syscall_emul.hh revision 13994
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56///
57/// @file syscall_emul.hh
58///
59/// This file defines objects used to emulate syscalls from the target
60/// application on the host machine.
61
62#if defined(__linux__)
63#include <sys/eventfd.h>
64#include <sys/statfs.h>
65
66#else
67#include <sys/mount.h>
68
69#endif
70
71#ifdef __CYGWIN32__
72#include <sys/fcntl.h>
73
74#endif
75#include <fcntl.h>
76#include <net/if.h>
77#include <poll.h>
78#include <sys/ioctl.h>
79#include <sys/mman.h>
80#include <sys/socket.h>
81#include <sys/stat.h>
82#include <sys/time.h>
83#include <sys/types.h>
84#include <sys/uio.h>
85#include <unistd.h>
86
87#include <cerrno>
88#include <memory>
89#include <string>
90
91#include "arch/generic/tlb.hh"
92#include "arch/utility.hh"
93#include "base/intmath.hh"
94#include "base/loader/object_file.hh"
95#include "base/logging.hh"
96#include "base/trace.hh"
97#include "base/types.hh"
98#include "config/the_isa.hh"
99#include "cpu/base.hh"
100#include "cpu/thread_context.hh"
101#include "mem/page_table.hh"
102#include "params/Process.hh"
103#include "sim/emul_driver.hh"
104#include "sim/futex_map.hh"
105#include "sim/process.hh"
106#include "sim/syscall_debug_macros.hh"
107#include "sim/syscall_desc.hh"
108#include "sim/syscall_emul_buf.hh"
109#include "sim/syscall_return.hh"
110
111#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
112#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
113#endif
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's.  They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123void warnUnsupportedOS(std::string syscall_name);
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
127                                Process *p, ThreadContext *tc);
128
129/// Handler for unimplemented syscalls that we never intend to
130/// implement (signal handling, etc.) and should not affect the correct
131/// behavior of the program.  Print a warning only if the appropriate
132/// trace flag is enabled.  Return success to the target program.
133SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
134                         Process *p, ThreadContext *tc);
135
136// Target fallocateFunc() handler.
137SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
138                            Process *p, ThreadContext *tc);
139
140/// Target exit() handler: terminate current context.
141SyscallReturn exitFunc(SyscallDesc *desc, int num,
142                       Process *p, ThreadContext *tc);
143
144/// Target exit_group() handler: terminate simulation. (exit all threads)
145SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
146                       Process *p, ThreadContext *tc);
147
148/// Target set_tid_address() handler.
149SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
150                                Process *p, ThreadContext *tc);
151
152/// Target getpagesize() handler.
153SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
154                              Process *p, ThreadContext *tc);
155
156/// Target brk() handler: set brk address.
157SyscallReturn brkFunc(SyscallDesc *desc, int num,
158                      Process *p, ThreadContext *tc);
159
160/// Target close() handler.
161SyscallReturn closeFunc(SyscallDesc *desc, int num,
162                        Process *p, ThreadContext *tc);
163
164/// Target lseek() handler.
165SyscallReturn lseekFunc(SyscallDesc *desc, int num,
166                        Process *p, ThreadContext *tc);
167
168/// Target _llseek() handler.
169SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
170                          Process *p, ThreadContext *tc);
171
172/// Target munmap() handler.
173SyscallReturn munmapFunc(SyscallDesc *desc, int num,
174                         Process *p, ThreadContext *tc);
175
176/// Target shutdown() handler.
177SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
178                           Process *p, ThreadContext *tc);
179
180/// Target gethostname() handler.
181SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
182                              Process *p, ThreadContext *tc);
183
184/// Target getcwd() handler.
185SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
186                         Process *p, ThreadContext *tc);
187
188/// Target readlink() handler.
189SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
190                           Process *p, ThreadContext *tc,
191                           int index = 0);
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193                           Process *p, ThreadContext *tc);
194
195/// Target unlink() handler.
196SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
197                           Process *p, ThreadContext *tc,
198                           int index);
199SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
200                         Process *p, ThreadContext *tc);
201
202/// Target link() handler
203SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
204                       ThreadContext *tc);
205
206/// Target symlink() handler.
207SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
208                          ThreadContext *tc);
209
210/// Target mkdir() handler.
211SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
212                        Process *p, ThreadContext *tc);
213
214/// Target mknod() handler.
215SyscallReturn mknodFunc(SyscallDesc *desc, int num,
216                        Process *p, ThreadContext *tc);
217
218/// Target chdir() handler.
219SyscallReturn chdirFunc(SyscallDesc *desc, int num,
220                        Process *p, ThreadContext *tc);
221
222// Target rmdir() handler.
223SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
224                        Process *p, ThreadContext *tc);
225
226/// Target rename() handler.
227SyscallReturn renameFunc(SyscallDesc *desc, int num,
228                         Process *p, ThreadContext *tc);
229
230
231/// Target truncate() handler.
232SyscallReturn truncateFunc(SyscallDesc *desc, int num,
233                           Process *p, ThreadContext *tc);
234
235
236/// Target ftruncate() handler.
237SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
238                            Process *p, ThreadContext *tc);
239
240
241/// Target truncate64() handler.
242SyscallReturn truncate64Func(SyscallDesc *desc, int num,
243                             Process *p, ThreadContext *tc);
244
245/// Target ftruncate64() handler.
246SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
247                              Process *p, ThreadContext *tc);
248
249
250/// Target umask() handler.
251SyscallReturn umaskFunc(SyscallDesc *desc, int num,
252                        Process *p, ThreadContext *tc);
253
254/// Target gettid() handler.
255SyscallReturn gettidFunc(SyscallDesc *desc, int num,
256                         Process *p, ThreadContext *tc);
257
258/// Target chown() handler.
259SyscallReturn chownFunc(SyscallDesc *desc, int num,
260                        Process *p, ThreadContext *tc);
261
262/// Target setpgid() handler.
263SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
264                          Process *p, ThreadContext *tc);
265
266/// Target fchown() handler.
267SyscallReturn fchownFunc(SyscallDesc *desc, int num,
268                         Process *p, ThreadContext *tc);
269
270/// Target dup() handler.
271SyscallReturn dupFunc(SyscallDesc *desc, int num,
272                      Process *process, ThreadContext *tc);
273
274/// Target dup2() handler.
275SyscallReturn dup2Func(SyscallDesc *desc, int num,
276                       Process *process, ThreadContext *tc);
277
278/// Target fcntl() handler.
279SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
280                        Process *process, ThreadContext *tc);
281
282/// Target fcntl64() handler.
283SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
284                          Process *process, ThreadContext *tc);
285
286/// Target setuid() handler.
287SyscallReturn setuidFunc(SyscallDesc *desc, int num,
288                         Process *p, ThreadContext *tc);
289
290/// Target pipe() handler.
291SyscallReturn pipeFunc(SyscallDesc *desc, int num,
292                       Process *p, ThreadContext *tc);
293
294/// Internal pipe() handler.
295SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
296                       ThreadContext *tc, bool pseudoPipe);
297
298/// Target getpid() handler.
299SyscallReturn getpidFunc(SyscallDesc *desc, int num,
300                         Process *p, ThreadContext *tc);
301
302// Target getpeername() handler.
303SyscallReturn getpeernameFunc(SyscallDesc *desc, int num,
304                              Process *p, ThreadContext *tc);
305
306// Target bind() handler.
307SyscallReturn bindFunc(SyscallDesc *desc, int num,
308                       Process *p, ThreadContext *tc);
309
310// Target listen() handler.
311SyscallReturn listenFunc(SyscallDesc *desc, int num,
312                         Process *p, ThreadContext *tc);
313
314// Target connect() handler.
315SyscallReturn connectFunc(SyscallDesc *desc, int num,
316                          Process *p, ThreadContext *tc);
317
318#if defined(SYS_getdents)
319// Target getdents() handler.
320SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
321                           Process *p, ThreadContext *tc);
322#endif
323
324#if defined(SYS_getdents64)
325// Target getdents() handler.
326SyscallReturn getdents64Func(SyscallDesc *desc, int num,
327                           Process *p, ThreadContext *tc);
328#endif
329
330// Target sendto() handler.
331SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
332                         Process *p, ThreadContext *tc);
333
334// Target recvfrom() handler.
335SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
336                           Process *p, ThreadContext *tc);
337
338// Target recvmsg() handler.
339SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
340                          Process *p, ThreadContext *tc);
341
342// Target sendmsg() handler.
343SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
344                          Process *p, ThreadContext *tc);
345
346// Target getuid() handler.
347SyscallReturn getuidFunc(SyscallDesc *desc, int num,
348                         Process *p, ThreadContext *tc);
349
350/// Target getgid() handler.
351SyscallReturn getgidFunc(SyscallDesc *desc, int num,
352                         Process *p, ThreadContext *tc);
353
354/// Target getppid() handler.
355SyscallReturn getppidFunc(SyscallDesc *desc, int num,
356                          Process *p, ThreadContext *tc);
357
358/// Target geteuid() handler.
359SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
360                          Process *p, ThreadContext *tc);
361
362/// Target getegid() handler.
363SyscallReturn getegidFunc(SyscallDesc *desc, int num,
364                          Process *p, ThreadContext *tc);
365
366/// Target access() handler
367SyscallReturn accessFunc(SyscallDesc *desc, int num,
368                         Process *p, ThreadContext *tc);
369SyscallReturn accessFunc(SyscallDesc *desc, int num,
370                         Process *p, ThreadContext *tc,
371                         int index);
372
373// Target getsockopt() handler.
374SyscallReturn getsockoptFunc(SyscallDesc *desc, int num,
375                             Process *p, ThreadContext *tc);
376
377// Target setsockopt() handler.
378SyscallReturn setsockoptFunc(SyscallDesc *desc, int num,
379                             Process *p, ThreadContext *tc);
380
381// Target getsockname() handler.
382SyscallReturn getsocknameFunc(SyscallDesc *desc, int num,
383                              Process *p, ThreadContext *tc);
384
385/// Futex system call
386/// Implemented by Daniel Sanchez
387/// Used by printf's in multi-threaded apps
388template <class OS>
389SyscallReturn
390futexFunc(SyscallDesc *desc, int callnum, Process *process,
391          ThreadContext *tc)
392{
393    using namespace std;
394
395    int index = 0;
396    Addr uaddr = process->getSyscallArg(tc, index);
397    int op = process->getSyscallArg(tc, index);
398    int val = process->getSyscallArg(tc, index);
399    int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
400    Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
401    int val3 = process->getSyscallArg(tc, index);
402
403    /*
404     * Unsupported option that does not affect the correctness of the
405     * application. This is a performance optimization utilized by Linux.
406     */
407    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
408    op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
409
410    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
411
412    if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
413        // Ensure futex system call accessed atomically.
