Deleted Added
sdiff udiff text old ( 10152:52c552138ba1 ) new ( 10234:5cb711fa6176 )
full compact
1/*****************************************************************************
2 * McPAT/CACTI
3 * SOFTWARE LICENSE AGREEMENT
4 * Copyright 2012 Hewlett-Packard Development Company, L.P.
5 * Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
6 * All Rights Reserved
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met: redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer;
12 * redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the

--- 7 unchanged lines hidden (view full) ---

21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 ***************************************************************************/
32
33
34
35
36#include <cassert>
37#include <cmath>
38#include <iostream>
39
40#include "bank.h"
41#include "component.h"
42#include "decoder.h"
43
44using namespace std;
45
46
47
48Component::Component()
49 : area(), power(), rt_power(), delay(0) {
50}
51
52
53
54Component::~Component() {
55}
56
57
58
59double Component::compute_diffusion_width(int num_stacked_in, int num_folded_tr) {
60 double w_poly = g_ip->F_sz_um;
61 double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
62 double total_diff_w = 2 * spacing_poly_to_poly + // for both source and drain
63 num_stacked_in * w_poly +
64 (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
65
66 if (num_folded_tr > 1) {
67 total_diff_w += (num_folded_tr - 2) * 2 * spacing_poly_to_poly +
68 (num_folded_tr - 1) * num_stacked_in * w_poly +
69 (num_folded_tr - 1) * (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
70 }
71
72 return total_diff_w;
73}
74
75
76
77double Component::compute_gate_area(
78 int gate_type,
79 int num_inputs,
80 double w_pmos,
81 double w_nmos,
82 double h_gate) {
83 if (w_pmos <= 0.0 || w_nmos <= 0.0) {
84 return 0.0;
85 }
86
87 double w_folded_pmos, w_folded_nmos;
88 int num_folded_pmos, num_folded_nmos;
89 double total_ndiff_w, total_pdiff_w;
90 Area gate;
91
92 double h_tr_region = h_gate - 2 * g_tp.HPOWERRAIL;
93 double ratio_p_to_n = w_pmos / (w_pmos + w_nmos);
94
95 if (ratio_p_to_n >= 1 || ratio_p_to_n <= 0) {
96 return 0.0;
97 }
98
99 w_folded_pmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * ratio_p_to_n;
100 w_folded_nmos = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * (1 - ratio_p_to_n);
101 assert(w_folded_pmos > 0);
102
103 num_folded_pmos = (int) (ceil(w_pmos / w_folded_pmos));
104 num_folded_nmos = (int) (ceil(w_nmos / w_folded_nmos));
105
106 switch (gate_type) {
107 case INV:
108 total_ndiff_w = compute_diffusion_width(1, num_folded_nmos);
109 total_pdiff_w = compute_diffusion_width(1, num_folded_pmos);
110 break;
111
112 case NOR:
113 total_ndiff_w = compute_diffusion_width(1, num_inputs * num_folded_nmos);
114 total_pdiff_w = compute_diffusion_width(num_inputs, num_folded_pmos);
115 break;
116
117 case NAND:
118 total_ndiff_w = compute_diffusion_width(num_inputs, num_folded_nmos);
119 total_pdiff_w = compute_diffusion_width(1, num_inputs * num_folded_pmos);
120 break;
121 default:
122 cout << "Unknown gate type: " << gate_type << endl;
123 exit(1);
124 }
125
126 gate.w = MAX(total_ndiff_w, total_pdiff_w);
127
128 if (w_folded_nmos > w_nmos) {
129 //means that the height of the gate can
130 //be made smaller than the input height specified, so calculate the height of the gate.
131 gate.h = w_nmos + w_pmos + g_tp.MIN_GAP_BET_P_AND_N_DIFFS + 2 * g_tp.HPOWERRAIL;
132 } else {
133 gate.h = h_gate;
134 }
135 return gate.get_area();
136}
137
138
139
140double Component::compute_tr_width_after_folding(
141 double input_width,
142 double threshold_folding_width) {
143 //This is actually the width of the cell not the width of a device.
144 //The width of a cell and the width of a device is orthogonal.
145 if (input_width <= 0) {
146 return 0;
147 }
148
149 int num_folded_tr = (int) (ceil(input_width / threshold_folding_width));
150 double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
151 double width_poly = g_ip->F_sz_um;
152 double total_diff_width = num_folded_tr * width_poly + (num_folded_tr + 1) * spacing_poly_to_poly;
153
154 return total_diff_width;
155}
156
157
158
159double Component::height_sense_amplifier(double pitch_sense_amp) {
160 // compute the height occupied by all PMOS transistors
161 double h_pmos_tr = compute_tr_width_after_folding(g_tp.w_sense_p, pitch_sense_amp) * 2 +
162 compute_tr_width_after_folding(g_tp.w_iso, pitch_sense_amp) +
163 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
164
165 // compute the height occupied by all NMOS transistors
166 double h_nmos_tr = compute_tr_width_after_folding(g_tp.w_sense_n, pitch_sense_amp) * 2 +
167 compute_tr_width_after_folding(g_tp.w_sense_en, pitch_sense_amp) +
168 2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
169
170 // compute total height by considering gap between the p and n diffusion areas
171 return h_pmos_tr + h_nmos_tr + g_tp.MIN_GAP_BET_P_AND_N_DIFFS;
172}
173
174
175
176int Component::logical_effort(
177 int num_gates_min,
178 double g,
179 double F,
180 double * w_n,
181 double * w_p,
182 double C_load,
183 double p_to_n_sz_ratio,
184 bool is_dram_,
185 bool is_wl_tr_,
186 double max_w_nmos) {
187 int num_gates = (int) (log(F) / log(fopt));
188
189 // check if num_gates is odd. if so, add 1 to make it even
190 num_gates += (num_gates % 2) ? 1 : 0;
191 num_gates = MAX(num_gates, num_gates_min);
192
193 // recalculate the effective fanout of each stage
194 double f = pow(F, 1.0 / num_gates);
195 int i = num_gates - 1;
196 double C_in = C_load / f;
197 w_n[i] = (1.0 / (1.0 + p_to_n_sz_ratio)) * C_in / gate_C(1, 0, is_dram_, false, is_wl_tr_);
198 w_n[i] = MAX(w_n[i], g_tp.min_w_nmos_);
199 w_p[i] = p_to_n_sz_ratio * w_n[i];
200
201 if (w_n[i] > max_w_nmos) {
202 double C_ld = gate_C((1 + p_to_n_sz_ratio) * max_w_nmos, 0, is_dram_, false, is_wl_tr_);
203 F = g * C_ld / gate_C(w_n[0] + w_p[0], 0, is_dram_, false, is_wl_tr_);
204 num_gates = (int) (log(F) / log(fopt)) + 1;
205 num_gates += (num_gates % 2) ? 1 : 0;
206 num_gates = MAX(num_gates, num_gates_min);
207 f = pow(F, 1.0 / (num_gates - 1));
208 i = num_gates - 1;
209 w_n[i] = max_w_nmos;
210 w_p[i] = p_to_n_sz_ratio * w_n[i];
211 }
212
213 for (i = num_gates - 2; i >= 1; i--) {
214 w_n[i] = MAX(w_n[i+1] / f, g_tp.min_w_nmos_);
215 w_p[i] = p_to_n_sz_ratio * w_n[i];
216 }
217
218 assert(num_gates <= MAX_NUMBER_GATES_STAGE);
219 return num_gates;
220}
221