Deleted Added
sdiff udiff text old ( 8205:7ecbffb674aa ) new ( 8285:c38905a6fa32 )
full compact
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder. You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42// Gabe Black
43
44////////////////////////////////////////////////////////////////////
45//
46// Load/store microops
47//
48
49let {{
50 microLdrUopCode = "IWRa = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
51 microLdrUopIop = InstObjParams('ldr_uop', 'MicroLdrUop',
52 'MicroMemOp',
53 {'memacc_code': microLdrUopCode,
54 'ea_code': 'EA = URb + (up ? imm : -imm);',
55 'predicate_test': predicateTest},
56 ['IsMicroop'])
57
58 microLdrFpUopCode = "Fa.uw = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
59 microLdrFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrFpUop',
60 'MicroMemOp',
61 {'memacc_code': microLdrFpUopCode,
62 'ea_code': vfpEnabledCheckCode +
63 'EA = URb + (up ? imm : -imm);',
64 'predicate_test': predicateTest},
65 ['IsMicroop'])
66
67 microLdrDBFpUopCode = "Fa.uw = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
68 microLdrDBFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrDBFpUop',
69 'MicroMemOp',
70 {'memacc_code': microLdrFpUopCode,
71 'ea_code': vfpEnabledCheckCode + '''
72 EA = URb + (up ? imm : -imm) +
73 (((CPSR)Cpsr).e ? 4 : 0);
74 ''',
75 'predicate_test': predicateTest},
76 ['IsMicroop'])
77
78 microLdrDTFpUopCode = "Fa.uw = cSwap(Mem.uw, ((CPSR)Cpsr).e);"
79 microLdrDTFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrDTFpUop',
80 'MicroMemOp',
81 {'memacc_code': microLdrFpUopCode,
82 'ea_code': vfpEnabledCheckCode + '''
83 EA = URb + (up ? imm : -imm) -
84 (((CPSR)Cpsr).e ? 4 : 0);
85 ''',
86 'predicate_test': predicateTest},
87 ['IsMicroop'])
88
89 microRetUopCode = '''
90 CPSR cpsr = Cpsr;
91 SCTLR sctlr = Sctlr;
92 uint32_t newCpsr =
93 cpsrWriteByInstr(cpsr | CondCodes, Spsr, 0xF, true, sctlr.nmfi);
94 Cpsr = ~CondCodesMask & newCpsr;
95 CondCodes = CondCodesMask & newCpsr;
96 IWNPC = cSwap(%s, cpsr.e) | ((Spsr & 0x20) ? 1 : 0);
97 NextItState = ((((CPSR)Spsr).it2 << 2) & 0xFC)
98 | (((CPSR)Spsr).it1 & 0x3);
99 '''
100
101 microLdrRetUopIop = InstObjParams('ldr_ret_uop', 'MicroLdrRetUop',
102 'MicroMemOp',
103 {'memacc_code':
104 microRetUopCode % 'Mem.uw',
105 'ea_code':
106 'EA = URb + (up ? imm : -imm);',
107 'predicate_test': condPredicateTest},
108 ['IsMicroop','IsNonSpeculative',
109 'IsSerializeAfter'])
110
111 microStrUopCode = "Mem = cSwap(URa.uw, ((CPSR)Cpsr).e);"
112 microStrUopIop = InstObjParams('str_uop', 'MicroStrUop',
113 'MicroMemOp',
114 {'memacc_code': microStrUopCode,
115 'postacc_code': "",
116 'ea_code': 'EA = URb + (up ? imm : -imm);',
117 'predicate_test': predicateTest},
118 ['IsMicroop'])
119
120 microStrFpUopCode = "Mem = cSwap(Fa.uw, ((CPSR)Cpsr).e);"
121 microStrFpUopIop = InstObjParams('strfp_uop', 'MicroStrFpUop',
122 'MicroMemOp',
123 {'memacc_code': microStrFpUopCode,
124 'postacc_code': "",
125 'ea_code': vfpEnabledCheckCode +
126 'EA = URb + (up ? imm : -imm);',