414        BufferArg buf(uaddr, sizeof(int));
415        buf.copyIn(tc->getMemProxy());
416        int mem_val = *(int*)buf.bufferPtr();
417
418        /*
419         * The value in memory at uaddr is not equal with the expected val
420         * (a different thread must have changed it before the system call was
421         * invoked). In this case, we need to throw an error.
422         */
423        if (val != mem_val)
424            return -OS::TGT_EWOULDBLOCK;
425
426        if (OS::TGT_FUTEX_WAIT) {
427            futex_map.suspend(uaddr, process->tgid(), tc);
428        } else {
429            futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
430        }
431
432        return 0;
433    } else if (OS::TGT_FUTEX_WAKE == op) {
434        return futex_map.wakeup(uaddr, process->tgid(), val);
435    } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
436        return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
437    } else if (OS::TGT_FUTEX_REQUEUE == op ||
438               OS::TGT_FUTEX_CMP_REQUEUE == op) {
439
440        // Ensure futex system call accessed atomically.
441        BufferArg buf(uaddr, sizeof(int));
442        buf.copyIn(tc->getMemProxy());
443        int mem_val = *(int*)buf.bufferPtr();
444        /*
445         * For CMP_REQUEUE, the whole operation is only started only if
446         * val3 is still the value of the futex pointed to by uaddr.
447         */
448        if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
449            return -OS::TGT_EWOULDBLOCK;
450        return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
451    } else if (OS::TGT_FUTEX_WAKE_OP == op) {
452        /*
453         * The FUTEX_WAKE_OP operation is equivalent to executing the
454         * following code atomically and totally ordered with respect to
455         * other futex operations on any of the two supplied futex words:
456         *
457         *   int oldval = *(int *) addr2;
458         *   *(int *) addr2 = oldval op oparg;
459         *   futex(addr1, FUTEX_WAKE, val, 0, 0, 0);
460         *   if (oldval cmp cmparg)
461         *        futex(addr2, FUTEX_WAKE, val2, 0, 0, 0);
462         *
463         * (op, oparg, cmp, cmparg are encoded in val3)
464         *
465         * +---+---+-----------+-----------+
466         * |op |cmp|   oparg   |  cmparg   |
467         * +---+---+-----------+-----------+
468         *   4   4       12          12    <== # of bits
469         *
470         * reference: http://man7.org/linux/man-pages/man2/futex.2.html
471         *
472         */
473        // get value from simulated-space
474        BufferArg buf(uaddr2, sizeof(int));
475        buf.copyIn(tc->getMemProxy());
476        int oldval = *(int*)buf.bufferPtr();
477        int newval = oldval;
478        // extract op, oparg, cmp, cmparg from val3
479        int wake_cmparg =  val3 & 0xfff;
480        int wake_oparg  = (val3 & 0xfff000)   >> 12;
481        int wake_cmp    = (val3 & 0xf000000)  >> 24;
482        int wake_op     = (val3 & 0xf0000000) >> 28;
483        if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1)
484            wake_oparg = (1 << wake_oparg);
485        wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT;
486        // perform operation on the value of the second futex
487        if (wake_op == OS::TGT_FUTEX_OP_SET)
488            newval = wake_oparg;
489        else if (wake_op == OS::TGT_FUTEX_OP_ADD)
490            newval += wake_oparg;
491        else if (wake_op == OS::TGT_FUTEX_OP_OR)
492            newval |= wake_oparg;
493        else if (wake_op == OS::TGT_FUTEX_OP_ANDN)
494            newval &= ~wake_oparg;
495        else if (wake_op == OS::TGT_FUTEX_OP_XOR)
496            newval ^= wake_oparg;
497        // copy updated value back to simulated-space
498        *(int*)buf.bufferPtr() = newval;
499        buf.copyOut(tc->getMemProxy());
500        // perform the first wake-up
501        int woken1 = futex_map.wakeup(uaddr, process->tgid(), val);
502        int woken2 = 0;
503        // calculate the condition of the second wake-up
504        bool is_wake2 = false;
505        if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ)
506            is_wake2 = oldval == wake_cmparg;
507        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE)
508            is_wake2 = oldval != wake_cmparg;
509        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT)
510            is_wake2 = oldval < wake_cmparg;
511        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE)
512            is_wake2 = oldval <= wake_cmparg;
513        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT)
514            is_wake2 = oldval > wake_cmparg;
515        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE)
516            is_wake2 = oldval >= wake_cmparg;
517        // perform the second wake-up
518        if (is_wake2)
519            woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout);
520
521        return woken1 + woken2;
522    }
523    warn("futex: op %d not implemented; ignoring.", op);
524    return -ENOSYS;
525}
526
527
528/// Pseudo Funcs  - These functions use a different return convension,
529/// returning a second value in a register other than the normal return register
530SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
531                             Process *process, ThreadContext *tc);
532
533/// Target getpidPseudo() handler.
534SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
535                               Process *p, ThreadContext *tc);
536
537/// Target getuidPseudo() handler.
538SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
539                               Process *p, ThreadContext *tc);
540
541/// Target getgidPseudo() handler.
542SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
543                               Process *p, ThreadContext *tc);
544
545
546/// A readable name for 1,000,000, for converting microseconds to seconds.
547const int one_million = 1000000;
548/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
549const int one_billion = 1000000000;
550
551/// Approximate seconds since the epoch (1/1/1970).  About a billion,
552/// by my reckoning.  We want to keep this a constant (not use the
553/// real-world time) to keep simulations repeatable.
554const unsigned seconds_since_epoch = 1000000000;
555
556/// Helper function to convert current elapsed time to seconds and
557/// microseconds.
558template <class T1, class T2>
559void
560getElapsedTimeMicro(T1 &sec, T2 &usec)
561{
562    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
563    sec = elapsed_usecs / one_million;
564    usec = elapsed_usecs % one_million;
565}
566
567/// Helper function to convert current elapsed time to seconds and
568/// nanoseconds.
569template <class T1, class T2>
570void
571getElapsedTimeNano(T1 &sec, T2 &nsec)
572{
573    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
574    sec = elapsed_nsecs / one_billion;
575    nsec = elapsed_nsecs % one_billion;
576}
577
578//////////////////////////////////////////////////////////////////////
579//
580// The following emulation functions are generic, but need to be
581// templated to account for differences in types, constants, etc.
582//
583//////////////////////////////////////////////////////////////////////
584
585    typedef struct statfs hst_statfs;
586#if NO_STAT64
587    typedef struct stat hst_stat;
588    typedef struct stat hst_stat64;
589#else
590    typedef struct stat hst_stat;
591    typedef struct stat64 hst_stat64;
592#endif
593
594//// Helper function to convert a host stat buffer to a target stat
595//// buffer.  Also copies the target buffer out to the simulated
596//// memory space.  Used by stat(), fstat(), and lstat().
597
598template <typename target_stat, typename host_stat>
599void
600convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
601{
602    using namespace TheISA;
603
604    if (fakeTTY)
605        tgt->st_dev = 0xA;
606    else
607        tgt->st_dev = host->st_dev;
608    tgt->st_dev = TheISA::htog(tgt->st_dev);
609    tgt->st_ino = host->st_ino;
610    tgt->st_ino = TheISA::htog(tgt->st_ino);
611    tgt->st_mode = host->st_mode;
612    if (fakeTTY) {
613        // Claim to be a character device
614        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
615        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
616    }
617    tgt->st_mode = TheISA::htog(tgt->st_mode);
618    tgt->st_nlink = host->st_nlink;
619    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
620    tgt->st_uid = host->st_uid;
621    tgt->st_uid = TheISA::htog(tgt->st_uid);
622    tgt->st_gid = host->st_gid;
623    tgt->st_gid = TheISA::htog(tgt->st_gid);
624    if (fakeTTY)
625        tgt->st_rdev = 0x880d;
626    else
627        tgt->st_rdev = host->st_rdev;
628    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
629    tgt->st_size = host->st_size;
630    tgt->st_size = TheISA::htog(tgt->st_size);
631    tgt->st_atimeX = host->st_atime;
632    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
633    tgt->st_mtimeX = host->st_mtime;
634    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
635    tgt->st_ctimeX = host->st_ctime;
636    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
637    // Force the block size to be 8KB. This helps to ensure buffered io works
638    // consistently across different hosts.
639    tgt->st_blksize = 0x2000;
640    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
641    tgt->st_blocks = host->st_blocks;
642    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
643}
644
645// Same for stat64
646
647template <typename target_stat, typename host_stat64>
648void
649convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
650{
651    using namespace TheISA;
652
653    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
654#if defined(STAT_HAVE_NSEC)
655    tgt->st_atime_nsec = host->st_atime_nsec;
656    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
657    tgt->st_mtime_nsec = host->st_mtime_nsec;
658    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
659    tgt->st_ctime_nsec = host->st_ctime_nsec;
660    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
661#else
662    tgt->st_atime_nsec = 0;
663    tgt->st_mtime_nsec = 0;
664    tgt->st_ctime_nsec = 0;
665#endif
666}
667
668// Here are a couple of convenience functions
669template<class OS>
670void
671copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
672               hst_stat *host, bool fakeTTY = false)
673{
674    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
675    tgt_stat_buf tgt(addr);
676    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
677    tgt.copyOut(mem);
678}
679
680template<class OS>
681void
682copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
683                 hst_stat64 *host, bool fakeTTY = false)
684{
685    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
686    tgt_stat_buf tgt(addr);
687    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
688    tgt.copyOut(mem);
689}
690
691template <class OS>
692void
693copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
694                 hst_statfs *host)
695{
696    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
697
698    tgt->f_type = TheISA::htog(host->f_type);
699#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
700    tgt->f_bsize = TheISA::htog(host->f_iosize);
701#else
702    tgt->f_bsize = TheISA::htog(host->f_bsize);
703#endif
704    tgt->f_blocks = TheISA::htog(host->f_blocks);
705    tgt->f_bfree = TheISA::htog(host->f_bfree);
706    tgt->f_bavail = TheISA::htog(host->f_bavail);
707    tgt->f_files = TheISA::htog(host->f_files);
708    tgt->f_ffree = TheISA::htog(host->f_ffree);
709    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
710#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
711    tgt->f_namelen = TheISA::htog(host->f_namemax);
712    tgt->f_frsize = TheISA::htog(host->f_bsize);
713#elif defined(__APPLE__)
714    tgt->f_namelen = 0;
715    tgt->f_frsize = 0;
716#else
717    tgt->f_namelen = TheISA::htog(host->f_namelen);
718    tgt->f_frsize = TheISA::htog(host->f_frsize);
719#endif
720#if defined(__linux__)
721    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
722#else
723    /*
724     * The fields are different sizes per OS. Don't bother with
725     * f_spare or f_reserved on non-Linux for now.
