/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/std_cells/CellMacros.h" #include #include #include "model/std_cells/StdCell.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" namespace DSENT { //------------------------------------------------------------------------- // NOR2 Macro (TODO: Generalize to N-input macro once leakage calc is done) //------------------------------------------------------------------------- void CellMacros::addNor2(StdCell* cell_, const String& name_, bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_, const String& a1_net_, const String& a2_net_, const String& zn_net_) { //Create electrical timing model for the nand // Construct loads and drivers cell_->createLoad(name_ + "_CgA1"); cell_->createLoad(name_ + "_CgA2"); cell_->createLoad(name_ + "_CdZN"); cell_->createDriver(name_ + "_RonZN", sizable_); //Get references to loads and drivers ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1"); ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2"); ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN"); ElectricalNet* a1_net = cell_->getNet(a1_net_); ElectricalNet* a2_net = cell_->getNet(a2_net_); ElectricalNet* zn_net = cell_->getNet(zn_net_); //Add loads and drivers to the specified nets a1_net->addDownstreamNode(gate_a1_load); a2_net->addDownstreamNode(gate_a2_load); zn_net->addDownstreamNode(drain_load); if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive); if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive); zn_drive->addDownstreamNode(zn_net); return; } void CellMacros::updateNor2(StdCell* cell_, const String& name_, double normalized_size_) { ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + " -> Cannot update a macro with a negative normalized size!"); //Grab pointer to tech model const TechModel* tech = cell_->getTechModel(); // Get technology parameters double vdd = tech->get("Vdd"); double gate_cap = tech->get("Gate->CapPerWidth"); double drain_cap = tech->get("Drain->CapPerWidth"); double nmos_eff_res = tech->get("Nmos->EffResWidth"); double pmos_eff_res = tech->get("Pmos->EffResWidth"); double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); double gate_pitch_contacted = tech->get("Gate->PitchContacted"); double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); //Calculate number of folds and gate pitches needed unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds); //Calculate widths, making sure they are above the minimum width double nmos_width = std::max(calculateNmosWidth(cell_, 1, 2, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); double pmos_width = std::max(calculatePmosWidth(cell_, 1, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); //Calculate leakage power for each given input state double leakage_power_00 = vdd * folds * 2 * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0); double leakage_power_01 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1); double leakage_power_10 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2); double leakage_power_11 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3); cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00); cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01); cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10); cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11); //Calculate R_on and capacitances double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio; double c_g = (nmos_width + pmos_width) * gate_cap * folds; double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds; double r_on = (nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0); // Estimate the wire cap and add them all at the output double cell_height = cell_->getTotalHeight(); double wire_width = metal1_wire_min_width; double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; double wire_length = 2.0 * folds * cell_height; double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); // Construct equivalent load and drive strength cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g); cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g); cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); // Calculate flip energies double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; double a1_flip_energy = 0.5 * c_g * vdd * vdd; double a2_flip_energy = 0.5 * c_g * vdd * vdd; cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy); cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy); } //------------------------------------------------------------------------- //------------------------------------------------------------------------- // NAND2 Macro (TODO: Generalize to N-input macro once leakage calc is done) //------------------------------------------------------------------------- //Adds a NAND2 to the standard cell, normalized to some size void CellMacros::addNand2(StdCell* cell_, const String& name_, bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_, const String& a1_net_, const String& a2_net_, const String& zn_net_) { //Create electrical timing model for the nor // Construct loads and drivers cell_->createLoad(name_ + "_CgA1"); cell_->createLoad(name_ + "_CgA2"); cell_->createLoad(name_ + "_CdZN"); cell_->createDriver(name_ + "_RonZN", sizable_); //Get references to loads and drivers ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1"); ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2"); ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN"); ElectricalNet* a1_net = cell_->getNet(a1_net_); ElectricalNet* a2_net = cell_->getNet(a2_net_); ElectricalNet* zn_net = cell_->getNet(zn_net_); a1_net->addDownstreamNode(gate_a1_load); a2_net->addDownstreamNode(gate_a2_load); zn_net->addDownstreamNode(drain_load); if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive); if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive); zn_drive->addDownstreamNode(zn_net); return; } //Updates a NAND2 to to the standard cell, normalized to some size void CellMacros::updateNand2(StdCell* cell_, const String& name_, double normalized_size_) { ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + " -> Cannot update a macro with a negative normalized size!"); //Grab pointer to tech model const TechModel* tech = cell_->getTechModel(); // Get technology parameters double vdd = tech->get("Vdd"); double gate_cap = tech->get("Gate->CapPerWidth"); double drain_cap = tech->get("Drain->CapPerWidth"); double nmos_eff_res = tech->get("Nmos->EffResWidth"); double pmos_eff_res = tech->get("Pmos->EffResWidth"); double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); double