127 'predicate_test': predicateTest},
128 ['IsMicroop'])
129
130 microStrDBFpUopCode = "Mem = cSwap(Fa.uw, ((CPSR)Cpsr).e);"
131 microStrDBFpUopIop = InstObjParams('strfp_uop', 'MicroStrDBFpUop',
132 'MicroMemOp',
133 {'memacc_code': microStrFpUopCode,
134 'postacc_code': "",
135 'ea_code': vfpEnabledCheckCode + '''
136 EA = URb + (up ? imm : -imm) +
137 (((CPSR)Cpsr).e ? 4 : 0);
138 ''',
139 'predicate_test': predicateTest},
140 ['IsMicroop'])
141
142 microStrDTFpUopCode = "Mem = cSwap(Fa.uw, ((CPSR)Cpsr).e);"
143 microStrDTFpUopIop = InstObjParams('strfp_uop', 'MicroStrDTFpUop',
144 'MicroMemOp',
145 {'memacc_code': microStrFpUopCode,
146 'postacc_code': "",
147 'ea_code': vfpEnabledCheckCode + '''
148 EA = URb + (up ? imm : -imm) -
149 (((CPSR)Cpsr).e ? 4 : 0);
150 ''',
151 'predicate_test': predicateTest},
152 ['IsMicroop'])
153
154 header_output = decoder_output = exec_output = ''
155
156 loadIops = (microLdrUopIop, microLdrRetUopIop,
157 microLdrFpUopIop, microLdrDBFpUopIop, microLdrDTFpUopIop)
158 storeIops = (microStrUopIop, microStrFpUopIop,
159 microStrDBFpUopIop, microStrDTFpUopIop)
160 for iop in loadIops + storeIops:
161 header_output += MicroMemDeclare.subst(iop)
162 decoder_output += MicroMemConstructor.subst(iop)
163 for iop in loadIops:
164 exec_output += LoadExecute.subst(iop) + \
165 LoadInitiateAcc.subst(iop) + \
166 LoadCompleteAcc.subst(iop)
167 for iop in storeIops:
168 exec_output += StoreExecute.subst(iop) + \
169 StoreInitiateAcc.subst(iop) + \
170 StoreCompleteAcc.subst(iop)
171}};
172
173let {{
174 exec_output = header_output = ''
175
176 eaCode = 'EA = URa + imm;'
177
178 for size in (1, 2, 3, 4, 6, 8, 12, 16):
179 # Set up the memory access.
180 regs = (size + 3) // 4
181 subst = { "size" : size, "regs" : regs }
182 memDecl = '''
183 union MemUnion {
184 uint8_t bytes[%(size)d];
185 Element elements[%(size)d / sizeof(Element)];
186 uint32_t floatRegBits[%(regs)d];
187 };
188 ''' % subst
189
190 # Do endian conversion for all the elements.
191 convCode = '''
192 const unsigned eCount = sizeof(memUnion.elements) /
193 sizeof(memUnion.elements[0]);
194 if (((CPSR)Cpsr).e) {
195 for (unsigned i = 0; i < eCount; i++) {
196 memUnion.elements[i] = gtobe(memUnion.elements[i]);
197 }
198 } else {
199 for (unsigned i = 0; i < eCount; i++) {
200 memUnion.elements[i] = gtole(memUnion.elements[i]);
201 }
202 }
203 '''
204
205 # Offload everything into registers
206 regSetCode = ''
207 for reg in range(regs):
208 mask = ''
209 if reg == regs - 1:
210 mask = ' & mask(%d)' % (32 - 8 * (regs * 4 - size))
211 regSetCode += '''
212 FpDestP%(reg)d.uw = gtoh(memUnion.floatRegBits[%(reg)d])%(mask)s;
213 ''' % { "reg" : reg, "mask" : mask }
214
215 # Pull everything in from registers
216 regGetCode = ''
217 for reg in range(regs):
218 regGetCode += '''
219 memUnion.floatRegBits[%(reg)d] = htog(FpDestP%(reg)d.uw);
220 ''' % { "reg" : reg }
221
222 loadMemAccCode = convCode + regSetCode
223 storeMemAccCode = regGetCode + convCode
224
225 loadIop = InstObjParams('ldrneon%(size)d_uop' % subst,