726     */
727    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
728#endif
729
730    tgt.copyOut(mem);
731}
732
733/// Target ioctl() handler.  For the most part, programs call ioctl()
734/// only to find out if their stdout is a tty, to determine whether to
735/// do line or block buffering.  We always claim that output fds are
736/// not TTYs to provide repeatable results.
737template <class OS>
738SyscallReturn
739ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
740{
741    int index = 0;
742    int tgt_fd = p->getSyscallArg(tc, index);
743    unsigned req = p->getSyscallArg(tc, index);
744
745    DPRINTF_SYSCALL(Verbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
746
747    if (OS::isTtyReq(req))
748        return -ENOTTY;
749
750    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
751    if (dfdp) {
752        EmulatedDriver *emul_driver = dfdp->getDriver();
753        if (emul_driver)
754            return emul_driver->ioctl(p, tc, req);
755    }
756
757    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
758    if (sfdp) {
759        int status;
760
761        switch (req) {
762          case SIOCGIFCONF: {
763            Addr conf_addr = p->getSyscallArg(tc, index);
764            BufferArg conf_arg(conf_addr, sizeof(ifconf));
765            conf_arg.copyIn(tc->getMemProxy());
766
767            ifconf *conf = (ifconf*)conf_arg.bufferPtr();
768            Addr ifc_buf_addr = (Addr)conf->ifc_buf;
769            BufferArg ifc_buf_arg(ifc_buf_addr, conf->ifc_len);
770            ifc_buf_arg.copyIn(tc->getMemProxy());
771
772            conf->ifc_buf = (char*)ifc_buf_arg.bufferPtr();
773
774            status = ioctl(sfdp->getSimFD(), req, conf_arg.bufferPtr());
775            if (status != -1) {
776                conf->ifc_buf = (char*)ifc_buf_addr;
777                ifc_buf_arg.copyOut(tc->getMemProxy());
778                conf_arg.copyOut(tc->getMemProxy());
779            }
780
781            return status;
782          }
783          case SIOCGIFFLAGS:
784#if defined(__linux__)
785          case SIOCGIFINDEX:
786#endif
787          case SIOCGIFNETMASK:
788          case SIOCGIFADDR:
789#if defined(__linux__)
790          case SIOCGIFHWADDR:
791#endif
792          case SIOCGIFMTU: {
793            Addr req_addr = p->getSyscallArg(tc, index);
794            BufferArg req_arg(req_addr, sizeof(ifreq));
795            req_arg.copyIn(tc->getMemProxy());
796
797            status = ioctl(sfdp->getSimFD(), req, req_arg.bufferPtr());
798            if (status != -1)
799                req_arg.copyOut(tc->getMemProxy());
800            return status;
801          }
802        }
803    }
804
805    /**
806     * For lack of a better return code, return ENOTTY. Ideally, we should
807     * return something better here, but at least we issue the warning.
808     */
809    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
810         tgt_fd, req, tc->pcState());
811    return -ENOTTY;
812}
813
814template <class OS>
815SyscallReturn
816openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
817         bool isopenat)
818{
819    int index = 0;
820    int tgt_dirfd = -1;
821
822    /**
823     * If using the openat variant, read in the target directory file
824     * descriptor from the simulated process.
825     */
826    if (isopenat)
827        tgt_dirfd = p->getSyscallArg(tc, index);
828
829    /**
830     * Retrieve the simulated process' memory proxy and then read in the path
831     * string from that memory space into the host's working memory space.
832     */
833    std::string path;
834    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
835        return -EFAULT;
836
837#ifdef __CYGWIN32__
838    int host_flags = O_BINARY;
839#else
840    int host_flags = 0;
841#endif
842    /**
843     * Translate target flags into host flags. Flags exist which are not
844     * ported between architectures which can cause check failures.
845     */
846    int tgt_flags = p->getSyscallArg(tc, index);
847    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
848        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
849            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
850            host_flags |= OS::openFlagTable[i].hostFlag;
851        }
852    }
853    if (tgt_flags) {
854        warn("open%s: cannot decode flags 0x%x",
855             isopenat ? "at" : "", tgt_flags);
856    }
857#ifdef __CYGWIN32__
858    host_flags |= O_BINARY;
859#endif
860
861    int mode = p->getSyscallArg(tc, index);
862
863    /**
864     * If the simulated process called open or openat with AT_FDCWD specified,
865     * take the current working directory value which was passed into the
866     * process class as a Python parameter and append the current path to
867     * create a full path.
868     * Otherwise, openat with a valid target directory file descriptor has
869     * been called. If the path option, which was passed in as a parameter,
870     * is not absolute, retrieve the directory file descriptor's path and
871     * prepend it to the path passed in as a parameter.
872     * In every case, we should have a full path (which is relevant to the
873     * host) to work with after this block has been passed.
874     */
875    std::string redir_path = path;
876    std::string abs_path = path;
877    if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) {
878        abs_path = p->absolutePath(path, true);
879        redir_path = p->checkPathRedirect(path);
880    } else if (!startswith(path, "/")) {
881        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
882        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
883        if (!ffdp)
884            return -EBADF;
885        abs_path = ffdp->getFileName() + path;
886        redir_path = p->checkPathRedirect(abs_path);
887    }
888
889    /**
890     * Since this is an emulated environment, we create pseudo file
891     * descriptors for device requests that have been registered with
892     * the process class through Python; this allows us to create a file
893     * descriptor for subsequent ioctl or mmap calls.
894     */
895    if (startswith(abs_path, "/dev/")) {
896        std::string filename = abs_path.substr(strlen("/dev/"));
897        EmulatedDriver *drv = p->findDriver(filename);
898        if (drv) {
899            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
900                            "driver open with path[%s]\n",
901                            isopenat ? "at" : "", abs_path.c_str());
902            return drv->open(p, tc, mode, host_flags);
903        }
904        /**
905         * Fall through here for pass through to host devices, such
906         * as /dev/zero
907         */
908    }
909
910    /**
911     * We make several attempts resolve a call to open.
912     *
913     * 1) Resolve any path redirection before hand. This will set the path
914     * up with variable 'redir_path' which may contain a modified path or
915     * the original path value. This should already be done in prior code.
916     * 2) Try to handle the access using 'special_paths'. Some special_paths
917     * and files cannot be called on the host and need to be handled as
918     * special cases inside the simulator. These special_paths are handled by
919     * C++ routines to provide output back to userspace.
920     * 3) If the full path that was created above does not match any of the
921     * special cases, pass it through to the open call on the __HOST__ to let
922     * the host open the file on our behalf. Again, the openImpl tries to
923     * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the
924     * faux-filesystem files). The faux-filesystem is dynamically created
925     * during simulator configuration using Python functions.
926     * 4) If the host cannot open the file, the open attempt failed in "3)".
927     * Return the host's error code back through the system call to the
928     * simulated process. If running a debug trace, also notify the user that
929     * the open call failed.
930     *
931     * Any success will set sim_fd to something other than -1 and skip the
932     * next conditions effectively bypassing them.
933     */
934    int sim_fd = -1;
935    std::string used_path;
936    std::vector<std::string> special_paths =
937            { "/proc/meminfo/", "/system/", "/platform/", "/etc/passwd" };
938    for (auto entry : special_paths) {
939        if (startswith(path, entry)) {
940            sim_fd = OS::openSpecialFile(abs_path, p, tc);
941            used_path = abs_path;
942        }
943    }
944    if (sim_fd == -1) {
945        sim_fd = open(redir_path.c_str(), host_flags, mode);
946        used_path = redir_path;
947    }
948    if (sim_fd == -1) {
949        int local = -errno;
950        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s "
951                        "(inferred from:%s)\n", isopenat ? "at" : "",
952                        used_path.c_str(), path.c_str());
953        return local;
954    }
955
956    /**
957     * The file was opened successfully and needs to be recorded in the
958     * process' file descriptor array so that it can be retrieved later.
959     * The target file descriptor that is chosen will be the lowest unused
960     * file descriptor.
961     * Return the indirect target file descriptor back to the simulated
962     * process to act as a handle for the opened file.
963     */
964    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
965    int tgt_fd = p->fds->allocFD(ffdp);
966    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n"
967                    "(inferred from:%s)\n", isopenat ? "at" : "",
968                    sim_fd, tgt_fd, used_path.c_str(), path.c_str());
969    return tgt_fd;
970}
971
972/// Target open() handler.
973template <class OS>
974SyscallReturn
975openFunc(SyscallDesc *desc, int callnum, Process *process,
976         ThreadContext *tc)
977{
978    return openImpl<OS>(desc, callnum, process, tc, false);
979}
980
981/// Target openat() handler.
982template <class OS>
983SyscallReturn
984openatFunc(SyscallDesc *desc, int callnum, Process *process,
985           ThreadContext *tc)
986{
987    return openImpl<OS>(desc, callnum, process, tc, true);
988}
989
990/// Target unlinkat() handler.
991template <class OS>
992SyscallReturn
993unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
994             ThreadContext *tc)
995{
996    int index = 0;
997    int dirfd = process->getSyscallArg(tc, index);
998    if (dirfd != OS::TGT_AT_FDCWD)
999        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
1000
1001    return unlinkHelper(desc, callnum, process, tc, 1);
1002}
1003
1004/// Target facessat() handler
1005template <class OS>
1006SyscallReturn
1007faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
1008              ThreadContext *tc)
1009{
1010    int index = 0;
1011    int dirfd = process->getSyscallArg(tc, index);
1012    if (dirfd != OS::TGT_AT_FDCWD)
1013        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
1014    return accessFunc(desc, callnum, process, tc, 1);
1015}
1016
1017/// Target readlinkat() handler
1018template <class OS>
1019SyscallReturn
1020readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
1021               ThreadContext *tc)
1022{
1023    int index = 0;
1024    int dirfd = process->getSyscallArg(tc, index);
1025    if (dirfd != OS::TGT_AT_FDCWD)
1026        warn("openat: first argument not AT_FDCWD; unlikely to work");
1027    return readlinkFunc(desc, callnum, process, tc, 1);
1028}
1029
1030/// Target renameat() handler.
1031template <class OS>
1032SyscallReturn
1033renameatFunc(SyscallDesc *desc, int callnum, Process *process,
1034             ThreadContext *tc)
1035{
1036    int index = 0;
1037
1038    int olddirfd = process->getSyscallArg(tc, index);
1039    if (olddirfd != OS::TGT_AT_FDCWD)
1040        warn("renameat: first argument not AT_FDCWD; unlikely to work");
1041
1042    std::string old_name;
1043
1044    if (!tc->getMemProxy().tryReadString(old_name,
1045                                         process->getSyscallArg(tc, index)))
1046        return -EFAULT;
1047
1048    int newdirfd = process->getSyscallArg(tc, index);
1049    if (newdirfd != OS::TGT_AT_FDCWD)
1050        warn("renameat: third argument not AT_FDCWD; unlikely to work");
1051
1052    std::string new_name;
1053
1054    if (!tc->getMemProxy().tryReadString(new_name,
1055                                         process->getSyscallArg(tc, index)))
1056        return -EFAULT;
1057
1058    // Adjust path for cwd and redirection
1059    old_name = process->checkPathRedirect(old_name);
1060    new_name = process->checkPathRedirect(new_name);
1061
1062    int result = rename(old_name.c_str(), new_name.c_str());
1063    return (result == -1) ? -errno : result;
1064}
1065
1066/// Target sysinfo() handler.
