1/* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22#include "model/std_cells/CellMacros.h"
23
24#include <cmath>
25#include <vector>
26
27#include "model/std_cells/StdCell.h"
28#include "model/timing_graph/ElectricalNet.h"
29#include "model/timing_graph/ElectricalDriver.h"
30#include "model/timing_graph/ElectricalLoad.h"
31
32namespace DSENT
33{
34 //-------------------------------------------------------------------------
35 // NOR2 Macro (TODO: Generalize to N-input macro once leakage calc is done)
36 //-------------------------------------------------------------------------
37 void CellMacros::addNor2(StdCell* cell_, const String& name_,
38 bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_,
39 const String& a1_net_, const String& a2_net_, const String& zn_net_)
40 {
41 //Create electrical timing model for the nand
42 // Construct loads and drivers
43 cell_->createLoad(name_ + "_CgA1");
44 cell_->createLoad(name_ + "_CgA2");
45 cell_->createLoad(name_ + "_CdZN");
46 cell_->createDriver(name_ + "_RonZN", sizable_);
47
48 //Get references to loads and drivers
49 ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1");
50 ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2");
51 ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
52 ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN");
53 ElectricalNet* a1_net = cell_->getNet(a1_net_);
54 ElectricalNet* a2_net = cell_->getNet(a2_net_);
55 ElectricalNet* zn_net = cell_->getNet(zn_net_);
56
57 //Add loads and drivers to the specified nets
58 a1_net->addDownstreamNode(gate_a1_load);
59 a2_net->addDownstreamNode(gate_a2_load);
60 zn_net->addDownstreamNode(drain_load);
61 if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive);
62 if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive);
63 zn_drive->addDownstreamNode(zn_net);
64
65 return;
66 }
67
68 void CellMacros::updateNor2(StdCell* cell_, const String& name_, double normalized_size_)
69 {
70 ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
71 " -> Cannot update a macro with a negative normalized size!");
72
73 //Grab pointer to tech model
74 const TechModel* tech = cell_->getTechModel();
75
76 // Get technology parameters
77 double vdd = tech->get("Vdd");
78 double gate_cap = tech->get("Gate->CapPerWidth");
79 double drain_cap = tech->get("Drain->CapPerWidth");
80 double nmos_eff_res = tech->get("Nmos->EffResWidth");
81 double pmos_eff_res = tech->get("Pmos->EffResWidth");
82 double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
83 double gate_pitch_contacted = tech->get("Gate->PitchContacted");
84 double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
85
86 //Calculate number of folds and gate pitches needed
87 unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
88 cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds);
89
90 //Calculate widths, making sure they are above the minimum width
91 double nmos_width = std::max(calculateNmosWidth(cell_, 1, 2, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
92 double pmos_width = std::max(calculatePmosWidth(cell_, 1, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
93
94 //Calculate leakage power for each given input state
95 double leakage_power_00 = vdd * folds * 2 * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0);
96 double leakage_power_01 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1);
97 double leakage_power_10 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2);
98 double leakage_power_11 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3);
99 cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00);
100 cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01);
101 cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10);
102 cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11);
103
104 //Calculate R_on and capacitances
105 double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio;
106 double c_g = (nmos_width + pmos_width) * gate_cap * folds;
107 double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds;
108 double r_on = (nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0);
109
110 // Estimate the wire cap and add them all at the output
111 double cell_height = cell_->getTotalHeight();
112 double wire_width = metal1_wire_min_width;
113 double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
114 double wire_length = 2.0 * folds * cell_height;
115 double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
116
117 // Construct equivalent load and drive strength
118 cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g);
119 cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g);
120 cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
121 cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
122
123 // Calculate flip energies
124 double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
125 double a1_flip_energy = 0.5 * c_g * vdd * vdd;
126 double a2_flip_energy = 0.5 * c_g * vdd * vdd;
127 cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
128 cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy);
129 cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy);
130 }
131 //-------------------------------------------------------------------------
132
133 //-------------------------------------------------------------------------
134 // NAND2 Macro (TODO: Generalize to N-input macro once leakage calc is done)
135 //-------------------------------------------------------------------------
136 //Adds a NAND2 to the standard cell, normalized to some size
137 void CellMacros::addNand2(StdCell* cell_, const String& name_,
138 bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_,
139 const String& a1_net_, const String& a2_net_, const String& zn_net_)