226 'MicroLdrNeon%(size)dUop' % subst,
227 'MicroNeonMemOp',
228 { 'mem_decl' : memDecl,
229 'size' : size,
230 'memacc_code' : loadMemAccCode,
231 'ea_code' : simdEnabledCheckCode + eaCode,
232 'predicate_test' : predicateTest },
233 [ 'IsMicroop', 'IsMemRef', 'IsLoad' ])
234 storeIop = InstObjParams('strneon%(size)d_uop' % subst,
235 'MicroStrNeon%(size)dUop' % subst,
236 'MicroNeonMemOp',
237 { 'mem_decl' : memDecl,
238 'size' : size,
239 'memacc_code' : storeMemAccCode,
240 'ea_code' : simdEnabledCheckCode + eaCode,
241 'predicate_test' : predicateTest },
242 [ 'IsMicroop', 'IsMemRef', 'IsStore' ])
243
244 exec_output += NeonLoadExecute.subst(loadIop) + \
245 NeonLoadInitiateAcc.subst(loadIop) + \
246 NeonLoadCompleteAcc.subst(loadIop) + \
247 NeonStoreExecute.subst(storeIop) + \
248 NeonStoreInitiateAcc.subst(storeIop) + \
249 NeonStoreCompleteAcc.subst(storeIop)
250 header_output += MicroNeonMemDeclare.subst(loadIop) + \
251 MicroNeonMemDeclare.subst(storeIop)
252}};
253
254let {{
255 exec_output = ''
256 for eSize, type in (1, 'uint8_t'), \
257 (2, 'uint16_t'), \
258 (4, 'uint32_t'), \
259 (8, 'uint64_t'):
260 size = eSize
261 # An instruction handles no more than 16 bytes and no more than
262 # 4 elements, or the number of elements needed to fill 8 or 16 bytes.
263 sizes = set((16, 8))
264 for count in 1, 2, 3, 4:
265 size = count * eSize
266 if size <= 16:
267 sizes.add(size)
268 for size in sizes:
269 substDict = {
270 "class_name" : "MicroLdrNeon%dUop" % size,
271 "targs" : type
272 }
273 exec_output += MicroNeonMemExecDeclare.subst(substDict)
274 substDict["class_name"] = "MicroStrNeon%dUop" % size
275 exec_output += MicroNeonMemExecDeclare.subst(substDict)
276 size += eSize
277}};
278
279////////////////////////////////////////////////////////////////////
280//
281// Neon (de)interlacing microops
282//
283
284let {{
285 header_output = exec_output = ''
286 for dRegs in (2, 3, 4):
287 loadConv = ''
288 unloadConv = ''
289 for dReg in range(dRegs):
290 loadConv += '''
291 conv1.cRegs[%(sReg0)d] = htog(FpOp1P%(sReg0)d.uw);
292 conv1.cRegs[%(sReg1)d] = htog(FpOp1P%(sReg1)d.uw);
293 ''' % { "sReg0" : (dReg * 2), "sReg1" : (dReg * 2 + 1) }
294 unloadConv += '''
295 FpDestS%(dReg)dP0.uw = gtoh(conv2.cRegs[2 * %(dReg)d + 0]);
296 FpDestS%(dReg)dP1.uw = gtoh(conv2.cRegs[2 * %(dReg)d + 1]);
297 ''' % { "dReg" : dReg }
298 microDeintNeonCode = '''
299 const unsigned dRegs = %(dRegs)d;
300 const unsigned regs = 2 * dRegs;
301 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
302 sizeof(Element);
303 union convStruct {
304 FloatRegBits cRegs[regs];
305 Element elements[dRegs * perDReg];
306 } conv1, conv2;
307
308 %(loadConv)s
309
310 unsigned srcElem = 0;
311 for (unsigned destOffset = 0;
312 destOffset < perDReg; destOffset++) {
313 for (unsigned dReg = 0; dReg < dRegs; dReg++) {
314 conv2.elements[dReg * perDReg + destOffset] =
315 conv1.elements[srcElem++];
316 }
317 }
318
319 %(unloadConv)s
320 ''' % { "dRegs" : dRegs,
321 "loadConv" : loadConv,
322 "unloadConv" : unloadConv }
