History log of /gem5/src/sim/dvfs_handler.hh
Revision Date Author Comments
# 11800:54436a1784dc 09-Nov-2016 Brandon Potter <brandon.potter@amd.com>

style: [patch 3/22] reduce include dependencies in some headers

Used cppclean to help identify useless includes and removed them. This
involved erroneously included headers, but also cases where forward
declarations could have been used rather than a full include.


# 11168:f98eb2da15a4 12-Oct-2015 Andreas Hansson <andreas.hansson@arm.com>

misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.


# 10905:a6ca6831e775 07-Jul-2015 Andreas Sandberg <andreas.sandberg@arm.com>

sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.


# 10398:d65768b9ffc2 12-Aug-2014 Stephan Diestelhorst <stephan.diestelhorst@arm.com>

energy: Tighter checking of levels for DFS systems

There are cases where users might by accident / intention specify less voltage
operating points thatn frequency points. We consider one of these cases
special: giving only a single voltage to a voltage domain effectively renders
it as a static domain. This patch adds additional logic in the auxiliary parts
of the functionality to handle these cases properly (simple driver asking for
N>1 operating levels, we should return the same voltage for all of them) and
adds error checking code in the voltage domain.


# 10395:77b9f96786c1 16-Jun-2014 Stephan Diestelhorst <stephan.diestelhorst@arm.com>

energy: Small extentions and fixes for DVFS handler

These additions allow easier interoperability with and querying from an
additional controller which will be in a separate patch. Also adding warnings
for changing the enabled state of the handler across checkpoint / resume and
deviating from the state in the configuration.

Contributed-by: Akash Bagdia <akash.bagdia@arm.com>


# 10360:919c02740209 09-Sep-2014 Andreas Hansson <andreas.hansson@arm.com>

misc: Fix a number of unitialised variables and members

Static analysis unearther a bunch of uninitialised variables and
members, and this patch addresses the problem. In all cases these
omissions seem benign in the end, but at least fixing them means less
false positives next time round.


# 10249:6bbb7ae309ac 30-Jun-2014 Stephan Diestelhorst <stephan.diestelhorst@arm.com>

power: Add basic DVFS support for gem5

Adds DVFS capabilities to gem5, by allowing users to specify lists for
frequencies and voltages in SrcClockDomains and VoltageDomains respectively.
A separate component, DVFSHandler, provides a small interface to change
operating points of the associated domains.

Clock domains will be linked to voltage domains and thus allow separate clock,
but shared voltage lines.

Currently all the valid performance-level updates are performed with a fixed
transition latency as specified for the domain.

Config file example:
...
vd = VoltageDomain(voltage = ['1V','0.95V','0.90V','0.85V'])
tsys.cluster1.clk_domain.clock = ['1GHz','700MHz','400MHz','230MHz']
tsys.cluster2.clk_domain.clock = ['1GHz','700MHz','400MHz','230MHz']
tsys.cluster1.clk_domain.domain_id = 0
tsys.cluster2.clk_domain.domain_id = 1
tsys.cluster1.clk_domain.voltage_domain = vd
tsys.cluster2.clk_domain.voltage_domain = vd
tsys.dvfs_handler.domains = [tsys.cluster1.clk_domain,
tsys.cluster2.clk_domain]
tsys.dvfs_handler.enable = True