component.cc (10152:52c552138ba1) component.cc (10234:5cb711fa6176)
1/*****************************************************************************
2 * McPAT/CACTI
3 * SOFTWARE LICENSE AGREEMENT
4 * Copyright 2012 Hewlett-Packard Development Company, L.P.
1/*****************************************************************************
2 * McPAT/CACTI
3 * SOFTWARE LICENSE AGREEMENT
4 * Copyright 2012 Hewlett-Packard Development Company, L.P.
5 * Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
5 * All Rights Reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the

--- 7 unchanged lines hidden (view full) ---

20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
6 * All Rights Reserved
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met: redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer;
12 * redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the

--- 7 unchanged lines hidden (view full) ---

21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 ***************************************************************************/
31
32
33
34
35#include <cassert>
36#include <cmath>
37#include <iostream>
38
39#include "bank.h"
40#include "component.h"
41#include "decoder.h"
42
43using namespace std;
44
45
46
47Component::Component()
30 *
31 ***************************************************************************/
32
33
34
35
36#include <cassert>
37#include <cmath>
38#include <iostream>
39
40#include "bank.h"
41#include "component.h"
42#include "decoder.h"
43
44using namespace std;
45
46
47
48Component::Component()
48 :area(), power(), rt_power(),delay(0)
49{
49 : area(), power(), rt_power(), delay(0) {
50}
51
52
53
50}
51
52
53
54Component::~Component()
55{
54Component::~Component() {
56}
57
58
59
55}
56
57
58
60double Component::compute_diffusion_width(int num_stacked_in, int num_folded_tr)
61{
62 double w_poly = g_ip->F_sz_um;
63 double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
64 double total_diff_w = 2 * spacing_poly_to_poly + // for both source and drain
65 num_stacked_in * w_poly +
66 (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
59double Component::compute_diffusion_width(int num_stacked_in, int num_folded_tr) {
60 double w_poly = g_ip->F_sz_um;
61 double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
62 double total_diff_w = 2 * spacing_poly_to_poly + // for both source and drain
63 num_stacked_in * w_poly +
64 (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
67
65
68 if (num_folded_tr > 1)
69 {
70 total_diff_w += (num_folded_tr - 2) * 2 * spacing_poly_to_poly +
71 (num_folded_tr - 1) * num_stacked_in * w_poly +
72 (num_folded_tr - 1) * (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
73 }
66 if (num_folded_tr > 1) {
67 total_diff_w += (num_folded_tr - 2) * 2 * spacing_poly_to_poly +
68 (num_folded_tr - 1) * num_stacked_in * w_poly +
69 (num_folded_tr - 1) * (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
70 }
74
71
75 return total_diff_w;
72 return total_diff_w;
76}
77
78
79
80double Component::compute_gate_area(
81 int gate_type,
82 int num_inputs,
83 double w_pmos,
84 double w_nmos,
73}
74
75
76
77double Component::compute_gate_area(
78 int gate_type,
79 int num_inputs,
80 double w_pmos,
81 double w_nmos,
85 double h_gate)
86{
87 if (w_pmos <= 0.0 || w_nmos <= 0.0)
88 {
89 return 0.0;
90 }
82 double h_gate) {
83 if (w_pmos <= 0.0 || w_nmos <= 0.0) {
84 return 0.0;
85 }
91
86
92 double w_folded_pmos, w_folded_nmos;
93 int num_folded_pmos, num_folded_nmos;
94 double total_ndiff_w, total_pdiff_w;
95 Area gate;
87 double w_folded_pmos, w_folded_nmos;
88 int num_folded_pmos, num_folded_nmos;
89 double total_ndiff_w, total_pdiff_w;
90 Area gate;
96
91
97 double h_tr_region = h_gate - 2 * g_tp.HPOWERRAIL;
98 double ratio_p_to_n = w_pmos / (w_pmos + w_nmos);
92 double h_tr_region = h_gate - 2 * g_tp.HPOWERRAIL;
93 double ratio_p_to_n = w_pmos / (w_pmos + w_nmos);
99
94
100 if (ratio_p_to_n >= 1 || ratio_p_to_n <= 0)
101 {
102 return 0.0;
103 }
95 if (ratio_p_to_n >= 1 || ratio_p_to_n <= 0) {
96 return 0.0;
97 }
104
98
105 w_folded_pmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * ratio_p_to_n;
106 w_folded_nmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * (1 - ratio_p_to_n);