gate_pitch_contacted = tech->get("Gate->PitchContacted"); double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); //Calculate number of folds needed unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds); //Calculate widths, making sure they are above the minimum width double nmos_width = std::max(calculateNmosWidth(cell_, 2, 1, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); double pmos_width = std::max(calculatePmosWidth(cell_, 2, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); // Leakage power calculation double leakage_power_00 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0); double leakage_power_01 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1); double leakage_power_10 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2); double leakage_power_11 = vdd * folds * 2 * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x3); cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00); cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01); cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10); cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11); // Get input parameters double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio; //Calculate caps double c_g = (nmos_width + pmos_width) * gate_cap * folds; double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds; double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0); // Estimate the wire cap and add them all at the output double cell_height = cell_->getTotalHeight(); double wire_width = metal1_wire_min_width; double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; double wire_length = 2.0 * folds * cell_height; double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); // Construct equivalent load and drive strength cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g); cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g); cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); // Calculate flip energies double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; double a1_flip_energy = 0.5 * c_g * vdd * vdd; double a2_flip_energy = 0.5 * c_g * vdd * vdd; cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy); cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy); } //------------------------------------------------------------------------- //------------------------------------------------------------------------- // INV Macro //------------------------------------------------------------------------- //Adds an inverter to the model, normalized to some size void CellMacros::addInverter(StdCell* cell_, const String& name_, bool sizable_, bool a_to_zn_path_, const String& a_net_, const String& zn_net_) { //Create electrical timing model for the inverter // Construct loads and drivers cell_->createLoad(name_ + "_CgA"); cell_->createLoad(name_ + "_CdZN"); cell_->createDriver(name_ + "_RonZN", sizable_); //Get references to loads and drivers ElectricalLoad* gate_load = cell_->getLoad(name_ + "_CgA"); ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN"); ElectricalNet* a_net = cell_->getNet(a_net_); ElectricalNet* zn_net = cell_->getNet(zn_net_); // Setup connectivity of loads and drivers a_net->addDownstreamNode(gate_load); if (a_to_zn_path_) gate_load->addDownstreamNode(out_drive); zn_net->addDownstreamNode(drain_load); out_drive->addDownstreamNode(zn_net); return; } //Updates the numbers of an inverter for some normalized size void CellMacros::updateInverter(StdCell* cell_, const String& name_, double normalized_size_) { ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + " -> Cannot update a macro with a negative normalized size!"); //Grab pointer to tech model const TechModel* tech = cell_->getTechModel(); //Get values from technology library double vdd = tech->get("Vdd"); double gate_cap = tech->get("Gate->CapPerWidth"); double drain_cap = tech->get("Drain->CapPerWidth"); double nmos_eff_res = tech->get("Nmos->EffResWidth"); double pmos_eff_res = tech->get("Pmos->EffResWidth"); double gate_pitch_contacted = tech->get("Gate->PitchContacted"); double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); //Calculate number of folds needed unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); cell_->getGenProperties()->set(name_ + "_GatePitches", folds); //Calculate widths, making sure they are above the minimum width double nmos_width = std::max(calculateNmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); double pmos_width = std::max(calculatePmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); //Calculate leakage power for each given input state double leakage_power_0 = vdd * folds * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0); double leakage_power_1 = vdd * folds * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x1); cell_->getGenProperties()->set(name_ + "_LeakagePower_0", leakage_power_0); cell_->getGenProperties()->set(name_ + "_LeakagePower_1", leakage_power_1); //Calculate caps double c_g = (nmos_width + pmos_width) * gate_cap * folds; double c_d = (pmos_width + nmos_width) * drain_cap * folds; double r_on = (nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0); // Estimate the wire cap and add them all at the output double cell_height = cell_->getTotalHeight(); double wire_width = metal1_wire_min_width; double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; double wire_length = folds * cell_height; double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); // Construct equivalent load and drive strength cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g); cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); // Calculate flip energy (output flip) // Calculate flip energies double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; double a_flip_energy = 0.5 * c_g * vdd * vdd; cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy); return; } //------------------------------------------------------------------------- //------------------------------------------------------------------------- // INVZ Macro //------------------------------------------------------------------------- //Adds a tristated inverter to the model, normalized to some size void CellMacros::addTristate(StdCell* cell_, const String& name_, bool sizable_, bool a_to_zn_path_, bool oe_to_zn_path_, bool oen_to_zn_path_, const String& a_net_, const String& oe_net_, const String& oen_net_, const String& zn_net_) { // Construct loads and drivers cell_->createLoad(name_ + "_CgA"); cell_->createLoad(name_ + "_CgOE"); cell_->createLoad(name_ + "_CgOEN"); cell_->createLoad(name_ + "_CdZN"); cell_->createDriver(name_ + "_RonZN", sizable_); // Get references to loads, nets and drivers ElectricalLoad* gate_a_load = cell_->getLoad(name_ + "_CgA"); ElectricalLoad* gate_oe_load = cell_->getLoad(name_ + "_CgOE"); ElectricalLoad* gate_oen_load = cell_->getLoad(name_ + "_CgOEN"); ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN"); ElectricalNet* a_net = cell_->getNet(a_net_); ElectricalNet* oe_net = cell_->getNet(oe_net_); ElectricalNet* oen_net = cell_->getNet(oen_net_); ElectricalNet* zn_net = cell_->getNet(zn_net_); // Setup connectivity of loads and drivers a_net->addDownstreamNode(gate_a_load); oe_net->addDownstreamNode(gate_oe_load); oen_net->addDownstreamNode(gate_oen_load); if (a_to_zn_path_) gate_a_load->addDownstreamNode(out_drive); if (oe_to_zn_path_) gate_oe_load->addDownstreamNode(out_drive); if (oen_to_zn_path_) gate_oen_load->addDownstreamNode(out_drive); zn_net->addDownstreamNode(drain_load); out_drive->addDownstreamNode(zn_net); return; } //Updates the numbers of an inverter for some normalized size void CellMacros::updateTristate(StdCell* cell_, const String& name_, double normalized_size_) { ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + " -> Cannot update a macro with a negative normalized size!"); //Grab pointer to tech model const TechModel* tech = cell_->getTechModel(); //Get values from technology library double vdd = tech->get("Vdd"); double gate_cap = tech->get("Gate->CapPerWidth"); double drain_cap = tech->get("Drain->CapPerWidth"); double nmos_eff_res = tech->get("Nmos->EffResWidth"); double pmos_eff_res = tech->get("Pmos->EffResWidth"); double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); double gate_pitch_contacted = tech->get("Gate->PitchContacted"); double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); //Calculate number of folds and gate pitches needed unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds); //Calculate widths, making sure they are above the minimum width double nmos_width = std::max(calculateNmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); double pmos_width = std::max(calculatePmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); //Calculate leakage power for each given input state //if output_enable = 0, then it is possible that the PMOS may leak (if output = 0), //or the NMOS will leak (if output = 1) //OE OEN A _ ZN double leakage_power_010_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2); double leakage_power_010_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0); double leakage_power_011_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3); double leakage_power_011_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1); double leakage_power_100_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2); double leakage_power_101_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1); cell_->getGenProperties()->set(name_ + "_LeakagePower_010_0", leakage_power_010_0); cell_->getGenProperties()->set(name_ + "_LeakagePower_010_1", leakage_power_010_1); cell_->getGenProperties()->set(name_ + "_LeakagePower_011_0", leakage_power_011_0); cell_->getGenProperties()->set(name_ + "_LeakagePower_011_1", leakage_power_011_1); cell_->getGenProperties()->set(name_ + "_LeakagePower_100_1", leakage_power_100_1); cell_->getGenProperties()->set(name_ + "_LeakagePower_101_0", leakage_power_101_0); //Caculate stack balance double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio; double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio; //Calculate caps double c_g_a = (nmos_width + pmos_width) * gate_cap * folds; double c_g_oe = nmos_width * gate_cap * folds; double c_g_oen = pmos_width * gate_cap * folds; double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds; double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0); // Estimate the wire cap and add them all at the output double cell_height = cell_->getTotalHeight(); double wire_width = metal1_wire_min_width; double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; double wire_length = 2.0 * folds * cell_height; double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); // Construct equivalent load and drive strength cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g_a); cell_->getLoad(name_ + "_CgOE")->setLoadCap(c_g_oe); cell_->getLoad(name_ + "_CgOEN")->setLoadCap(c_g_oen); cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); // Calculate flip energy (output flip) double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; double a_flip_energy = 0.5 * c_g_a * vdd * vdd; double oe_flip_energy = 0.5 * c_g_oe * vdd * vdd; double oen_flip_energy = 0.5 * c_g_oen * vdd * vdd; cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy); cell_->getGenProperties()->set(name_ + "_OE_Flip", oe_flip_energy); cell_->getGenProperties()->set(name_ + "_OEN_Flip", oen_flip_energy); return; } //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Helper Functions //------------------------------------------------------------------------- //Returns the width of NMOS transistors, given the NMOS and PMOS stacking double CellMacros::calculateNmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_nmos_) { //Grab pointer to tech model const TechModel* tech = cell_->getTechModel(); double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1); double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1); double current_nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (current_stacked_nmos_ - 1); double pn_ratio = cell_->getPToNRatio(); double active_height = cell_->getActiveHeight(); //Calculate the width of the current device double nmos_width = active_height * current_nmos_stack_balance / (nmos_stack_balance + pn_ratio * pmos_stack_balance); return nmos_width; } //Returns the width of PMOS transistors, given the NMOS and PMOS stacking double CellMacros::calculatePmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_pmos_) { //Grab pointer to tech model const TechModel* tech = cell_->getTechModel(); double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1); double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1); double current_pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (current_stacked_pmos_ - 1); double pn_ratio = cell_->getPToNRatio(); double active_height = cell_->getActiveHeight(); //Calculate the width of the current device double pmos_width = active_height * current_pmos_stack_balance * pn_ratio / (nmos_stack_balance + pn_ratio * pmos_stack_balance); return pmos_width; } //------------------------------------------------------------------------- } // namespace DSENT