140 {
141 //Create electrical timing model for the nor
142 // Construct loads and drivers
143 cell_->createLoad(name_ + "_CgA1");
144 cell_->createLoad(name_ + "_CgA2");
145 cell_->createLoad(name_ + "_CdZN");
146 cell_->createDriver(name_ + "_RonZN", sizable_);
147
148 //Get references to loads and drivers
149 ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1");
150 ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2");
151 ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
152 ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN");
153 ElectricalNet* a1_net = cell_->getNet(a1_net_);
154 ElectricalNet* a2_net = cell_->getNet(a2_net_);
155 ElectricalNet* zn_net = cell_->getNet(zn_net_);
156
157 a1_net->addDownstreamNode(gate_a1_load);
158 a2_net->addDownstreamNode(gate_a2_load);
159 zn_net->addDownstreamNode(drain_load);
160 if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive);
161 if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive);
162 zn_drive->addDownstreamNode(zn_net);
163
164 return;
165 }
166
167 //Updates a NAND2 to to the standard cell, normalized to some size
168 void CellMacros::updateNand2(StdCell* cell_, const String& name_, double normalized_size_)
169 {
170 ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
171 " -> Cannot update a macro with a negative normalized size!");
172
173 //Grab pointer to tech model
174 const TechModel* tech = cell_->getTechModel();
175
176 // Get technology parameters
177 double vdd = tech->get("Vdd");
178 double gate_cap = tech->get("Gate->CapPerWidth");
179 double drain_cap = tech->get("Drain->CapPerWidth");
180 double nmos_eff_res = tech->get("Nmos->EffResWidth");
181 double pmos_eff_res = tech->get("Pmos->EffResWidth");
182 double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
183 double gate_pitch_contacted = tech->get("Gate->PitchContacted");
184 double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
185
186 //Calculate number of folds needed
187 unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
188 cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds);
189
190 //Calculate widths, making sure they are above the minimum width
191 double nmos_width = std::max(calculateNmosWidth(cell_, 2, 1, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
192 double pmos_width = std::max(calculatePmosWidth(cell_, 2, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
193
194 // Leakage power calculation
195 double leakage_power_00 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0);
196 double leakage_power_01 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1);
197 double leakage_power_10 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2);
198 double leakage_power_11 = vdd * folds * 2 * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x3);
199 cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00);
200 cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01);
201 cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10);
202 cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11);
203
204 // Get input parameters
205 double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio;
206
207 //Calculate caps
208 double c_g = (nmos_width + pmos_width) * gate_cap * folds;
209 double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds;
210 double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0);
211
212 // Estimate the wire cap and add them all at the output
213 double cell_height = cell_->getTotalHeight();
214 double wire_width = metal1_wire_min_width;
215 double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
216 double wire_length = 2.0 * folds * cell_height;
217 double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
218
219 // Construct equivalent load and drive strength
220 cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g);
221 cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g);
222 cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
223 cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
224
225 // Calculate flip energies
226 double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
227 double a1_flip_energy = 0.5 * c_g * vdd * vdd;
228 double a2_flip_energy = 0.5 * c_g * vdd * vdd;
229 cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
230 cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy);
231 cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy);
232 }
233 //-------------------------------------------------------------------------
234
235 //-------------------------------------------------------------------------
236 // INV Macro
237 //-------------------------------------------------------------------------
238 //Adds an inverter to the model, normalized to some size
239 void CellMacros::addInverter(StdCell* cell_, const String& name_,
240 bool sizable_, bool a_to_zn_path_,
241 const String& a_net_, const String& zn_net_)
242 {
243 //Create electrical timing model for the inverter
244 // Construct loads and drivers
245 cell_->createLoad(name_ + "_CgA");
246 cell_->createLoad(name_ + "_CdZN");
247 cell_->createDriver(name_ + "_RonZN", sizable_);
248
249 //Get references to loads and drivers
250 ElectricalLoad* gate_load = cell_->getLoad(name_ + "_CgA");
251 ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
252 ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN");
253 ElectricalNet* a_net = cell_->getNet(a_net_);
254 ElectricalNet* zn_net = cell_->getNet(zn_net_);
255
256 // Setup connectivity of loads and drivers
257 a_net->addDownstreamNode(gate_load);
258 if (a_to_zn_path_) gate_load->addDownstreamNode(out_drive);
259 zn_net->addDownstreamNode(drain_load);
260 out_drive->addDownstreamNode(zn_net);
261
262 return;
263 }
264