107 assert(w_folded_pmos > 0);
99 w_folded_pmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * ratio_p_to_n;
100 w_folded_nmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * (1 - ratio_p_to_n);
101 assert(w_folded_pmos > 0);
108
102
109 num_folded_pmos = (int) (ceil(w_pmos / w_folded_pmos));
110 num_folded_nmos = (int) (ceil(w_nmos / w_folded_nmos));
103 num_folded_pmos = (int) (ceil(w_pmos / w_folded_pmos));
104 num_folded_nmos = (int) (ceil(w_nmos / w_folded_nmos));
111
105
112 switch (gate_type)
113 {
106 switch (gate_type) {
114 case INV:
107 case INV:
115 total_ndiff_w = compute_diffusion_width(1, num_folded_nmos);
116 total_pdiff_w = compute_diffusion_width(1, num_folded_pmos);
117 break;
108 total_ndiff_w = compute_diffusion_width(1, num_folded_nmos);
109 total_pdiff_w = compute_diffusion_width(1, num_folded_pmos);
110 break;
118
119 case NOR:
111
112 case NOR:
120 total_ndiff_w = compute_diffusion_width(1, num_inputs * num_folded_nmos);
121 total_pdiff_w = compute_diffusion_width(num_inputs, num_folded_pmos);
122 break;
113 total_ndiff_w = compute_diffusion_width(1, num_inputs * num_folded_nmos);
114 total_pdiff_w = compute_diffusion_width(num_inputs, num_folded_pmos);
115 break;
123
124 case NAND:
116
117 case NAND:
125 total_ndiff_w = compute_diffusion_width(num_inputs, num_folded_nmos);
126 total_pdiff_w = compute_diffusion_width(1, num_inputs * num_folded_pmos);
127 break;
118 total_ndiff_w = compute_diffusion_width(num_inputs, num_folded_nmos);
119 total_pdiff_w = compute_diffusion_width(1, num_inputs * num_folded_pmos);
120 break;
128 default:
121 default:
129 cout << "Unknown gate type: " << gate_type << endl;
130 exit(1);
131 }
122 cout << "Unknown gate type: " << gate_type << endl;
123 exit(1);
124 }
132
125
133 gate.w = MAX(total_ndiff_w, total_pdiff_w);
126 gate.w = MAX(total_ndiff_w, total_pdiff_w);
134
127
135 if (w_folded_nmos > w_nmos)
136 {
137 //means that the height of the gate can
138 //be made smaller than the input height specified, so calculate the height of the gate.
139 gate.h = w_nmos + w_pmos + g_tp.MIN_GAP_BET_P_AND_N_DIFFS + 2 * g_tp.HPOWERRAIL;
140 }
141 else
142 {
143 gate.h = h_gate;
144 }
145 return gate.get_area();
128 if (w_folded_nmos > w_nmos) {
129 //means that the height of the gate can
130 //be made smaller than the input height specified, so calculate the height of the gate.
131 gate.h = w_nmos + w_pmos + g_tp.MIN_GAP_BET_P_AND_N_DIFFS + 2 * g_tp.HPOWERRAIL;
132 } else {
133 gate.h = h_gate;
134 }
135 return gate.get_area();
146}
147
148
149
150double Component::compute_tr_width_after_folding(
151 double input_width,
136}
137
138
139
140double Component::compute_tr_width_after_folding(
141 double input_width,
152 double threshold_folding_width)
153{//This is actually the width of the cell not the width of a device.
154//The width of a cell and the width of a device is orthogonal.
155 if (input_width <= 0)
156 {
157 return 0;
158 }
142 double threshold_folding_width) {
143 //This is actually the width of the cell not the width of a device.
144 //The width of a cell and the width of a device is orthogonal.
145 if (input_width <= 0) {
146 return 0;
147 }
159
148
160 int num_folded_tr = (int) (ceil(input_width / threshold_folding_width));
161 double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
162 double width_poly = g_ip->F_sz_um;
163 double total_diff_width = num_folded_tr * width_poly + (num_folded_tr + 1) * spacing_poly_to_poly;
149 int num_folded_tr = (int) (ceil(input_width / threshold_folding_width));
150 double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
151 double width_poly = g_ip->F_sz_um;
152 double total_diff_width = num_folded_tr * width_poly + (num_folded_tr + 1) * spacing_poly_to_poly;
164
153
165 return total_diff_width;
154 return total_diff_width;
166}
167
168
169
155}
156
157
158
170double Component::height_sense_amplifier(double pitch_sense_amp)
171{
172 // compute the height occupied by all PMOS transistors
173 double h_pmos_tr = compute_tr_width_after_folding(g_tp.w_sense_p, pitch_sense_amp) * 2 +
174 compute_tr_width_after_folding(g_tp.w_iso, pitch_sense_amp) +
175 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