323 microDeintNeonIop = \
324 InstObjParams('deintneon%duop' % (dRegs * 2),
325 'MicroDeintNeon%dUop' % (dRegs * 2),
326 'MicroNeonMixOp',
327 { 'predicate_test': predicateTest,
328 'code' : microDeintNeonCode },
329 ['IsMicroop'])
330 header_output += MicroNeonMixDeclare.subst(microDeintNeonIop)
331 exec_output += MicroNeonMixExecute.subst(microDeintNeonIop)
332
333 loadConv = ''
334 unloadConv = ''
335 for dReg in range(dRegs):
336 loadConv += '''
337 conv1.cRegs[2 * %(dReg)d + 0] = htog(FpOp1S%(dReg)dP0.uw);
338 conv1.cRegs[2 * %(dReg)d + 1] = htog(FpOp1S%(dReg)dP1.uw);
339 ''' % { "dReg" : dReg }
340 unloadConv += '''
341 FpDestP%(sReg0)d.uw = gtoh(conv2.cRegs[%(sReg0)d]);
342 FpDestP%(sReg1)d.uw = gtoh(conv2.cRegs[%(sReg1)d]);
343 ''' % { "sReg0" : (dReg * 2), "sReg1" : (dReg * 2 + 1) }
344 microInterNeonCode = '''
345 const unsigned dRegs = %(dRegs)d;
346 const unsigned regs = 2 * dRegs;
347 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
348 sizeof(Element);
349 union convStruct {
350 FloatRegBits cRegs[regs];
351 Element elements[dRegs * perDReg];
352 } conv1, conv2;
353
354 %(loadConv)s
355
356 unsigned destElem = 0;
357 for (unsigned srcOffset = 0;
358 srcOffset < perDReg; srcOffset++) {
359 for (unsigned dReg = 0; dReg < dRegs; dReg++) {
360 conv2.elements[destElem++] =
361 conv1.elements[dReg * perDReg + srcOffset];
362 }
363 }
364
365 %(unloadConv)s
366 ''' % { "dRegs" : dRegs,
367 "loadConv" : loadConv,
368 "unloadConv" : unloadConv }
369 microInterNeonIop = \
370 InstObjParams('interneon%duop' % (dRegs * 2),
371 'MicroInterNeon%dUop' % (dRegs * 2),
372 'MicroNeonMixOp',
373 { 'predicate_test': predicateTest,
374 'code' : microInterNeonCode },
375 ['IsMicroop'])
376 header_output += MicroNeonMixDeclare.subst(microInterNeonIop)
377 exec_output += MicroNeonMixExecute.subst(microInterNeonIop)
378}};
379
380let {{
381 exec_output = ''
382 for type in ('uint8_t', 'uint16_t', 'uint32_t', 'uint64_t'):
383 for dRegs in (2, 3, 4):
384 Name = "MicroDeintNeon%dUop" % (dRegs * 2)
385 substDict = { "class_name" : Name, "targs" : type }
386 exec_output += MicroNeonExecDeclare.subst(substDict)
387 Name = "MicroInterNeon%dUop" % (dRegs * 2)
388 substDict = { "class_name" : Name, "targs" : type }
389 exec_output += MicroNeonExecDeclare.subst(substDict)
390}};
391
392////////////////////////////////////////////////////////////////////
393//
394// Neon microops to pack/unpack a single lane
395//
396
397let {{
398 header_output = exec_output = ''
399 for sRegs in 1, 2:
400 baseLoadRegs = ''
401 for reg in range(sRegs):
402 baseLoadRegs += '''
403 sourceRegs.fRegs[%(reg0)d] = htog(FpOp1P%(reg0)d.uw);
404 sourceRegs.fRegs[%(reg1)d] = htog(FpOp1P%(reg1)d.uw);
405 ''' % { "reg0" : (2 * reg + 0),
406 "reg1" : (2 * reg + 1) }
407 for dRegs in range(sRegs, 5):
408 unloadRegs = ''
409 loadRegs = baseLoadRegs
410 for reg in range(dRegs):
411 loadRegs += '''
412 destRegs[%(reg)d].fRegs[0] = htog(FpDestS%(reg)dP0.uw);
413 destRegs[%(reg)d].fRegs[1] = htog(FpDestS%(reg)dP1.uw);
414 ''' % { "reg" : reg }
