 %(loadRegs)s
536
537 for (unsigned i = 0; i < %(sRegs)d; i++) {
538 destRegs.elements[i] = sourceRegs[i].elements[lane];
539 }
540
541 %(unloadRegs)s
542 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
543 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
544
545 microPackNeonIop = \
546 InstObjParams('packneon%dto%duop' % (sRegs * 2, dRegs * 2),
547 'MicroPackNeon%dto%dUop' %
548 (sRegs * 2, dRegs * 2),
549 'MicroNeonMixLaneOp',
550 { 'predicate_test': predicateTest,
551 'code' : microPackNeonCode },
552 ['IsMicroop'])
553 header_output += MicroNeonMixLaneDeclare.subst(microPackNeonIop)
554 exec_output += MicroNeonMixExecute.subst(microPackNeonIop)
555}};
556
557let {{
558 exec_output = ''
559 for type in ('uint8_t', 'uint16_t', 'uint32_t'):
560 for sRegs in 1, 2:
561 for dRegs in range(sRegs, 5):
562 for format in ("MicroUnpackNeon%(sRegs)dto%(dRegs)dUop",
563 "MicroUnpackAllNeon%(sRegs)dto%(dRegs)dUop",
564 "MicroPackNeon%(dRegs)dto%(sRegs)dUop"):
565 Name = format % { "sRegs" : sRegs * 2,
566 "dRegs" : dRegs * 2 }
567 substDict = { "class_name" : Name, "targs" : type }
568 exec_output += MicroNeonExecDeclare.subst(substDict)
569}};
570
571////////////////////////////////////////////////////////////////////
572//
573// Integer = Integer op Immediate microops
574//
575
576let {{
577 microAddiUopIop = InstObjParams('addi_uop', 'MicroAddiUop',
578 'MicroIntImmOp',
579 {'code': 'URa = URb + imm;',
580 'predicate_test': predicateTest},
581 ['IsMicroop'])
582
583 microAddUopIop = InstObjParams('add_uop', 'MicroAddUop',
584 'MicroIntRegOp',
585 {'code':
586 '''URa = URb + shift_rm_imm(URc, shiftAmt,
587 shiftType,
588 CondCodes<29:>);
589 ''',
590 'predicate_test': predicateTest},
591 ['IsMicroop'])
592
593 microSubiUopIop = InstObjParams('subi_uop', 'MicroSubiUop',
594 'MicroIntImmOp',
595 {'code': 'URa = URb - imm;',
596 'predicate_test': predicateTest},
597 ['IsMicroop'])
598
599 microSubUopIop = InstObjParams('sub_uop', 'MicroSubUop',
600 'MicroIntRegOp',
601 {'code':
602 '''URa = URb - shift_rm_imm(URc, shiftAmt,
603 shiftType,
604 CondCodes<29:>);
605 ''',
606 'predicate_test': predicateTest},
607 ['IsMicroop'])
608
609 microUopRegMovIop = InstObjParams('uopReg_uop', 'MicroUopRegMov',
610 'MicroIntMov',
611 {'code': 'IWRa = URb;',
612 'predicate_test': predicateTest},
613 ['IsMicroop'])
614
615 microUopRegMovRetIop = InstObjParams('movret_uop', 'MicroUopRegMovRet',
616 'MicroIntMov',
617 {'code': microRetUopCode % 'URb',
618 'predicate_test': predicateTest},
619 ['IsMicroop', 'IsNonSpeculative',
620 'IsSerializeAfter'])
621
622 setPCCPSRDecl = '''
623 CPSR cpsrOrCondCodes = URc;
624 SCTLR sctlr = Sctlr;
625 pNPC = URa;
626 uint32_t newCpsr =
627 cpsrWriteByInstr(cpsrOrCondCodes, URb,
628 0xF, true, sctlr.nmfi);
629 Cpsr = ~CondCodesMask & newCpsr;
630 NextThumb = ((CPSR)newCpsr).t;
631 NextJazelle = ((CPSR)newCpsr).j;
632 NextItState = ((((CPSR)URb).it2 << 2) & 0xFC)
633 | (((CPSR)URb).it1 & 0x3);
634 CondCodes = CondCodesMask & newCpsr;
635 '''
636
637 microUopSetPCCPSRIop = InstObjParams('uopSet_uop', 'MicroUopSetPCCPSR',
638 'MicroSetPCCPSR',
639 {'code': setPCCPSRDecl,
640 'predicate_test': predicateTest},
641 ['IsMicroop'])
642
643 header_output = MicroIntImmDeclare.subst(microAddiUopIop) + \
644 MicroIntImmDeclare.subst(microSubiUopIop) + \
645 MicroIntRegDeclare.subst(microAddUopIop) + \
646 MicroIntRegDeclare.subst(microSubUopIop) + \
647 MicroIntMovDeclare.subst(microUopRegMovIop) + \
648 MicroIntMovDeclare.subst(microUopRegMovRetIop) + \
649 MicroSetPCCPSRDeclare.subst(microUopSetPCCPSRIop)
650
651 decoder_output = MicroIntImmConstructor.subst(microAddiUopIop) + \
652 MicroIntImmConstructor.subst(microSubiUopIop) + \
653 MicroIntRegConstructor.subst(microAddUopIop) + \
654 MicroIntRegConstructor.subst(microSubUopIop) + \
655 MicroIntMovConstructor.subst(microUopRegMovIop) + \
656 MicroIntMovConstructor.subst(microUopRegMovRetIop) + \
657 MicroSetPCCPSRConstructor.subst(microUopSetPCCPSRIop)
658
659 exec_output = PredOpExecute.subst(microAddiUopIop) + \
660 PredOpExecute.subst(microSubiUopIop) + \
661 PredOpExecute.subst(microAddUopIop) + \
662 PredOpExecute.subst(microSubUopIop) + \
663 PredOpExecute.subst(microUopRegMovIop) + \
664 PredOpExecute.subst(microUopRegMovRetIop) + \
665 PredOpExecute.subst(microUopSetPCCPSRIop)
666
667}};
668
669let {{
670 iop = InstObjParams("ldmstm", "LdmStm", 'MacroMemOp', "", [])
671 header_output = MacroMemDeclare.subst(iop)
672 decoder_output = MacroMemConstructor.subst(iop)
673
674 iop = InstObjParams("vldmult", "VldMult", 'VldMultOp', "", [])
675 header_output += VMemMultDeclare.subst(iop)
676 decoder_output += VMemMultConstructor.subst(iop)
677
678 iop = InstObjParams("vldsingle", "VldSingle", 'VldSingleOp', "", [])
679 header_output += VMemSingleDeclare.subst(iop)
680 decoder_output += VMemSingleConstructor.subst(iop)
681
682 iop = InstObjParams("vstmult", "VstMult", 'VstMultOp', "", [])
683 header_output += VMemMultDeclare.subst(iop)
684 decoder_output += VMemMultConstructor.subst(iop)
685
686 iop = InstObjParams("vstsingle", "VstSingle", 'VstSingleOp', "", [])
687 header_output += VMemSingleDeclare.subst(iop)
688 decoder_output += VMemSingleConstructor.subst(iop)
689
690 vfpIop = InstObjParams("vldmstm", "VLdmStm", 'MacroVFPMemOp', "", [])
691 header_output += MacroVFPMemDeclare.subst(vfpIop)
692 decoder_output += MacroVFPMemConstructor.subst(vfpIop)
693}};