159double Component::height_sense_amplifier(double pitch_sense_amp) {
160 // compute the height occupied by all PMOS transistors
161 double h_pmos_tr = compute_tr_width_after_folding(g_tp.w_sense_p, pitch_sense_amp) * 2 +
162 compute_tr_width_after_folding(g_tp.w_iso, pitch_sense_amp) +
163 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
176
164
177 // compute the height occupied by all NMOS transistors
178 double h_nmos_tr = compute_tr_width_after_folding(g_tp.w_sense_n, pitch_sense_amp) * 2 +
179 compute_tr_width_after_folding(g_tp.w_sense_en, pitch_sense_amp) +
180 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
165 // compute the height occupied by all NMOS transistors
166 double h_nmos_tr = compute_tr_width_after_folding(g_tp.w_sense_n, pitch_sense_amp) * 2 +
167 compute_tr_width_after_folding(g_tp.w_sense_en, pitch_sense_amp) +
168 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
181
169
182 // compute total height by considering gap between the p and n diffusion areas
183 return h_pmos_tr + h_nmos_tr + g_tp.MIN_GAP_BET_P_AND_N_DIFFS;
170 // compute total height by considering gap between the p and n diffusion areas
171 return h_pmos_tr + h_nmos_tr + g_tp.MIN_GAP_BET_P_AND_N_DIFFS;
184}
185
186
187
188int Component::logical_effort(
189 int num_gates_min,
190 double g,
191 double F,
192 double * w_n,
193 double * w_p,
194 double C_load,
195 double p_to_n_sz_ratio,
196 bool is_dram_,
197 bool is_wl_tr_,
172}
173
174
175
176int Component::logical_effort(
177 int num_gates_min,
178 double g,
179 double F,
180 double * w_n,
181 double * w_p,
182 double C_load,
183 double p_to_n_sz_ratio,
184 bool is_dram_,
185 bool is_wl_tr_,
198 double max_w_nmos)
199{
200 int num_gates = (int) (log(F) / log(fopt));
186 double max_w_nmos) {
187 int num_gates = (int) (log(F) / log(fopt));
201
188
202 // check if num_gates is odd. if so, add 1 to make it even
203 num_gates+= (num_gates % 2) ? 1 : 0;
204 num_gates = MAX(num_gates, num_gates_min);
205
206 // recalculate the effective fanout of each stage
207 double f = pow(F, 1.0 / num_gates);
208 int i = num_gates - 1;
209 double C_in = C_load / f;
210 w_n[i] = (1.0 / (1.0 + p_to_n_sz_ratio)) * C_in / gate_C(1, 0, is_dram_, false, is_wl_tr_);
211 w_n[i] = MAX(w_n[i], g_tp.min_w_nmos_);
212 w_p[i] = p_to_n_sz_ratio * w_n[i];
213
214 if (w_n[i] > max_w_nmos)
215 {
216 double C_ld = gate_C((1 + p_to_n_sz_ratio) * max_w_nmos, 0, is_dram_, false, is_wl_tr_);
217 F = g * C_ld / gate_C(w_n[0] + w_p[0], 0, is_dram_, false, is_wl_tr_);
218 num_gates = (int) (log(F) / log(fopt)) + 1;
219 num_gates+= (num_gates % 2) ? 1 : 0;
189 // check if num_gates is odd. if so, add 1 to make it even
190 num_gates += (num_gates % 2) ? 1 : 0;
220 num_gates = MAX(num_gates, num_gates_min);
191 num_gates = MAX(num_gates, num_gates_min);
221 f = pow(F, 1.0 / (num_gates - 1));
222 i = num_gates - 1;
223 w_n[i] = max_w_nmos;
192
193 // recalculate the effective fanout of each stage
194 double f = pow(F, 1.0 / num_gates);
195 int i = num_gates - 1;
196 double C_in = C_load / f;
197 w_n[i] = (1.0 / (1.0 + p_to_n_sz_ratio)) * C_in / gate_C(1, 0, is_dram_, false, is_wl_tr_);
198 w_n[i] = MAX(w_n[i], g_tp.min_w_nmos_);
224 w_p[i] = p_to_n_sz_ratio * w_n[i];
199 w_p[i] = p_to_n_sz_ratio * w_n[i];
225 }
226
200
227 for (i = num_gates - 2; i >= 1; i--)
228 {
229 w_n[i] = MAX(w_n[i+1] / f, g_tp.min_w_nmos_);
230 w_p[i] = p_to_n_sz_ratio * w_n[i];
231 }
201 if (w_n[i] > max_w_nmos) {
202 double C_ld = gate_C((1 + p_to_n_sz_ratio) * max_w_nmos, 0, is_dram_, false, is_wl_tr_);
203 F = g * C_ld / gate_C(w_n[0] + w_p[0], 0, is_dram_, false, is_wl_tr_);
204 num_gates = (int) (log(F) / log(fopt)) + 1;
205 num_gates += (num_gates % 2) ? 1 : 0;
206 num_gates = MAX(num_gates, num_gates_min);
207 f = pow(F, 1.0 / (num_gates - 1));
208 i = num_gates - 1;
209 w_n[i] = max_w_nmos;
210 w_p[i] = p_to_n_sz_ratio * w_n[i];
211 }
232
212
233 assert(num_gates <= MAX_NUMBER_GATES_STAGE);
234 return num_gates;
213 for (i = num_gates - 2; i >= 1; i--) {
214 w_n[i] = MAX(w_n[i+1] / f, g_tp.min_w_nmos_);
215 w_p[i] = p_to_n_sz_ratio * w_n[i];
216 }
217
218 assert(num_gates <= MAX_NUMBER_GATES_STAGE);
219 return num_gates;
235}
236
220}
221