415 unloadRegs += '''
416 FpDestS%(reg)dP0.uw = gtoh(destRegs[%(reg)d].fRegs[0]);
417 FpDestS%(reg)dP1.uw = gtoh(destRegs[%(reg)d].fRegs[1]);
418 ''' % { "reg" : reg }
419 microUnpackNeonCode = '''
420 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
421 sizeof(Element);
422
423 union SourceRegs {
424 FloatRegBits fRegs[2 * %(sRegs)d];
425 Element elements[%(sRegs)d * perDReg];
426 } sourceRegs;
427
428 union DestReg {
429 FloatRegBits fRegs[2];
430 Element elements[perDReg];
431 } destRegs[%(dRegs)d];
432
433 %(loadRegs)s
434
435 for (unsigned i = 0; i < %(dRegs)d; i++) {
436 destRegs[i].elements[lane] = sourceRegs.elements[i];
437 }
438
439 %(unloadRegs)s
440 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
441 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
442
443 microUnpackNeonIop = \
444 InstObjParams('unpackneon%dto%duop' % (sRegs * 2, dRegs * 2),
445 'MicroUnpackNeon%dto%dUop' %
446 (sRegs * 2, dRegs * 2),
447 'MicroNeonMixLaneOp',
448 { 'predicate_test': predicateTest,
449 'code' : microUnpackNeonCode },
450 ['IsMicroop'])
451 header_output += MicroNeonMixLaneDeclare.subst(microUnpackNeonIop)
452 exec_output += MicroNeonMixExecute.subst(microUnpackNeonIop)
453
454 for sRegs in 1, 2:
455 loadRegs = ''
456 for reg in range(sRegs):
457 loadRegs += '''
458 sourceRegs.fRegs[%(reg0)d] = htog(FpOp1P%(reg0)d.uw);
459 sourceRegs.fRegs[%(reg1)d] = htog(FpOp1P%(reg1)d.uw);
460 ''' % { "reg0" : (2 * reg + 0),
461 "reg1" : (2 * reg + 1) }
462 for dRegs in range(sRegs, 5):
463 unloadRegs = ''
464 for reg in range(dRegs):
465 unloadRegs += '''
466 FpDestS%(reg)dP0.uw = gtoh(destRegs[%(reg)d].fRegs[0]);
467 FpDestS%(reg)dP1.uw = gtoh(destRegs[%(reg)d].fRegs[1]);
468 ''' % { "reg" : reg }
469 microUnpackAllNeonCode = '''
470 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
471 sizeof(Element);
472
473 union SourceRegs {
474 FloatRegBits fRegs[2 * %(sRegs)d];
475 Element elements[%(sRegs)d * perDReg];
476 } sourceRegs;
477
478 union DestReg {
479 FloatRegBits fRegs[2];
480 Element elements[perDReg];
481 } destRegs[%(dRegs)d];
482
483 %(loadRegs)s
484
485 for (unsigned i = 0; i < %(dRegs)d; i++) {
486 for (unsigned j = 0; j < perDReg; j++)
487 destRegs[i].elements[j] = sourceRegs.elements[i];
488 }
489
490 %(unloadRegs)s
491 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
492 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
493
494 microUnpackAllNeonIop = \
495 InstObjParams('unpackallneon%dto%duop' % (sRegs * 2, dRegs * 2),
496 'MicroUnpackAllNeon%dto%dUop' %
497 (sRegs * 2, dRegs * 2),
498 'MicroNeonMixOp',
499 { 'predicate_test': predicateTest,
500 'code' : microUnpackAllNeonCode },
501 ['IsMicroop'])
502 header_output += MicroNeonMixDeclare.subst(microUnpackAllNeonIop)
503 exec_output += MicroNeonMixExecute.subst(microUnpackAllNeonIop)
504
505 for dRegs in 1, 2:
506 unloadRegs = ''
507 for reg in range(dRegs):
508 unloadRegs += '''
509 FpDestP%(reg0)d.uw = gtoh(destRegs.fRegs[%(reg0)d]);
510 FpDestP%(reg1)d.uw = gtoh(destRegs.fRegs[%(reg1)d]);
