/***************************************************************************** * McPAT/CACTI * SOFTWARE LICENSE AGREEMENT * Copyright 2012 Hewlett-Packard Development Company, L.P. * Copyright (c) 2010-2013 Advanced Micro Devices, Inc. * All Rights Reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ***************************************************************************/ #include #include #include #include "bank.h" #include "component.h" #include "decoder.h" using namespace std; Component::Component() : area(), power(), rt_power(), delay(0) { } Component::~Component() { } double Component::compute_diffusion_width(int num_stacked_in, int num_folded_tr) { double w_poly = g_ip->F_sz_um; double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact; double total_diff_w = 2 * spacing_poly_to_poly + // for both source and drain num_stacked_in * w_poly + (num_stacked_in - 1) * g_tp.spacing_poly_to_poly; if (num_folded_tr > 1) { total_diff_w += (num_folded_tr - 2) * 2 * spacing_poly_to_poly + (num_folded_tr - 1) * num_stacked_in * w_poly + (num_folded_tr - 1) * (num_stacked_in - 1) * g_tp.spacing_poly_to_poly; } return total_diff_w; } double Component::compute_gate_area( int gate_type, int num_inputs, double w_pmos, double w_nmos, double h_gate) { if (w_pmos <= 0.0 || w_nmos <= 0.0) { return 0.0; } double w_folded_pmos, w_folded_nmos; int num_folded_pmos, num_folded_nmos; double total_ndiff_w, total_pdiff_w; Area gate; double h_tr_region = h_gate - 2 * g_tp.HPOWERRAIL; double ratio_p_to_n = w_pmos / (w_pmos + w_nmos); if (ratio_p_to_n >= 1 || ratio_p_to_n <= 0) { return 0.0; } w_folded_pmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * ratio_p_to_n; w_folded_nmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * (1 - ratio_p_to_n); assert(w_folded_pmos > 0); num_folded_pmos = (int) (ceil(w_pmos / w_folded_pmos)); num_folded_nmos = (int) (ceil(w_nmos / w_folded_nmos)); switch (gate_type) { case INV: total_ndiff_w = compute_diffusion_width(1, num_folded_nmos); total_pdiff_w = compute_diffusion_width(1, num_folded_pmos); break; case NOR: total_ndiff_w = compute_diffusion_width(1, num_inputs * num_folded_nmos); total_pdiff_w = compute_diffusion_width(num_inputs, num_folded_pmos); break; case NAND: total_ndiff_w = compute_diffusion_width(num_inputs, num_folded_nmos); total_pdiff_w = compute_diffusion_width(1, num_inputs * num_folded_pmos); break; default: cout << "Unknown gate type: " << gate_type << endl; exit(1); } gate.w = MAX(total_ndiff_w, total_pdiff_w); if (w_folded_nmos > w_nmos) { //means that the height of the gate can //be made smaller than the input height specified, so calculate the height of the gate. gate.h = w_nmos + w_pmos + g_tp.MIN_GAP_BET_P_AND_N_DIFFS + 2 * g_tp.HPOWERRAIL; } else { gate.h = h_gate; } return gate.get_area(); } double Component::compute_tr_width_after_folding( double input_width, double threshold_folding_width) { //This is actually the width of the cell not the width of a device. //The width of a cell and the width of a device is orthogonal. if (input_width <= 0) { return 0; } int num_folded_tr = (int) (ceil(input_width / threshold_folding_width)); double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact; double width_poly = g_ip->F_sz_um; double total_diff_width = num_folded_tr * width_poly + (num_folded_tr + 1) * spacing_poly_to_poly; return total_diff_width; } double Component::height_sense_amplifier(double pitch_sense_amp) { // compute the height occupied by all PMOS transistors double h_pmos_tr = compute_tr_width_after_folding(g_tp.w_sense_p, pitch_sense_amp) * 2 + compute_tr_width_after_folding(g_tp.w_iso, pitch_sense_amp) + 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS; // compute the height occupied by all NMOS transistors double h_nmos_tr = compute_tr_width_after_folding(g_tp.w_sense_n, pitch_sense_amp) * 2 + compute_tr_width_after_folding(g_tp.w_sense_en, pitch_sense_amp) + 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS; // compute total height by considering gap between the p and n diffusion areas return h_pmos_tr + h_nmos_tr + g_tp.MIN_GAP_BET_P_AND_N_DIFFS; } int Component::logical_effort( int num_gates_min, double g, double F, double * w_n, double * w_p, double C_load, double p_to_n_sz_ratio, bool is_dram_, bool is_wl_tr_, double max_w_nmos) { int num_gates = (int) (log(F) / log(fopt)); // check if num_gates is odd. if so, add 1 to make it even num_gates += (num_gates % 2) ? 1 : 0; num_gates = MAX(num_gates, num_gates_min); // recalculate the effective fanout of each stage double f = pow(F, 1.0 / num_gates); int i = num_gates - 1; double C_in = C_load / f; w_n[i] = (1.0 / (1.0 + p_to_n_sz_ratio)) * C_in / gate_C(1, 0, is_dram_, false, is_wl_tr_); w_n[i] = MAX(w_n[i], g_tp.min_w_nmos_); w_p[i] = p_to_n_sz_ratio * w_n[i]; if (w_n[i] > max_w_nmos) { double C_ld = gate_C((1 + p_to_n_sz_ratio) * max_w_nmos, 0, is_dram_, false, is_wl_tr_); F = g * C_ld / gate_C(w_n[0] + w_p[0], 0, is_dram_, false, is_wl_tr_); num_gates = (int) (log(F) / log(fopt)) + 1; num_gates += (num_gates % 2) ? 1 : 0; num_gates = MAX(num_gates, num_gates_min); f = pow(F, 1.0 / (num_gates - 1)); i = num_gates - 1; w_n[i] = max_w_nmos; w_p[i] = p_to_n_sz_ratio * w_n[i]; } for (i = num_gates - 2; i >= 1; i--) { w_n[i] = MAX(w_n[i+1] / f, g_tp.min_w_nmos_); w_p[i] = p_to_n_sz_ratio * w_n[i]; } assert(num_gates <= MAX_NUMBER_GATES_STAGE); return num_gates; }