1067template <class OS>
1068SyscallReturn
1069sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
1070            ThreadContext *tc)
1071{
1072
1073    int index = 0;
1074    TypedBufferArg<typename OS::tgt_sysinfo>
1075        sysinfo(process->getSyscallArg(tc, index));
1076
1077    sysinfo->uptime = seconds_since_epoch;
1078    sysinfo->totalram = process->system->memSize();
1079    sysinfo->mem_unit = 1;
1080
1081    sysinfo.copyOut(tc->getMemProxy());
1082
1083    return 0;
1084}
1085
1086/// Target chmod() handler.
1087template <class OS>
1088SyscallReturn
1089chmodFunc(SyscallDesc *desc, int callnum, Process *process,
1090          ThreadContext *tc)
1091{
1092    std::string path;
1093
1094    int index = 0;
1095    if (!tc->getMemProxy().tryReadString(path,
1096                process->getSyscallArg(tc, index))) {
1097        return -EFAULT;
1098    }
1099
1100    uint32_t mode = process->getSyscallArg(tc, index);
1101    mode_t hostMode = 0;
1102
1103    // XXX translate mode flags via OS::something???
1104    hostMode = mode;
1105
1106    // Adjust path for cwd and redirection
1107    path = process->checkPathRedirect(path);
1108
1109    // do the chmod
1110    int result = chmod(path.c_str(), hostMode);
1111    if (result < 0)
1112        return -errno;
1113
1114    return 0;
1115}
1116
1117template <class OS>
1118SyscallReturn
1119pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1120{
1121    int index = 0;
1122    Addr fdsPtr = p->getSyscallArg(tc, index);
1123    int nfds = p->getSyscallArg(tc, index);
1124    int tmout = p->getSyscallArg(tc, index);
1125
1126    BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
1127    fdsBuf.copyIn(tc->getMemProxy());
1128
1129    /**
1130     * Record the target file descriptors in a local variable. We need to
1131     * replace them with host file descriptors but we need a temporary copy
1132     * for later. Afterwards, replace each target file descriptor in the
1133     * poll_fd array with its host_fd.
1134     */
1135    int temp_tgt_fds[nfds];
1136    for (index = 0; index < nfds; index++) {
1137        temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1138        auto tgt_fd = temp_tgt_fds[index];
1139        auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1140        if (!hbfdp)
1141            return -EBADF;
1142        auto host_fd = hbfdp->getSimFD();
1143        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1144    }
1145
1146    /**
1147     * We cannot allow an infinite poll to occur or it will inevitably cause
1148     * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1149     * a non-negative value, however it also makes no sense to poll on the
1150     * underlying host for any other time than tmout a zero timeout.
1151     */
1152    int status;
1153    if (tmout < 0) {
1154        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1155        if (status == 0) {
1156            /**
1157             * If blocking indefinitely, check the signal list to see if a
1158             * signal would break the poll out of the retry cycle and try
1159             * to return the signal interrupt instead.
1160             */
1161            System *sysh = tc->getSystemPtr();
1162            std::list<BasicSignal>::iterator it;
1163            for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1164                if (it->receiver == p)
1165                    return -EINTR;
1166            return SyscallReturn::retry();
1167        }
1168    } else
1169        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1170
1171    if (status == -1)
1172        return -errno;
1173
1174    /**
1175     * Replace each host_fd in the returned poll_fd array with its original
1176     * target file descriptor.
1177     */
1178    for (index = 0; index < nfds; index++) {
1179        auto tgt_fd = temp_tgt_fds[index];
1180        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1181    }
1182
1183    /**
1184     * Copy out the pollfd struct because the host may have updated fields
1185     * in the structure.
1186     */
1187    fdsBuf.copyOut(tc->getMemProxy());
1188
1189    return status;
1190}
1191
1192/// Target fchmod() handler.
1193template <class OS>
1194SyscallReturn
1195fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1196{
1197    int index = 0;
1198    int tgt_fd = p->getSyscallArg(tc, index);
1199    uint32_t mode = p->getSyscallArg(tc, index);
1200
1201    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1202    if (!ffdp)
1203        return -EBADF;
1204    int sim_fd = ffdp->getSimFD();
1205
1206    mode_t hostMode = mode;
1207
1208    int result = fchmod(sim_fd, hostMode);
1209
1210    return (result < 0) ? -errno : 0;
1211}
1212
1213/// Target mremap() handler.
1214template <class OS>
1215SyscallReturn
1216mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1217{
1218    int index = 0;
1219    Addr start = process->getSyscallArg(tc, index);
1220    uint64_t old_length = process->getSyscallArg(tc, index);
1221    uint64_t new_length = process->getSyscallArg(tc, index);
1222    uint64_t flags = process->getSyscallArg(tc, index);
1223    uint64_t provided_address = 0;
1224    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1225
1226    if (use_provided_address)
1227        provided_address = process->getSyscallArg(tc, index);
1228
1229    if ((start % TheISA::PageBytes != 0) ||
1230        (provided_address % TheISA::PageBytes != 0)) {
1231        warn("mremap failing: arguments not page aligned");
1232        return -EINVAL;
1233    }
1234
1235    new_length = roundUp(new_length, TheISA::PageBytes);
1236
1237    if (new_length > old_length) {
1238        std::shared_ptr<MemState> mem_state = process->memState;
1239        Addr mmap_end = mem_state->getMmapEnd();
1240
1241        if ((start + old_length) == mmap_end &&
1242            (!use_provided_address || provided_address == start)) {
1243            // This case cannot occur when growing downward, as
1244            // start is greater than or equal to mmap_end.
1245            uint64_t diff = new_length - old_length;
1246            process->allocateMem(mmap_end, diff);
1247            mem_state->setMmapEnd(mmap_end + diff);
1248            return start;
1249        } else {
1250            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1251                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1252                return -ENOMEM;
1253            } else {
1254                uint64_t new_start = provided_address;
1255                if (!use_provided_address) {
1256                    new_start = process->mmapGrowsDown() ?
1257                                mmap_end - new_length : mmap_end;
1258                    mmap_end = process->mmapGrowsDown() ?
1259                               new_start : mmap_end + new_length;
1260                    mem_state->setMmapEnd(mmap_end);
1261                }
1262
1263                process->pTable->remap(start, old_length, new_start);
1264                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1265                     new_start, new_start + new_length,
1266                     new_length - old_length);
1267                // add on the remaining unallocated pages
1268                process->allocateMem(new_start + old_length,
1269                                     new_length - old_length,
1270                                     use_provided_address /* clobber */);
1271                if (use_provided_address &&
1272                    ((new_start + new_length > mem_state->getMmapEnd() &&
1273                      !process->mmapGrowsDown()) ||
1274                    (new_start < mem_state->getMmapEnd() &&
1275                      process->mmapGrowsDown()))) {
1276                    // something fishy going on here, at least notify the user
1277                    // @todo: increase mmap_end?
1278                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
1279                }
1280                warn("returning %08p as start\n", new_start);
1281                return new_start;
1282            }
1283        }
1284    } else {
1285        if (use_provided_address && provided_address != start)
1286            process->pTable->remap(start, new_length, provided_address);
1287        process->pTable->unmap(start + new_length, old_length - new_length);
1288        return use_provided_address ? provided_address : start;
1289    }
1290}
1291
1292/// Target stat() handler.
1293template <class OS>
1294SyscallReturn
1295statFunc(SyscallDesc *desc, int callnum, Process *process,
1296         ThreadContext *tc)
1297{
1298    std::string path;
1299
1300    int index = 0;
1301    if (!tc->getMemProxy().tryReadString(path,
1302                process->getSyscallArg(tc, index))) {
1303        return -EFAULT;
1304    }
1305    Addr bufPtr = process->getSyscallArg(tc, index);
1306
1307    // Adjust path for cwd and redirection
1308    path = process->checkPathRedirect(path);
1309
1310    struct stat hostBuf;
1311    int result = stat(path.c_str(), &hostBuf);
1312
1313    if (result < 0)
1314        return -errno;
1315
1316    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1317
1318    return 0;
1319}
1320
1321
1322/// Target stat64() handler.
1323template <class OS>
1324SyscallReturn
1325stat64Func(SyscallDesc *desc, int callnum, Process *process,
1326           ThreadContext *tc)
1327{
1328    std::string path;
1329
1330    int index = 0;
1331    if (!tc->getMemProxy().tryReadString(path,
1332                process->getSyscallArg(tc, index)))
1333        return -EFAULT;
1334    Addr bufPtr = process->getSyscallArg(tc, index);
1335
1336    // Adjust path for cwd and redirection
1337    path = process->checkPathRedirect(path);
1338
1339#if NO_STAT64
1340    struct stat  hostBuf;
1341    int result = stat(path.c_str(), &hostBuf);
1342#else
1343    struct stat64 hostBuf;
1344    int result = stat64(path.c_str(), &hostBuf);
1345#endif
1346
1347    if (result < 0)
1348        return -errno;
1349
1350    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1351
1352    return 0;
1353}
1354
1355
1356/// Target fstatat64() handler.
1357template <class OS>
1358SyscallReturn
1359fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1360              ThreadContext *tc)
1361{
1362    int index = 0;
1363    int dirfd = process->getSyscallArg(tc, index);
1364    if (dirfd != OS::TGT_AT_FDCWD)
1365        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1366
1367    std::string path;
1368    if (!tc->getMemProxy().tryReadString(path,
1369                process->getSyscallArg(tc, index)))
1370        return -EFAULT;
1371    Addr bufPtr = process->getSyscallArg(tc, index);
1372
1373    // Adjust path for cwd and redirection
1374    path = process->checkPathRedirect(path);
1375
1376#if NO_STAT64
1377    struct stat  hostBuf;
1378    int result = stat(path.c_str(), &hostBuf);
1379#else
1380    struct stat64 hostBuf;
1381    int result = stat64(path.c_str(), &hostBuf);
1382#endif
1383
1384    if (result < 0)
1385        return -errno;
1386
1387    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1388
1389    return 0;
1390}
1391
1392
1393/// Target fstat64() handler.
