History log of /gem5/src/arch/sparc/isa/formats/branch.isa
Revision Date Author Comments
# 12288:f13eec2f5a17 06-Nov-2017 Gabe Black <gabeblack@google.com>

sparc: Pull more StaticInst base classes out of the ISA desc.

These are for the trap and branch instructions.

Change-Id: Idedab6f3e6c6c954c1f8a36dae52976cf25ad394
Reviewed-on: https://gem5-review.googlesource.com/5461
Reviewed-by: Gabe Black <gabeblack@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>


# 12234:78ece221f9f5 02-Nov-2017 Gabe Black <gabeblack@google.com>

alpha,arm,mips,power,riscv,sparc,x86,isa: De-specialize ExecContexts.

The ISA parser used to generate different copies of exec functions
for each exec context class a particular CPU wanted to use. That's
since been changed so that those functions take a pointer to the base
ExecContext, so the code which would generate those extra functions
can be removed, and some functions which used to be templated on an
ExecContext subclass can be untemplated, or minimally less templated.

Now that some functions aren't going to be instantiated multiple times
with different signatures, there are also opportunities to collapse
templates and make many instruction definitions simpler within the
parser. Since those changes will be less mechanical, they're left for
later changes and will probably be done in smaller increments.

Change-Id: I0015307bb02dfb9c60380b56d2a820f12169ebea
Reviewed-on: https://gem5-review.googlesource.com/5381
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>


# 10196:be0e1724eb39 09-May-2014 Curtis Dunham <Curtis.Dunham@arm.com>

arch: teach ISA parser how to split code across files

This patch encompasses several interrelated and interdependent changes
to the ISA generation step. The end goal is to reduce the size of the
generated compilation units for instruction execution and decoding so
that batch compilation can proceed with all CPUs active without
exhausting physical memory.

The ISA parser (src/arch/isa_parser.py) has been improved so that it can
accept 'split [output_type];' directives at the top level of the grammar
and 'split(output_type)' python calls within 'exec {{ ... }}' blocks.
This has the effect of "splitting" the files into smaller compilation
units. I use air-quotes around "splitting" because the files themselves
are not split, but preprocessing directives are inserted to have the same
effect.

Architecturally, the ISA parser has had some changes in how it works.
In general, it emits code sooner. It doesn't generate per-CPU files,
and instead defers to the C preprocessor to create the duplicate copies
for each CPU type. Likewise there are more files emitted and the C
preprocessor does more substitution that used to be done by the ISA parser.

Finally, the build system (SCons) needs to be able to cope with a
dynamic list of source files coming out of the ISA parser. The changes
to the SCons{cript,truct} files support this. In broad strokes, the
targets requested on the command line are hidden from SCons until all
the build dependencies are determined, otherwise it would try, realize
it can't reach the goal, and terminate in failure. Since build steps
(i.e. running the ISA parser) must be taken to determine the file list,
several new build stages have been inserted at the very start of the
build. First, the build dependencies from the ISA parser will be emitted
to arch/$ISA/generated/inc.d, which is then read by a new SCons builder
to finalize the dependencies. (Once inc.d exists, the ISA parser will not
need to be run to complete this step.) Once the dependencies are known,
the 'Environments' are made by the makeEnv() function. This function used
to be called before the build began but now happens during the build.
It is easy to see that this step is quite slow; this is a known issue
and it's important to realize that it was already slow, but there was
no obvious cause to attribute it to since nothing was displayed to the
terminal. Since new steps that used to be performed serially are now in a
potentially-parallel build phase, the pathname handling in the SCons scripts
has been tightened up to deal with chdir() race conditions. In general,
pathnames are computed earlier and more likely to be stored, passed around,
and processed as absolute paths rather than relative paths. In the end,
some of these issues had to be fixed by inserting serializing dependencies
in the build.

Minor note:
For the null ISA, we just provide a dummy inc.d so SCons is never
compelled to try to generate it. While it seems slightly wrong to have
anything in src/arch/*/generated (i.e. a non-generated 'generated' file),
it's by far the simplest solution.


# 8345:9bb24e6edc35 10-Jun-2011 Korey Sewell <ksewell@umich.edu>

sparc: don't use directcntrl branch flag
this flag is only used for early branch resolution in the O3 model (of pc-relative branches)
but this isnt cleanly working even when the branch target code is added for sparc. For now,
we'll ignore this optimization and add a todo in the SPARC ISA for future developers


# 8342:77d12d8f7971 09-Jun-2011 Korey Sewell <ksewell@umich.edu>

sparc: compilation fixes for inorder
Add a few constants and functions that the InOrder model wants for SPARC.
* * *
sparc: add eaComp function
InOrder separates the address generation from the actual access so give
Sparc that functionality
* * *
sparc: add control flags for branches
branch predictors and other cpu model functions need to know specific information
about branches, so add the necessary flags here


# 7790:9df469679ac7 08-Dec-2010 Gabe Black <gblack@eecs.umich.edu>

SPARC: Take advantage of new PCState syntax.