511 ''' % { "reg0" : (2 * reg + 0),
512 "reg1" : (2 * reg + 1) }
513 for sRegs in range(dRegs, 5):
514 loadRegs = ''
515 for reg in range(sRegs):
516 loadRegs += '''
517 sourceRegs[%(reg)d].fRegs[0] = htog(FpOp1S%(reg)dP0.uw);
518 sourceRegs[%(reg)d].fRegs[1] = htog(FpOp1S%(reg)dP1.uw);
519 ''' % { "reg" : reg }
520 microPackNeonCode = '''
521 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
522 sizeof(Element);
523
524 union SourceReg {
525 FloatRegBits fRegs[2];
526 Element elements[perDReg];
527 } sourceRegs[%(sRegs)d];
528
529 union DestRegs {
530 FloatRegBits fRegs[2 * %(dRegs)d];
531 Element elements[%(dRegs)d * perDReg];
532 } destRegs;
533
534 %(loadRegs)s
535
536 for (unsigned i = 0; i < %(sRegs)d; i++) {
537 destRegs.elements[i] = sourceRegs[i].elements[lane];
538 }
539
540 %(unloadRegs)s
541 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
542 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
543
544 microPackNeonIop = \
545 InstObjParams('packneon%dto%duop' % (sRegs * 2, dRegs * 2),
546 'MicroPackNeon%dto%dUop' %
547 (sRegs * 2, dRegs * 2),
548 'MicroNeonMixLaneOp',
549 { 'predicate_test': predicateTest,
550 'code' : microPackNeonCode },
551 ['IsMicroop'])
552 header_output += MicroNeonMixLaneDeclare.subst(microPackNeonIop)
553 exec_output += MicroNeonMixExecute.subst(microPackNeonIop)
554}};
555
556let {{
557 exec_output = ''
558 for type in ('uint8_t', 'uint16_t', 'uint32_t'):
559 for sRegs in 1, 2:
560 for dRegs in range(sRegs, 5):
561 for format in ("MicroUnpackNeon%(sRegs)dto%(dRegs)dUop",
562 "MicroUnpackAllNeon%(sRegs)dto%(dRegs)dUop",
563 "MicroPackNeon%(dRegs)dto%(sRegs)dUop"):
564 Name = format % { "sRegs" : sRegs * 2,
565 "dRegs" : dRegs * 2 }
566 substDict = { "class_name" : Name, "targs" : type }
567 exec_output += MicroNeonExecDeclare.subst(substDict)
568}};
569
570////////////////////////////////////////////////////////////////////
571//
572// Integer = Integer op Immediate microops
573//
574
575let {{
576 microAddiUopIop = InstObjParams('addi_uop', 'MicroAddiUop',
577 'MicroIntImmOp',
578 {'code': 'URa = URb + imm;',
579 'predicate_test': predicateTest},
580 ['IsMicroop'])
581
582 microAddUopIop = InstObjParams('add_uop', 'MicroAddUop',
583 'MicroIntRegOp',
584 {'code':
585 '''URa = URb + shift_rm_imm(URc, shiftAmt,
586 shiftType,
587 CondCodes<29:>);
588 ''',
589 'predicate_test': predicateTest},
590 ['IsMicroop'])
591
592 microSubiUopIop = InstObjParams('subi_uop', 'MicroSubiUop',
593 'MicroIntImmOp',
594 {'code': 'URa = URb - imm;',
595 'predicate_test': predicateTest},
596 ['IsMicroop'])
597
598 microSubUopIop = InstObjParams('sub_uop', 'MicroSubUop',
599 'MicroIntRegOp',
600 {'code':
601 '''URa = URb - shift_rm_imm(URc, shiftAmt,
602 shiftType,
603 CondCodes<29:>);
604 ''',
605 'predicate_test': predicateTest},
606 ['IsMicroop'])
607
608 microUopRegMovIop = InstObjParams('uopReg_uop', 'MicroUopRegMov',
609 'MicroIntMov',
610 {'code': 'IWRa = URb;',
611 'predicate_test': predicateTest},
612 ['IsMicroop'])
613