1394template <class OS>
1395SyscallReturn
1396fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1397{
1398    int index = 0;
1399    int tgt_fd = p->getSyscallArg(tc, index);
1400    Addr bufPtr = p->getSyscallArg(tc, index);
1401
1402    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1403    if (!ffdp)
1404        return -EBADF;
1405    int sim_fd = ffdp->getSimFD();
1406
1407#if NO_STAT64
1408    struct stat  hostBuf;
1409    int result = fstat(sim_fd, &hostBuf);
1410#else
1411    struct stat64  hostBuf;
1412    int result = fstat64(sim_fd, &hostBuf);
1413#endif
1414
1415    if (result < 0)
1416        return -errno;
1417
1418    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1419
1420    return 0;
1421}
1422
1423
1424/// Target lstat() handler.
1425template <class OS>
1426SyscallReturn
1427lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1428          ThreadContext *tc)
1429{
1430    std::string path;
1431
1432    int index = 0;
1433    if (!tc->getMemProxy().tryReadString(path,
1434                process->getSyscallArg(tc, index))) {
1435        return -EFAULT;
1436    }
1437    Addr bufPtr = process->getSyscallArg(tc, index);
1438
1439    // Adjust path for cwd and redirection
1440    path = process->checkPathRedirect(path);
1441
1442    struct stat hostBuf;
1443    int result = lstat(path.c_str(), &hostBuf);
1444
1445    if (result < 0)
1446        return -errno;
1447
1448    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1449
1450    return 0;
1451}
1452
1453/// Target lstat64() handler.
1454template <class OS>
1455SyscallReturn
1456lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1457            ThreadContext *tc)
1458{
1459    std::string path;
1460
1461    int index = 0;
1462    if (!tc->getMemProxy().tryReadString(path,
1463                process->getSyscallArg(tc, index))) {
1464        return -EFAULT;
1465    }
1466    Addr bufPtr = process->getSyscallArg(tc, index);
1467
1468    // Adjust path for cwd and redirection
1469    path = process->checkPathRedirect(path);
1470
1471#if NO_STAT64
1472    struct stat hostBuf;
1473    int result = lstat(path.c_str(), &hostBuf);
1474#else
1475    struct stat64 hostBuf;
1476    int result = lstat64(path.c_str(), &hostBuf);
1477#endif
1478
1479    if (result < 0)
1480        return -errno;
1481
1482    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1483
1484    return 0;
1485}
1486
1487/// Target fstat() handler.
1488template <class OS>
1489SyscallReturn
1490fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1491{
1492    int index = 0;
1493    int tgt_fd = p->getSyscallArg(tc, index);
1494    Addr bufPtr = p->getSyscallArg(tc, index);
1495
1496    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1497
1498    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1499    if (!ffdp)
1500        return -EBADF;
1501    int sim_fd = ffdp->getSimFD();
1502
1503    struct stat hostBuf;
1504    int result = fstat(sim_fd, &hostBuf);
1505
1506    if (result < 0)
1507        return -errno;
1508
1509    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1510
1511    return 0;
1512}
1513
1514/// Target statfs() handler.
1515template <class OS>
1516SyscallReturn
1517statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1518           ThreadContext *tc)
1519{
1520#if defined(__linux__)
1521    std::string path;
1522
1523    int index = 0;
1524    if (!tc->getMemProxy().tryReadString(path,
1525                process->getSyscallArg(tc, index))) {
1526        return -EFAULT;
1527    }
1528    Addr bufPtr = process->getSyscallArg(tc, index);
1529
1530    // Adjust path for cwd and redirection
1531    path = process->checkPathRedirect(path);
1532
1533    struct statfs hostBuf;
1534    int result = statfs(path.c_str(), &hostBuf);
1535
1536    if (result < 0)
1537        return -errno;
1538
1539    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1540    return 0;
1541#else
1542    warnUnsupportedOS("statfs");
1543    return -1;
1544#endif
1545}
1546
1547template <class OS>
1548SyscallReturn
1549cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1550{
1551    int index = 0;
1552
1553    RegVal flags = p->getSyscallArg(tc, index);
1554    RegVal newStack = p->getSyscallArg(tc, index);
1555    Addr ptidPtr = p->getSyscallArg(tc, index);
1556
1557#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1558    /**
1559     * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1560     * The flag defines the list of clone() arguments in the following
1561     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1562     */
1563    Addr tlsPtr = p->getSyscallArg(tc, index);
1564    Addr ctidPtr = p->getSyscallArg(tc, index);
1565#else
1566    Addr ctidPtr = p->getSyscallArg(tc, index);
1567    Addr tlsPtr = p->getSyscallArg(tc, index);
1568#endif
1569
1570    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1571        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1572        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1573        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1574        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1575        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1576        return -EINVAL;
1577
1578    ThreadContext *ctc;
1579    if (!(ctc = p->findFreeContext())) {
1580        DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1581                        "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1582        return -EAGAIN;
1583    }
1584
1585    /**
1586     * Note that ProcessParams is generated by swig and there are no other
1587     * examples of how to create anything but this default constructor. The
1588     * fields are manually initialized instead of passing parameters to the
1589     * constructor.
1590     */
1591    ProcessParams *pp = new ProcessParams();
1592    pp->executable.assign(*(new std::string(p->progName())));
1593    pp->cmd.push_back(*(new std::string(p->progName())));
1594    pp->system = p->system;
1595    pp->cwd.assign(p->tgtCwd);
1596    pp->input.assign("stdin");
1597    pp->output.assign("stdout");
1598    pp->errout.assign("stderr");
1599    pp->uid = p->uid();
1600    pp->euid = p->euid();
1601    pp->gid = p->gid();
1602    pp->egid = p->egid();
1603
1604    /* Find the first free PID that's less than the maximum */
1605    std::set<int> const& pids = p->system->PIDs;
1606    int temp_pid = *pids.begin();
1607    do {
1608        temp_pid++;
1609    } while (pids.find(temp_pid) != pids.end());
1610    if (temp_pid >= System::maxPID)
1611        fatal("temp_pid is too large: %d", temp_pid);
1612
1613    pp->pid = temp_pid;
1614    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1615    pp->useArchPT = p->useArchPT;
1616    pp->kvmInSE = p->kvmInSE;
1617    Process *cp = pp->create();
1618    delete pp;
1619
1620    Process *owner = ctc->getProcessPtr();
1621    ctc->setProcessPtr(cp);
1622    cp->assignThreadContext(ctc->contextId());
1623    owner->revokeThreadContext(ctc->contextId());
1624
1625    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1626        BufferArg ptidBuf(ptidPtr, sizeof(long));
1627        long *ptid = (long *)ptidBuf.bufferPtr();
1628        *ptid = cp->pid();
1629        ptidBuf.copyOut(tc->getMemProxy());
1630    }
1631
1632    if (flags & OS::TGT_CLONE_THREAD) {
1633        cp->pTable->shared = true;
1634        cp->useForClone = true;
1635    }
1636    cp->initState();
1637    p->clone(tc, ctc, cp, flags);
1638
1639    if (flags & OS::TGT_CLONE_THREAD) {
1640        delete cp->sigchld;
1641        cp->sigchld = p->sigchld;
1642    } else if (flags & OS::TGT_SIGCHLD) {
1643        *cp->sigchld = true;
1644    }
1645
1646    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1647        BufferArg ctidBuf(ctidPtr, sizeof(long));
1648        long *ctid = (long *)ctidBuf.bufferPtr();
1649        *ctid = cp->pid();
1650        ctidBuf.copyOut(ctc->getMemProxy());
1651    }
1652
1653    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1654        cp->childClearTID = (uint64_t)ctidPtr;
1655
1656    ctc->clearArchRegs();
1657
1658    OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1659
1660    cp->setSyscallReturn(ctc, 0);
1661
1662#if THE_ISA == ALPHA_ISA
1663    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1664#elif THE_ISA == SPARC_ISA
1665    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1666    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1667#endif
1668
1669    if (p->kvmInSE) {
1670#if THE_ISA == X86_ISA
1671        ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX));
1672#else
1673        panic("KVM CPU model is not supported for this ISA");
1674#endif
1675    } else {
1676        TheISA::PCState cpc = tc->pcState();
1677        cpc.advance();
1678        ctc->pcState(cpc);
1679    }
1680    ctc->activate();
1681
1682    return cp->pid();
1683}
1684
1685/// Target fstatfs() handler.
1686template <class OS>
1687SyscallReturn
1688fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1689{
1690    int index = 0;
1691    int tgt_fd = p->getSyscallArg(tc, index);
1692    Addr bufPtr = p->getSyscallArg(tc, index);
1693
1694    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1695    if (!ffdp)
1696        return -EBADF;
1697    int sim_fd = ffdp->getSimFD();
1698
1699    struct statfs hostBuf;
1700    int result = fstatfs(sim_fd, &hostBuf);
1701
1702    if (result < 0)
1703        return -errno;
1704
1705    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1706
1707    return 0;
1708}
1709
1710/// Target readv() handler.
1711template <class OS>
1712SyscallReturn
1713readvFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1714{
1715    int index = 0;
1716    int tgt_fd = p->getSyscallArg(tc, index);
1717
1718    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1719    if (!ffdp)
1720        return -EBADF;
1721    int sim_fd = ffdp->getSimFD();
1722
1723    SETranslatingPortProxy &prox = tc->getMemProxy();
1724    uint64_t tiov_base = p->getSyscallArg(tc, index);
1725    size_t count = p->getSyscallArg(tc, index);
1726    typename OS::tgt_iovec tiov[count];
1727    struct iovec hiov[count];
1728    for (size_t i = 0; i < count; ++i) {
1729        prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1730                      (uint8_t*)&tiov[i], sizeof(typename OS::tgt_iovec));
1731        hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1732        hiov[i].iov_base = new char [hiov[i].iov_len];
1733    }
1734
1735    int result = readv(sim_fd, hiov, count);
1736    int local_errno = errno;
1737
1738    for (size_t i = 0; i < count; ++i) {
1739        if (result != -1) {
1740            prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1741                           (uint8_t*)hiov[i].iov_base, hiov[i].iov_len);
1742        }
1743        delete [] (char *)hiov[i].iov_base;
1744    }
1745
1746    return (result == -1) ? -local_errno : result;
1747}
1748
1749/// Target writev() handler.
1750template <class OS>
1751SyscallReturn
1752writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1753{
1754    int index = 0;
1755    int tgt_fd = p->getSyscallArg(tc, index);
1756
1757    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1758    if (!hbfdp)
1759        return -EBADF;
1760    int sim_fd = hbfdp->getSimFD();
1761
1762    SETranslatingPortProxy &prox = tc->getMemProxy();
1763    uint64_t tiov_base = p->getSyscallArg(tc, index);
1764    size_t count = p->getSyscallArg(tc, index);
1765    struct iovec hiov[count];
1766    for (size_t i = 0; i < count; ++i) {
1767        typename OS::tgt_iovec tiov;
1768
1769        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1770                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1771        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1772        hiov[i].iov_base = new char [hiov[i].iov_len];
1773        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1774                      hiov[i].iov_len);
1775    }
1776
1777    int result = writev(sim_fd, hiov, count);
1778
1779    for (size_t i = 0; i < count; ++i)
1780        delete [] (char *)hiov[i].iov_base;
1781
1782    return (result == -1) ? -errno : result;
1783}
1784
1785/// Real mmap handler.