# 7741:340b6f01d69b 11-Nov-2010 Gabe Black <gblack@eecs.umich.edu>

SPARC: Clean up some historical style issues.


# 7720:65d338a8dba4 31-Oct-2010 Gabe Black <gblack@eecs.umich.edu>

ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.


# 5091:662c1d7b4795 25-Sep-2007 Gabe Black <gblack@eecs.umich.edu>

SPARC: Clean up the branch instructions a bit.


# 4253:65a2461fcfc2 16-Mar-2007 Gabe Black <gblack@eecs.umich.edu>

Make the SPARC branch instructions use ExtMachInsts in their constructors. This isn't necessary since they don't use the extended fields, but it's more consistent and more correct.


# 4004:d551cf1bba0d 30-Jan-2007 Gabe Black <gblack@eecs.umich.edu>

Implemented fbfss and fbpfcc instructions, and cleaned up branch code a little.

src/arch/sparc/isa/base.isa:
Added passesFpCondition function to help with fbfcc and fbpfcc instructions.
src/arch/sparc/isa/decoder.isa:
Added fbfcc and fbpfcc instructions, and cleaned up branch code slightly.
src/arch/sparc/isa/formats/branch.isa:
Minor cleanup.


# 3985:28c305c0c56f 29-Jan-2007 Gabe Black <gblack@eecs.umich.edu>

Cleaned up disassembly a little.


# 3792:dae368e56d0e 16-Dec-2006 Gabe Black <gblack@eecs.umich.edu>

Changes to the isa_parser and affected files to fix an indexing problem with split execute instructions and miscregs aliasing with integer registers.

src/arch/isa_parser.py:
Rearranged things so that classes with more than one execute function treat operands properly.
1. Eliminated the CodeBlock class
2. Created a SubOperandList
3. Redefined how InstObjParams is constructed

To define an InstObjParam, you can either pass in a single code literal which will be named "code", or you can pass in a dictionary of code snippets which will be substituted into the Templates. In order to get this to work, there is a new restriction that each template has only one function in it. These changes should only affect memory instructions which have regular and split execute functions.

Also changed the MiscRegs so that they use the instrunctions srcReg and destReg arrays.
src/arch/sparc/isa/formats/basic.isa:
src/arch/sparc/isa/formats/branch.isa:
src/arch/sparc/isa/formats/integerop.isa:
src/arch/sparc/isa/formats/mem/basicmem.isa:
src/arch/sparc/isa/formats/mem/blockmem.isa:
src/arch/sparc/isa/formats/mem/util.isa:
src/arch/sparc/isa/formats/nop.isa:
src/arch/sparc/isa/formats/priv.isa:
src/arch/sparc/isa/formats/trap.isa:
Rearranged to work with new InstObjParam scheme.
src/cpu/o3/sparc/dyn_inst.hh:
Added functions to access the miscregs using the indexes from instructions srcReg and destReg arrays. Also changed the names of the other accessors so that they have the suffix "Operand" if they use those arrays.
src/cpu/simple/base.hh:
Added functions to access the miscregs using the indexes from instructions srcReg and destReg arrays.


# 3787:023ac8d894a3 07-Dec-2006 Gabe Black <gblack@eecs.umich.edu>

Make branches handle the lack of a symbol table or the lack of a symbol gracefully.


# 3273:5aa5cc05fff9 12-Oct-2006 Gabe Black <gblack@eecs.umich.edu>

Changed the sign extension function from mine to the provided one. Mine relied on implementation specific behavior, namely right shifting a signed value.


# 3056:f613791cfec0 21-Aug-2006 Gabe Black <gblack@eecs.umich.edu>

Fix annulled unconditional branches


# 2944:10dcffb2904f 19-Jul-2006 Gabe Black <gblack@eecs.umich.edu>

Cleaned things up a little.


# 2632:1bb2f91485ea 22-May-2006 Steve Reinhardt <stever@eecs.umich.edu>

New directory structure:
- simulator source now in 'src' subdirectory
- imported files from 'ext' repository
- support building in arbitrary places, including
outside of the source tree. See comment at top
of SConstruct file for more details.
Regression tests are temporarily disabled; that
syetem needs more extensive revisions.

SConstruct:
Update for new directory structure.
Modify to support build trees that are not subdirectories
of the source tree. See comment at top of file for
more details.
Regression tests are temporarily disabled.
src/arch/SConscript:
src/arch/isa_parser.py:
src/python/SConscript:
Update for new directory structure.