Searched hist:10348 (Results 1 - 11 of 11) sorted by relevance

/gem5/src/cpu/testers/rubytest/
H A DCheckTable.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
H A DCheck.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/mem/ruby/common/
H A DNetDest.hh10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
H A DNetDest.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
H A DSet.hh10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/cpu/testers/directedtest/
H A DSeriesRequestGenerator.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/mem/ruby/slicc_interface/
H A DRubySlicc_Util.hh10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/mem/ruby/network/
H A DMessageBuffer.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/mem/ruby/network/simple/
H A DPerfectSwitch.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/cpu/testers/traffic_gen/
H A Dtraffic_gen.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
/gem5/src/cpu/testers/memtest/
H A Dmemtest.cc10348:c91b23c72d5e Wed Sep 03 07:42:00 EDT 2014 Andreas Hansson <andreas.hansson@arm.com> base: Use the global Mersenne twister throughout

This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.

As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.

Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.

Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.

Completed in 47 milliseconds