1786template <class OS>
1787SyscallReturn
1788mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1789         bool is_mmap2)
1790{
1791    int index = 0;
1792    Addr start = p->getSyscallArg(tc, index);
1793    uint64_t length = p->getSyscallArg(tc, index);
1794    int prot = p->getSyscallArg(tc, index);
1795    int tgt_flags = p->getSyscallArg(tc, index);
1796    int tgt_fd = p->getSyscallArg(tc, index);
1797    int offset = p->getSyscallArg(tc, index);
1798
1799    if (is_mmap2)
1800        offset *= TheISA::PageBytes;
1801
1802    if (start & (TheISA::PageBytes - 1) ||
1803        offset & (TheISA::PageBytes - 1) ||
1804        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1805         tgt_flags & OS::TGT_MAP_SHARED) ||
1806        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1807         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1808        !length) {
1809        return -EINVAL;
1810    }
1811
1812    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1813        // With shared mmaps, there are two cases to consider:
1814        // 1) anonymous: writes should modify the mapping and this should be
1815        // visible to observers who share the mapping. Currently, it's
1816        // difficult to update the shared mapping because there's no
1817        // structure which maintains information about the which virtual
1818        // memory areas are shared. If that structure existed, it would be
1819        // possible to make the translations point to the same frames.
1820        // 2) file-backed: writes should modify the mapping and the file
1821        // which is backed by the mapping. The shared mapping problem is the
1822        // same as what was mentioned about the anonymous mappings. For
1823        // file-backed mappings, the writes to the file are difficult
1824        // because it requires syncing what the mapping holds with the file
1825        // that resides on the host system. So, any write on a real system
1826        // would cause the change to be propagated to the file mapping at
1827        // some point in the future (the inode is tracked along with the
1828        // mapping). This isn't guaranteed to always happen, but it usually
1829        // works well enough. The guarantee is provided by the msync system
1830        // call. We could force the change through with shared mappings with
1831        // a call to msync, but that again would require more information
1832        // than we currently maintain.
1833        warn("mmap: writing to shared mmap region is currently "
1834             "unsupported. The write succeeds on the target, but it "
1835             "will not be propagated to the host or shared mappings");
1836    }
1837
1838    length = roundUp(length, TheISA::PageBytes);
1839
1840    int sim_fd = -1;
1841    uint8_t *pmap = nullptr;
1842    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1843        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1844
1845        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1846        if (dfdp) {
1847            EmulatedDriver *emul_driver = dfdp->getDriver();
1848            return emul_driver->mmap(p, tc, start, length, prot,
1849                                     tgt_flags, tgt_fd, offset);
1850        }
1851
1852        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1853        if (!ffdp)
1854            return -EBADF;
1855        sim_fd = ffdp->getSimFD();
1856
1857        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1858                                    sim_fd, offset);
1859
1860        if (pmap == (decltype(pmap))-1) {
1861            warn("mmap: failed to map file into host address space");
1862            return -errno;
1863        }
1864    }
1865
1866    // Extend global mmap region if necessary. Note that we ignore the
1867    // start address unless MAP_FIXED is specified.
1868    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1869        std::shared_ptr<MemState> mem_state = p->memState;
1870        Addr mmap_end = mem_state->getMmapEnd();
1871
1872        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1873        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1874
1875        mem_state->setMmapEnd(mmap_end);
1876    }
1877
1878    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1879                    start, start + length - 1);
1880
1881    // We only allow mappings to overwrite existing mappings if
1882    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1883    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1884    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1885    if (clobber) {
1886        for (auto tc : p->system->threadContexts) {
1887            // If we might be overwriting old mappings, we need to
1888            // invalidate potentially stale mappings out of the TLBs.
1889            tc->getDTBPtr()->flushAll();
1890            tc->getITBPtr()->flushAll();
1891        }
1892    }
1893
1894    // Allocate physical memory and map it in. If the page table is already
1895    // mapped and clobber is not set, the simulator will issue throw a
1896    // fatal and bail out of the simulation.
1897    p->allocateMem(start, length, clobber);
1898
1899    // Transfer content into target address space.
1900    SETranslatingPortProxy &tp = tc->getMemProxy();
1901    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1902        // In general, we should zero the mapped area for anonymous mappings,
1903        // with something like:
1904        //     tp.memsetBlob(start, 0, length);
1905        // However, given that we don't support sparse mappings, and
1906        // some applications can map a couple of gigabytes of space
1907        // (intending sparse usage), that can get painfully expensive.
1908        // Fortunately, since we don't properly implement munmap either,
1909        // there's no danger of remapping used memory, so for now all
1910        // newly mapped memory should already be zeroed so we can skip it.
1911    } else {
1912        // It is possible to mmap an area larger than a file, however
1913        // accessing unmapped portions the system triggers a "Bus error"
1914        // on the host. We must know when to stop copying the file from
1915        // the host into the target address space.
1916        struct stat file_stat;
1917        if (fstat(sim_fd, &file_stat) > 0)
1918            fatal("mmap: cannot stat file");
1919
1920        // Copy the portion of the file that is resident. This requires
1921        // checking both the mmap size and the filesize that we are
1922        // trying to mmap into this space; the mmap size also depends
1923        // on the specified offset into the file.
1924        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1925                                 length);
1926        tp.writeBlob(start, pmap, size);
1927
1928        // Cleanup the mmap region before exiting this function.
1929        munmap(pmap, length);
1930
1931        // Maintain the symbol table for dynamic executables.
1932        // The loader will call mmap to map the images into its address
1933        // space and we intercept that here. We can verify that we are
1934        // executing inside the loader by checking the program counter value.
1935        // XXX: with multiprogrammed workloads or multi-node configurations,
1936        // this will not work since there is a single global symbol table.
1937        ObjectFile *interpreter = p->getInterpreter();
1938        if (interpreter) {
1939            Addr text_start = interpreter->textBase();
1940            Addr text_end = text_start + interpreter->textSize();
1941
1942            Addr pc = tc->pcState().pc();
1943
1944            if (pc >= text_start && pc < text_end) {
1945                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1946                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1947                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1948
1949                if (lib) {
1950                    lib->loadAllSymbols(debugSymbolTable,
1951                                        lib->textBase(), start);
1952                }
1953            }
1954        }
1955
1956        // Note that we do not zero out the remainder of the mapping. This
1957        // is done by a real system, but it probably will not affect
1958        // execution (hopefully).
1959    }
1960
1961    return start;
1962}
1963
1964template <class OS>
1965SyscallReturn
1966pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1967{
1968    int index = 0;
1969    int tgt_fd = p->getSyscallArg(tc, index);
1970    Addr bufPtr = p->getSyscallArg(tc, index);
1971    int nbytes = p->getSyscallArg(tc, index);
1972    int offset = p->getSyscallArg(tc, index);
1973
1974    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1975    if (!ffdp)
1976        return -EBADF;
1977    int sim_fd = ffdp->getSimFD();
1978
1979    BufferArg bufArg(bufPtr, nbytes);
1980    bufArg.copyIn(tc->getMemProxy());
1981
1982    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1983
1984    return (bytes_written == -1) ? -errno : bytes_written;
1985}
1986
1987/// Target mmap() handler.
1988template <class OS>
1989SyscallReturn
1990mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1991{
1992    return mmapImpl<OS>(desc, num, p, tc, false);
1993}
1994
1995/// Target mmap2() handler.
1996template <class OS>
1997SyscallReturn
1998mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1999{
2000    return mmapImpl<OS>(desc, num, p, tc, true);
2001}
2002
2003/// Target getrlimit() handler.
2004template <class OS>
2005SyscallReturn
2006getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
2007              ThreadContext *tc)
2008{
2009    int index = 0;
2010    unsigned resource = process->getSyscallArg(tc, index);
2011    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
2012
2013    switch (resource) {
2014      case OS::TGT_RLIMIT_STACK:
2015        // max stack size in bytes: make up a number (8MB for now)
2016        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2017        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2018        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2019        break;
2020
2021      case OS::TGT_RLIMIT_DATA:
2022        // max data segment size in bytes: make up a number
2023        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
2024        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2025        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2026        break;
2027
2028      default:
2029        warn("getrlimit: unimplemented resource %d", resource);
2030        return -EINVAL;
2031        break;
2032    }
2033
2034    rlp.copyOut(tc->getMemProxy());
2035    return 0;
2036}
2037
2038template <class OS>
2039SyscallReturn
2040prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
2041            ThreadContext *tc)
2042{
2043    int index = 0;
2044    if (process->getSyscallArg(tc, index) != 0)
2045    {
2046        warn("prlimit: ignoring rlimits for nonzero pid");
2047        return -EPERM;
2048    }
2049    int resource = process->getSyscallArg(tc, index);
2050    Addr n = process->getSyscallArg(tc, index);
2051    if (n != 0)
2052        warn("prlimit: ignoring new rlimit");
2053    Addr o = process->getSyscallArg(tc, index);
2054    if (o != 0)
2055    {
2056        TypedBufferArg<typename OS::rlimit> rlp(o);
2057        switch (resource) {
2058          case OS::TGT_RLIMIT_STACK:
2059            // max stack size in bytes: make up a number (8MB for now)
2060            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2061            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2062            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2063            break;
2064          case OS::TGT_RLIMIT_DATA:
2065            // max data segment size in bytes: make up a number
2066            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
2067            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2068            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2069            break;
2070          default:
2071            warn("prlimit: unimplemented resource %d", resource);
2072            return -EINVAL;
2073            break;
2074        }
2075        rlp.copyOut(tc->getMemProxy());
2076    }
2077    return 0;
2078}
2079
2080/// Target clock_gettime() function.
2081template <class OS>
2082SyscallReturn
2083clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2084{
2085    int index = 1;
2086    //int clk_id = p->getSyscallArg(tc, index);
2087    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2088
2089    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
2090    tp->tv_sec += seconds_since_epoch;
2091    tp->tv_sec = TheISA::htog(tp->tv_sec);
2092    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
2093
2094    tp.copyOut(tc->getMemProxy());
2095
2096    return 0;
2097}
2098
2099/// Target clock_getres() function.
2100template <class OS>
2101SyscallReturn
2102clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2103{
2104    int index = 1;
2105    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2106
2107    // Set resolution at ns, which is what clock_gettime() returns
2108    tp->tv_sec = 0;
2109    tp->tv_nsec = 1;
2110
2111    tp.copyOut(tc->getMemProxy());
2112
2113    return 0;
2114}
2115
2116/// Target gettimeofday() handler.