265 //Updates the numbers of an inverter for some normalized size
266 void CellMacros::updateInverter(StdCell* cell_, const String& name_, double normalized_size_)
267 {
268 ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
269 " -> Cannot update a macro with a negative normalized size!");
270
271 //Grab pointer to tech model
272 const TechModel* tech = cell_->getTechModel();
273
274 //Get values from technology library
275 double vdd = tech->get("Vdd");
276 double gate_cap = tech->get("Gate->CapPerWidth");
277 double drain_cap = tech->get("Drain->CapPerWidth");
278 double nmos_eff_res = tech->get("Nmos->EffResWidth");
279 double pmos_eff_res = tech->get("Pmos->EffResWidth");
280 double gate_pitch_contacted = tech->get("Gate->PitchContacted");
281 double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
282
283 //Calculate number of folds needed
284 unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
285 cell_->getGenProperties()->set(name_ + "_GatePitches", folds);
286
287 //Calculate widths, making sure they are above the minimum width
288 double nmos_width = std::max(calculateNmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
289 double pmos_width = std::max(calculatePmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
290
291 //Calculate leakage power for each given input state
292 double leakage_power_0 = vdd * folds * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0);
293 double leakage_power_1 = vdd * folds * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x1);
294 cell_->getGenProperties()->set(name_ + "_LeakagePower_0", leakage_power_0);
295 cell_->getGenProperties()->set(name_ + "_LeakagePower_1", leakage_power_1);
296
297 //Calculate caps
298 double c_g = (nmos_width + pmos_width) * gate_cap * folds;
299 double c_d = (pmos_width + nmos_width) * drain_cap * folds;
300 double r_on = (nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0);
301
302 // Estimate the wire cap and add them all at the output
303 double cell_height = cell_->getTotalHeight();
304 double wire_width = metal1_wire_min_width;
305 double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
306 double wire_length = folds * cell_height;
307 double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
308
309 // Construct equivalent load and drive strength
310 cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g);
311 cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
312 cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
313
314 // Calculate flip energy (output flip)
315 // Calculate flip energies
316 double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
317 double a_flip_energy = 0.5 * c_g * vdd * vdd;
318 cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
319 cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy);
320
321 return;
322 }
323 //-------------------------------------------------------------------------
324
325 //-------------------------------------------------------------------------
326 // INVZ Macro
327 //-------------------------------------------------------------------------
328 //Adds a tristated inverter to the model, normalized to some size
329 void CellMacros::addTristate(StdCell* cell_, const String& name_,
330 bool sizable_, bool a_to_zn_path_, bool oe_to_zn_path_, bool oen_to_zn_path_,
331 const String& a_net_, const String& oe_net_, const String& oen_net_, const String& zn_net_)
332 {
333 // Construct loads and drivers
334 cell_->createLoad(name_ + "_CgA");
335 cell_->createLoad(name_ + "_CgOE");
336 cell_->createLoad(name_ + "_CgOEN");
337 cell_->createLoad(name_ + "_CdZN");
338 cell_->createDriver(name_ + "_RonZN", sizable_);
339
340 // Get references to loads, nets and drivers
341 ElectricalLoad* gate_a_load = cell_->getLoad(name_ + "_CgA");
342 ElectricalLoad* gate_oe_load = cell_->getLoad(name_ + "_CgOE");
343 ElectricalLoad* gate_oen_load = cell_->getLoad(name_ + "_CgOEN");
344 ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
345 ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN");
346 ElectricalNet* a_net = cell_->getNet(a_net_);
347 ElectricalNet* oe_net = cell_->getNet(oe_net_);
348 ElectricalNet* oen_net = cell_->getNet(oen_net_);
349 ElectricalNet* zn_net = cell_->getNet(zn_net_);
350
351 // Setup connectivity of loads and drivers
352 a_net->addDownstreamNode(gate_a_load);
353 oe_net->addDownstreamNode(gate_oe_load);
354 oen_net->addDownstreamNode(gate_oen_load);
355 if (a_to_zn_path_) gate_a_load->addDownstreamNode(out_drive);
356 if (oe_to_zn_path_) gate_oe_load->addDownstreamNode(out_drive);
357 if (oen_to_zn_path_) gate_oen_load->addDownstreamNode(out_drive);
358 zn_net->addDownstreamNode(drain_load);
359 out_drive->addDownstreamNode(zn_net);
360
361 return;
362 }
363
364 //Updates the numbers of an inverter for some normalized size
365 void CellMacros::updateTristate(StdCell* cell_, const String& name_, double normalized_size_)
366 {
367 ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
368 " -> Cannot update a macro with a negative normalized size!");
369
370 //Grab pointer to tech model
371 const TechModel* tech = cell_->getTechModel();
372
373 //Get values from technology library
374 double vdd = tech->get("Vdd");
375 double gate_cap = tech->get("Gate->CapPerWidth");
376 double drain_cap = tech->get("Drain->CapPerWidth");
377 double nmos_eff_res = tech->get("Nmos->EffResWidth");
378 double pmos_eff_res = tech->get("Pmos->EffResWidth");
379 double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
380 double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
381 double gate_pitch_contacted = tech->get("Gate->PitchContacted");
382 double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
383
384 //Calculate number of folds and gate pitches needed
