#
12106:7784fac1b159 |
|
05-Apr-2017 |
Rekai Gonzalez-Alberquilla <Rekai.GonzalezAlberquilla@arm.com> |
cpu: Simplify the rename interface and use RegId
With the hierarchical RegId there are a lot of functions that are redundant now.
The idea behind the simplification is that instead of having the regId, telling which kind of register read/write/rename/lookup/etc. and then the function panic_if'ing if the regId is not of the appropriate type, we provide an interface that decides what kind of register to read depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> [ Fix RISCV build issues ] Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/2702
|
#
12104:edd63f9c6184 |
|
05-Apr-2017 |
Nathanael Premillieu <nathanael.premillieu@arm.com> |
arch, cpu: Architectural Register structural indexing
Replace the unified register mapping with a structure associating a class and an index. It is now much easier to know which class of register the index is referring to. Also, when adding a new class there is no need to modify existing ones.
Change-Id: I55b3ac80763702aa2cd3ed2cbff0a75ef7620373 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> [ Fix RISCV build issues ] Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/2700
|
#
11793:ef606668d247 |
|
09-Nov-2016 |
Brandon Potter <brandon.potter@amd.com> |
style: [patch 1/22] use /r/3648/ to reorganize includes
|
#
10417:710ee116eb68 |
|
27-Sep-2014 |
Andreas Hansson <andreas.hansson@arm.com> |
arch: Use const StaticInstPtr references where possible
This patch optimises the passing of StaticInstPtr by avoiding copying the reference-counting pointer. This avoids first incrementing and then decrementing the reference-counting pointer.
|
#
10259:ebb376f73dd2 |
|
23-Jul-2014 |
Andrew Bardsley <Andrew.Bardsley@arm.com> |
cpu: `Minor' in-order CPU model
This patch contains a new CPU model named `Minor'. Minor models a four stage in-order execution pipeline (fetch lines, decompose into macroops, decompose macroops into microops, execute).
The model was developed to support the ARM ISA but should be fixable to support all the remaining gem5 ISAs. It currently also works for Alpha, and regressions are included for ARM and Alpha (including Linux boot).
Documentation for the model can be found in src/doc/inside-minor.doxygen and its internal operations can be visualised using the Minorview tool utils/minorview.py.
Minor was designed to be fairly simple and not to engage in a lot of instruction annotation. As such, it currently has very few gathered stats and may lack other gem5 features.
Minor is faster than the o3 model. Sample results:
Benchmark | Stat host_seconds (s) ---------------+--------v--------v-------- (on ARM, opt) | simple | o3 | minor | timing | timing | timing ---------------+--------+--------+-------- 10.linux-boot | 169 | 1883 | 1075 10.mcf | 117 | 967 | 491 20.parser | 668 | 6315 | 3146 30.eon | 542 | 3413 | 2414 40.perlbmk | 2339 | 20905 | 11532 50.vortex | 122 | 1094 | 588 60.bzip2 | 2045 | 18061 | 9662 70.twolf | 207 | 2736 | 1036
|