614 microUopRegMovRetIop = InstObjParams('movret_uop', 'MicroUopRegMovRet',
615 'MicroIntMov',
616 {'code': microRetUopCode % 'URb',
617 'predicate_test': predicateTest},
618 ['IsMicroop', 'IsNonSpeculative',
619 'IsSerializeAfter'])
620
621 setPCCPSRDecl = '''
622 CPSR cpsrOrCondCodes = URc;
623 SCTLR sctlr = Sctlr;
624 pNPC = URa;
625 uint32_t newCpsr =
626 cpsrWriteByInstr(cpsrOrCondCodes, URb,
627 0xF, true, sctlr.nmfi);
628 Cpsr = ~CondCodesMask & newCpsr;
629 NextThumb = ((CPSR)newCpsr).t;
630 NextJazelle = ((CPSR)newCpsr).j;
631 NextItState = ((((CPSR)URb).it2 << 2) & 0xFC)
632 | (((CPSR)URb).it1 & 0x3);
633 CondCodes = CondCodesMask & newCpsr;
634 '''
635
636 microUopSetPCCPSRIop = InstObjParams('uopSet_uop', 'MicroUopSetPCCPSR',
637 'MicroSetPCCPSR',
638 {'code': setPCCPSRDecl,
639 'predicate_test': predicateTest},
640 ['IsMicroop'])
641
642 header_output = MicroIntImmDeclare.subst(microAddiUopIop) + \
643 MicroIntImmDeclare.subst(microSubiUopIop) + \
644 MicroIntRegDeclare.subst(microAddUopIop) + \
645 MicroIntRegDeclare.subst(microSubUopIop) + \
646 MicroIntMovDeclare.subst(microUopRegMovIop) + \
647 MicroIntMovDeclare.subst(microUopRegMovRetIop) + \
648 MicroSetPCCPSRDeclare.subst(microUopSetPCCPSRIop)
649
650 decoder_output = MicroIntImmConstructor.subst(microAddiUopIop) + \
651 MicroIntImmConstructor.subst(microSubiUopIop) + \
652 MicroIntRegConstructor.subst(microAddUopIop) + \
653 MicroIntRegConstructor.subst(microSubUopIop) + \
654 MicroIntMovConstructor.subst(microUopRegMovIop) + \
655 MicroIntMovConstructor.subst(microUopRegMovRetIop) + \
656 MicroSetPCCPSRConstructor.subst(microUopSetPCCPSRIop)
657
658 exec_output = PredOpExecute.subst(microAddiUopIop) + \
659 PredOpExecute.subst(microSubiUopIop) + \
660 PredOpExecute.subst(microAddUopIop) + \
661 PredOpExecute.subst(microSubUopIop) + \
662 PredOpExecute.subst(microUopRegMovIop) + \
663 PredOpExecute.subst(microUopRegMovRetIop) + \
664 PredOpExecute.subst(microUopSetPCCPSRIop)
665
666}};
667
668let {{
669 iop = InstObjParams("ldmstm", "LdmStm", 'MacroMemOp', "", [])
670 header_output = MacroMemDeclare.subst(iop)
671 decoder_output = MacroMemConstructor.subst(iop)
672
673 iop = InstObjParams("vldmult", "VldMult", 'VldMultOp', "", [])
674 header_output += VMemMultDeclare.subst(iop)
675 decoder_output += VMemMultConstructor.subst(iop)
676
677 iop = InstObjParams("vldsingle", "VldSingle", 'VldSingleOp', "", [])
678 header_output += VMemSingleDeclare.subst(iop)
679 decoder_output += VMemSingleConstructor.subst(iop)
680
681 iop = InstObjParams("vstmult", "VstMult", 'VstMultOp', "", [])
682 header_output += VMemMultDeclare.subst(iop)
683 decoder_output += VMemMultConstructor.subst(iop)
684
685 iop = InstObjParams("vstsingle", "VstSingle", 'VstSingleOp', "", [])
686 header_output += VMemSingleDeclare.subst(iop)
687 decoder_output += VMemSingleConstructor.subst(iop)
688
689 vfpIop = InstObjParams("vldmstm", "VLdmStm", 'MacroVFPMemOp', "", [])
690 header_output += MacroVFPMemDeclare.subst(vfpIop)
691 decoder_output += MacroVFPMemConstructor.subst(vfpIop)
692}};