2117template <class OS>
2118SyscallReturn
2119gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
2120                 ThreadContext *tc)
2121{
2122    int index = 0;
2123    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
2124
2125    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
2126    tp->tv_sec += seconds_since_epoch;
2127    tp->tv_sec = TheISA::htog(tp->tv_sec);
2128    tp->tv_usec = TheISA::htog(tp->tv_usec);
2129
2130    tp.copyOut(tc->getMemProxy());
2131
2132    return 0;
2133}
2134
2135
2136/// Target utimes() handler.
2137template <class OS>
2138SyscallReturn
2139utimesFunc(SyscallDesc *desc, int callnum, Process *process,
2140           ThreadContext *tc)
2141{
2142    std::string path;
2143
2144    int index = 0;
2145    if (!tc->getMemProxy().tryReadString(path,
2146                process->getSyscallArg(tc, index))) {
2147        return -EFAULT;
2148    }
2149
2150    TypedBufferArg<typename OS::timeval [2]>
2151        tp(process->getSyscallArg(tc, index));
2152    tp.copyIn(tc->getMemProxy());
2153
2154    struct timeval hostTimeval[2];
2155    for (int i = 0; i < 2; ++i) {
2156        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2157        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2158    }
2159
2160    // Adjust path for cwd and redirection
2161    path = process->checkPathRedirect(path);
2162
2163    int result = utimes(path.c_str(), hostTimeval);
2164
2165    if (result < 0)
2166        return -errno;
2167
2168    return 0;
2169}
2170
2171template <class OS>
2172SyscallReturn
2173execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2174{
2175    desc->setFlags(0);
2176
2177    int index = 0;
2178    std::string path;
2179    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
2180    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2181        return -EFAULT;
2182
2183    if (access(path.c_str(), F_OK) == -1)
2184        return -EACCES;
2185
2186    auto read_in = [](std::vector<std::string> & vect,
2187                      SETranslatingPortProxy & mem_proxy,
2188                      Addr mem_loc)
2189    {
2190        for (int inc = 0; ; inc++) {
2191            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2192            b.copyIn(mem_proxy);
2193
2194            if (!*(Addr*)b.bufferPtr())
2195                break;
2196
2197            vect.push_back(std::string());
2198            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2199        }
2200    };
2201
2202    /**
2203     * Note that ProcessParams is generated by swig and there are no other
2204     * examples of how to create anything but this default constructor. The
2205     * fields are manually initialized instead of passing parameters to the
2206     * constructor.
2207     */
2208    ProcessParams *pp = new ProcessParams();
2209    pp->executable = path;
2210    Addr argv_mem_loc = p->getSyscallArg(tc, index);
2211    read_in(pp->cmd, mem_proxy, argv_mem_loc);
2212    Addr envp_mem_loc = p->getSyscallArg(tc, index);
2213    read_in(pp->env, mem_proxy, envp_mem_loc);
2214    pp->uid = p->uid();
2215    pp->egid = p->egid();
2216    pp->euid = p->euid();
2217    pp->gid = p->gid();
2218    pp->ppid = p->ppid();
2219    pp->pid = p->pid();
2220    pp->input.assign("cin");
2221    pp->output.assign("cout");
2222    pp->errout.assign("cerr");
2223    pp->cwd.assign(p->tgtCwd);
2224    pp->system = p->system;
2225    /**
2226     * Prevent process object creation with identical PIDs (which will trip
2227     * a fatal check in Process constructor). The execve call is supposed to
2228     * take over the currently executing process' identity but replace
2229     * whatever it is doing with a new process image. Instead of hijacking
2230     * the process object in the simulator, we create a new process object
2231     * and bind to the previous process' thread below (hijacking the thread).
2232     */
2233    p->system->PIDs.erase(p->pid());
2234    Process *new_p = pp->create();
2235    delete pp;
2236
2237    /**
2238     * Work through the file descriptor array and close any files marked
2239     * close-on-exec.
2240     */
2241    new_p->fds = p->fds;
2242    for (int i = 0; i < new_p->fds->getSize(); i++) {
2243        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2244        if (fdep && fdep->getCOE())
2245            new_p->fds->closeFDEntry(i);
2246    }
2247
2248    *new_p->sigchld = true;
2249
2250    delete p;
2251    tc->clearArchRegs();
2252    tc->setProcessPtr(new_p);
2253    new_p->assignThreadContext(tc->contextId());
2254    new_p->initState();
2255    tc->activate();
2256    TheISA::PCState pcState = tc->pcState();
2257    tc->setNPC(pcState.instAddr());
2258
2259    desc->setFlags(SyscallDesc::SuppressReturnValue);
2260    return 0;
2261}
2262
2263/// Target getrusage() function.
2264template <class OS>
2265SyscallReturn
2266getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2267              ThreadContext *tc)
2268{
2269    int index = 0;
2270    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2271    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2272
2273    rup->ru_utime.tv_sec = 0;
2274    rup->ru_utime.tv_usec = 0;
2275    rup->ru_stime.tv_sec = 0;
2276    rup->ru_stime.tv_usec = 0;
2277    rup->ru_maxrss = 0;
2278    rup->ru_ixrss = 0;
2279    rup->ru_idrss = 0;
2280    rup->ru_isrss = 0;
2281    rup->ru_minflt = 0;
2282    rup->ru_majflt = 0;
2283    rup->ru_nswap = 0;
2284    rup->ru_inblock = 0;
2285    rup->ru_oublock = 0;
2286    rup->ru_msgsnd = 0;
2287    rup->ru_msgrcv = 0;
2288    rup->ru_nsignals = 0;
2289    rup->ru_nvcsw = 0;
2290    rup->ru_nivcsw = 0;
2291
2292    switch (who) {
2293      case OS::TGT_RUSAGE_SELF:
2294        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2295        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2296        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2297        break;
2298
2299      case OS::TGT_RUSAGE_CHILDREN:
2300        // do nothing.  We have no child processes, so they take no time.
2301        break;
2302
2303      default:
2304        // don't really handle THREAD or CHILDREN, but just warn and
2305        // plow ahead
2306        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
2307             who);
2308    }
2309
2310    rup.copyOut(tc->getMemProxy());
2311
2312    return 0;
2313}
2314
2315/// Target times() function.
2316template <class OS>
2317SyscallReturn
2318timesFunc(SyscallDesc *desc, int callnum, Process *process,
2319          ThreadContext *tc)
2320{
2321    int index = 0;
2322    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2323
2324    // Fill in the time structure (in clocks)
2325    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2326    bufp->tms_utime = clocks;
2327    bufp->tms_stime = 0;
2328    bufp->tms_cutime = 0;
2329    bufp->tms_cstime = 0;
2330
2331    // Convert to host endianness
2332    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2333
2334    // Write back
2335    bufp.copyOut(tc->getMemProxy());
2336
2337    // Return clock ticks since system boot
2338    return clocks;
2339}
2340
2341/// Target time() function.
2342template <class OS>
2343SyscallReturn
2344timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2345{
2346    typename OS::time_t sec, usec;
2347    getElapsedTimeMicro(sec, usec);
2348    sec += seconds_since_epoch;
2349
2350    int index = 0;
2351    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2352    if (taddr != 0) {
2353        typename OS::time_t t = sec;
2354        t = TheISA::htog(t);
2355        SETranslatingPortProxy &p = tc->getMemProxy();
2356        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2357    }
2358    return sec;
2359}
2360
2361template <class OS>
2362SyscallReturn
2363tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2364{
2365    int index = 0;
2366    int tgid = process->getSyscallArg(tc, index);
2367    int tid = process->getSyscallArg(tc, index);
2368    int sig = process->getSyscallArg(tc, index);
2369
2370    /**
2371     * This system call is intended to allow killing a specific thread
2372     * within an arbitrary thread group if sanctioned with permission checks.
2373     * It's usually true that threads share the termination signal as pointed
2374     * out by the pthread_kill man page and this seems to be the intended
2375     * usage. Due to this being an emulated environment, assume the following:
2376     * Threads are allowed to call tgkill because the EUID for all threads
2377     * should be the same. There is no signal handling mechanism for kernel
2378     * registration of signal handlers since signals are poorly supported in
2379     * emulation mode. Since signal handlers cannot be registered, all
2380     * threads within in a thread group must share the termination signal.
2381     * We never exhaust PIDs so there's no chance of finding the wrong one
2382     * due to PID rollover.
2383     */
2384
2385    System *sys = tc->getSystemPtr();
2386    Process *tgt_proc = nullptr;
2387    for (int i = 0; i < sys->numContexts(); i++) {
2388        Process *temp = sys->threadContexts[i]->getProcessPtr();
2389        if (temp->pid() == tid) {
2390            tgt_proc = temp;
2391            break;
2392        }
2393    }
2394
2395    if (sig != 0 || sig != OS::TGT_SIGABRT)
2396        return -EINVAL;
2397
2398    if (tgt_proc == nullptr)
2399        return -ESRCH;
2400
2401    if (tgid != -1 && tgt_proc->tgid() != tgid)
2402        return -ESRCH;
2403
2404    if (sig == OS::TGT_SIGABRT)
2405        exitGroupFunc(desc, 252, process, tc);
2406
2407    return 0;
2408}
2409
2410template <class OS>
2411SyscallReturn
2412socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2413{
2414    int index = 0;
2415    int domain = p->getSyscallArg(tc, index);
2416    int type = p->getSyscallArg(tc, index);
2417    int prot = p->getSyscallArg(tc, index);
2418
2419    int sim_fd = socket(domain, type, prot);
2420    if (sim_fd == -1)
2421        return -errno;
2422
2423    auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2424    int tgt_fd = p->fds->allocFD(sfdp);
2425
2426    return tgt_fd;
2427}
2428
2429template <class OS>
2430SyscallReturn
2431socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2432{
2433    int index = 0;
2434    int domain = p->getSyscallArg(tc, index);
2435    int type = p->getSyscallArg(tc, index);
2436    int prot = p->getSyscallArg(tc, index);
2437    Addr svPtr = p->getSyscallArg(tc, index);
2438
2439    BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2440    int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2441    if (status == -1)
2442        return -errno;
2443
2444    int *fds = (int *)svBuf.bufferPtr();
2445
2446    auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2447    fds[0] = p->fds->allocFD(sfdp1);
2448    auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2449    fds[1] = p->fds->allocFD(sfdp2);
2450    svBuf.copyOut(tc->getMemProxy());
2451
2452    return status;
2453}
2454
2455template <class OS>
2456SyscallReturn
2457selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2458{
2459    int retval;
2460
2461    int index = 0;
2462    int nfds_t = p->getSyscallArg(tc, index);
2463    Addr fds_read_ptr = p->getSyscallArg(tc, index);
2464    Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2465    Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2466    Addr time_val_ptr = p->getSyscallArg(tc, index);
2467
2468    TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2469    TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2470    TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2471    TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2472
2473    /**
2474     * Host fields. Notice that these use the definitions from the system
2475     * headers instead of the gem5 headers and libraries. If the host and
2476     * target have different header file definitions, this will not work.