385 unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
386 cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds);
387
388 //Calculate widths, making sure they are above the minimum width
389 double nmos_width = std::max(calculateNmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
390 double pmos_width = std::max(calculatePmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
391
392 //Calculate leakage power for each given input state
393 //if output_enable = 0, then it is possible that the PMOS may leak (if output = 0),
394 //or the NMOS will leak (if output = 1)
395
396 //OE OEN A _ ZN
397 double leakage_power_010_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2);
398 double leakage_power_010_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0);
399 double leakage_power_011_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3);
400 double leakage_power_011_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1);
401 double leakage_power_100_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2);
402 double leakage_power_101_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1);
403 cell_->getGenProperties()->set(name_ + "_LeakagePower_010_0", leakage_power_010_0);
404 cell_->getGenProperties()->set(name_ + "_LeakagePower_010_1", leakage_power_010_1);
405 cell_->getGenProperties()->set(name_ + "_LeakagePower_011_0", leakage_power_011_0);
406 cell_->getGenProperties()->set(name_ + "_LeakagePower_011_1", leakage_power_011_1);
407 cell_->getGenProperties()->set(name_ + "_LeakagePower_100_1", leakage_power_100_1);
408 cell_->getGenProperties()->set(name_ + "_LeakagePower_101_0", leakage_power_101_0);
409
410 //Caculate stack balance
411 double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio;
412 double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio;
413
414 //Calculate caps
415 double c_g_a = (nmos_width + pmos_width) * gate_cap * folds;
416 double c_g_oe = nmos_width * gate_cap * folds;
417 double c_g_oen = pmos_width * gate_cap * folds;
418 double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds;
419 double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0);
420
421 // Estimate the wire cap and add them all at the output
422 double cell_height = cell_->getTotalHeight();
423 double wire_width = metal1_wire_min_width;
424 double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
425 double wire_length = 2.0 * folds * cell_height;
426 double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
427
428 // Construct equivalent load and drive strength
429 cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g_a);
430 cell_->getLoad(name_ + "_CgOE")->setLoadCap(c_g_oe);
431 cell_->getLoad(name_ + "_CgOEN")->setLoadCap(c_g_oen);
432 cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
433 cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
434
435 // Calculate flip energy (output flip)
436 double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
437 double a_flip_energy = 0.5 * c_g_a * vdd * vdd;
438 double oe_flip_energy = 0.5 * c_g_oe * vdd * vdd;
439 double oen_flip_energy = 0.5 * c_g_oen * vdd * vdd;
440 cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
441 cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy);
442 cell_->getGenProperties()->set(name_ + "_OE_Flip", oe_flip_energy);
443 cell_->getGenProperties()->set(name_ + "_OEN_Flip", oen_flip_energy);
444 return;
445 }
446 //-------------------------------------------------------------------------
447
448
449 //-------------------------------------------------------------------------
450 // Helper Functions
451 //-------------------------------------------------------------------------
452 //Returns the width of NMOS transistors, given the NMOS and PMOS stacking
453 double CellMacros::calculateNmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_nmos_)
454 {
455 //Grab pointer to tech model
456 const TechModel* tech = cell_->getTechModel();
457
458 double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
459 double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
460
461 double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1);
462 double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1);
463 double current_nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (current_stacked_nmos_ - 1);
464
465 double pn_ratio = cell_->getPToNRatio();
466 double active_height = cell_->getActiveHeight();
467
468 //Calculate the width of the current device
469 double nmos_width = active_height * current_nmos_stack_balance / (nmos_stack_balance + pn_ratio * pmos_stack_balance);
470
471 return nmos_width;
472 }
473
474 //Returns the width of PMOS transistors, given the NMOS and PMOS stacking
475 double CellMacros::calculatePmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_pmos_)
476 {
477 //Grab pointer to tech model
478 const TechModel* tech = cell_->getTechModel();
479
480 double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
481 double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
482
483 double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1);
484 double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1);
485 double current_pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (current_stacked_pmos_ - 1);
486
487 double pn_ratio = cell_->getPToNRatio();
488 double active_height = cell_->getActiveHeight();
489
490 //Calculate the width of the current device
491 double pmos_width = active_height * current_pmos_stack_balance * pn_ratio / (nmos_stack_balance + pn_ratio * pmos_stack_balance);
492
493 return pmos_width;
494 }
495 //-------------------------------------------------------------------------
496
497} // namespace DSENT
498