2477     */
2478    fd_set rd_h;
2479    FD_ZERO(&rd_h);
2480    fd_set wr_h;
2481    FD_ZERO(&wr_h);
2482    fd_set ex_h;
2483    FD_ZERO(&ex_h);
2484
2485    /**
2486     * Copy in the fd_set from the target.
2487     */
2488    if (fds_read_ptr)
2489        rd_t.copyIn(tc->getMemProxy());
2490    if (fds_writ_ptr)
2491        wr_t.copyIn(tc->getMemProxy());
2492    if (fds_excp_ptr)
2493        ex_t.copyIn(tc->getMemProxy());
2494
2495    /**
2496     * We need to translate the target file descriptor set into a host file
2497     * descriptor set. This involves both our internal process fd array
2498     * and the fd_set defined in Linux header files. The nfds field also
2499     * needs to be updated as it will be only target specific after
2500     * retrieving it from the target; the nfds value is expected to be the
2501     * highest file descriptor that needs to be checked, so we need to extend
2502     * it out for nfds_h when we do the update.
2503     */
2504    int nfds_h = 0;
2505    std::map<int, int> trans_map;
2506    auto try_add_host_set = [&](fd_set *tgt_set_entry,
2507                                fd_set *hst_set_entry,
2508                                int iter) -> bool
2509    {
2510        /**
2511         * By this point, we know that we are looking at a valid file
2512         * descriptor set on the target. We need to check if the target file
2513         * descriptor value passed in as iter is part of the set.
2514         */
2515        if (FD_ISSET(iter, tgt_set_entry)) {
2516            /**
2517             * We know that the target file descriptor belongs to the set,
2518             * but we do not yet know if the file descriptor is valid or
2519             * that we have a host mapping. Check that now.
2520             */
2521            auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2522            if (!hbfdp)
2523                return true;
2524            auto sim_fd = hbfdp->getSimFD();
2525
2526            /**
2527             * Add the sim_fd to tgt_fd translation into trans_map for use
2528             * later when we need to zero the target fd_set structures and
2529             * then update them with hits returned from the host select call.
2530             */
2531            trans_map[sim_fd] = iter;
2532
2533            /**
2534             * We know that the host file descriptor exists so now we check
2535             * if we need to update the max count for nfds_h before passing
2536             * the duplicated structure into the host.
2537             */
2538            nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2539
2540            /**
2541             * Add the host file descriptor to the set that we are going to
2542             * pass into the host.
2543             */
2544            FD_SET(sim_fd, hst_set_entry);
2545        }
2546        return false;
2547    };
2548
2549    for (int i = 0; i < nfds_t; i++) {
2550        if (fds_read_ptr) {
2551            bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2552            if (ebadf) return -EBADF;
2553        }
2554        if (fds_writ_ptr) {
2555            bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2556            if (ebadf) return -EBADF;
2557        }
2558        if (fds_excp_ptr) {
2559            bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2560            if (ebadf) return -EBADF;
2561        }
2562    }
2563
2564    if (time_val_ptr) {
2565        /**
2566         * It might be possible to decrement the timeval based on some
2567         * derivation of wall clock determined from elapsed simulator ticks
2568         * but that seems like overkill. Rather, we just set the timeval with
2569         * zero timeout. (There is no reason to block during the simulation
2570         * as it only decreases simulator performance.)
2571         */
2572        tp->tv_sec = 0;
2573        tp->tv_usec = 0;
2574
2575        retval = select(nfds_h,
2576                        fds_read_ptr ? &rd_h : nullptr,
2577                        fds_writ_ptr ? &wr_h : nullptr,
2578                        fds_excp_ptr ? &ex_h : nullptr,
2579                        (timeval*)&*tp);
2580    } else {
2581        /**
2582         * If the timeval pointer is null, setup a new timeval structure to
2583         * pass into the host select call. Unfortunately, we will need to
2584         * manually check the return value and throw a retry fault if the
2585         * return value is zero. Allowing the system call to block will
2586         * likely deadlock the event queue.
2587         */
2588        struct timeval tv = { 0, 0 };
2589
2590        retval = select(nfds_h,
2591                        fds_read_ptr ? &rd_h : nullptr,
2592                        fds_writ_ptr ? &wr_h : nullptr,
2593                        fds_excp_ptr ? &ex_h : nullptr,
2594                        &tv);
2595
2596        if (retval == 0) {
2597            /**
2598             * If blocking indefinitely, check the signal list to see if a
2599             * signal would break the poll out of the retry cycle and try to
2600             * return the signal interrupt instead.
2601             */
2602            for (auto sig : tc->getSystemPtr()->signalList)
2603                if (sig.receiver == p)
2604                    return -EINTR;
2605            return SyscallReturn::retry();
2606        }
2607    }
2608
2609    if (retval == -1)
2610        return -errno;
2611
2612    FD_ZERO((fd_set*)&*rd_t);
2613    FD_ZERO((fd_set*)&*wr_t);
2614    FD_ZERO((fd_set*)&*ex_t);
2615
2616    /**
2617     * We need to translate the host file descriptor set into a target file
2618     * descriptor set. This involves both our internal process fd array
2619     * and the fd_set defined in header files.
2620     */
2621    for (int i = 0; i < nfds_h; i++) {
2622        if (fds_read_ptr) {
2623            if (FD_ISSET(i, &rd_h))
2624                FD_SET(trans_map[i], (fd_set*)&*rd_t);
2625        }
2626
2627        if (fds_writ_ptr) {
2628            if (FD_ISSET(i, &wr_h))
2629                FD_SET(trans_map[i], (fd_set*)&*wr_t);
2630        }
2631
2632        if (fds_excp_ptr) {
2633            if (FD_ISSET(i, &ex_h))
2634                FD_SET(trans_map[i], (fd_set*)&*ex_t);
2635        }
2636    }
2637
2638    if (fds_read_ptr)
2639        rd_t.copyOut(tc->getMemProxy());
2640    if (fds_writ_ptr)
2641        wr_t.copyOut(tc->getMemProxy());
2642    if (fds_excp_ptr)
2643        ex_t.copyOut(tc->getMemProxy());
2644    if (time_val_ptr)
2645        tp.copyOut(tc->getMemProxy());
2646
2647    return retval;
2648}
2649
2650template <class OS>
2651SyscallReturn
2652readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2653{
2654    int index = 0;
2655    int tgt_fd = p->getSyscallArg(tc, index);
2656    Addr buf_ptr = p->getSyscallArg(tc, index);
2657    int nbytes = p->getSyscallArg(tc, index);
2658
2659    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2660    if (!hbfdp)
2661        return -EBADF;
2662    int sim_fd = hbfdp->getSimFD();
2663
2664    struct pollfd pfd;
2665    pfd.fd = sim_fd;
2666    pfd.events = POLLIN | POLLPRI;
2667    if ((poll(&pfd, 1, 0) == 0)
2668        && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2669        return SyscallReturn::retry();
2670
2671    BufferArg buf_arg(buf_ptr, nbytes);
2672    int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2673
2674    if (bytes_read > 0)
2675        buf_arg.copyOut(tc->getMemProxy());
2676
2677    return (bytes_read == -1) ? -errno : bytes_read;
2678}
2679
2680template <class OS>
2681SyscallReturn
2682writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2683{
2684    int index = 0;
2685    int tgt_fd = p->getSyscallArg(tc, index);
2686    Addr buf_ptr = p->getSyscallArg(tc, index);
2687    int nbytes = p->getSyscallArg(tc, index);
2688
2689    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2690    if (!hbfdp)
2691        return -EBADF;
2692    int sim_fd = hbfdp->getSimFD();
2693
2694    BufferArg buf_arg(buf_ptr, nbytes);
2695    buf_arg.copyIn(tc->getMemProxy());
2696
2697    struct pollfd pfd;
2698    pfd.fd = sim_fd;
2699    pfd.events = POLLOUT;
2700
2701    /**
2702     * We don't want to poll on /dev/random. The kernel will not enable the
2703     * file descriptor for writing unless the entropy in the system falls
2704     * below write_wakeup_threshold. This is not guaranteed to happen
2705     * depending on host settings.
2706     */
2707    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2708    if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2709        if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2710            return SyscallReturn::retry();
2711    }
2712
2713    int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2714
2715    if (bytes_written != -1)
2716        fsync(sim_fd);
2717
2718    return (bytes_written == -1) ? -errno : bytes_written;
2719}
2720
2721template <class OS>
2722SyscallReturn
2723wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2724{
2725    int index = 0;
2726    pid_t pid = p->getSyscallArg(tc, index);
2727    Addr statPtr = p->getSyscallArg(tc, index);
2728    int options = p->getSyscallArg(tc, index);
2729    Addr rusagePtr = p->getSyscallArg(tc, index);
2730
2731    if (rusagePtr)
2732        DPRINTF_SYSCALL(Verbose, "wait4: rusage pointer provided %lx, however "
2733                 "functionality not supported. Ignoring rusage pointer.\n",
2734                 rusagePtr);
2735
2736    /**
2737     * Currently, wait4 is only implemented so that it will wait for children
2738     * exit conditions which are denoted by a SIGCHLD signals posted into the
2739     * system signal list. We return no additional information via any of the
2740     * parameters supplied to wait4. If nothing is found in the system signal
2741     * list, we will wait indefinitely for SIGCHLD to post by retrying the
2742     * call.
2743     */
2744    System *sysh = tc->getSystemPtr();
2745    std::list<BasicSignal>::iterator iter;
2746    for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2747        if (iter->receiver == p) {
2748            if (pid < -1) {
2749                if ((iter->sender->pgid() == -pid)
2750                    && (iter->signalValue == OS::TGT_SIGCHLD))
2751                    goto success;
2752            } else if (pid == -1) {
2753                if (iter->signalValue == OS::TGT_SIGCHLD)
2754                    goto success;
2755            } else if (pid == 0) {
2756                if ((iter->sender->pgid() == p->pgid())
2757                    && (iter->signalValue == OS::TGT_SIGCHLD))
2758                    goto success;
2759            } else {
2760                if ((iter->sender->pid() == pid)
2761                    && (iter->signalValue == OS::TGT_SIGCHLD))
2762                    goto success;
2763            }
2764        }
2765    }
2766
2767    return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2768
2769success:
2770    // Set status to EXITED for WIFEXITED evaluations.
2771    const int EXITED = 0;
2772    BufferArg statusBuf(statPtr, sizeof(int));
2773    *(int *)statusBuf.bufferPtr() = EXITED;
2774    statusBuf.copyOut(tc->getMemProxy());
2775
2776    // Return the child PID.
2777    pid_t retval = iter->sender->pid();
2778    sysh->signalList.erase(iter);
2779    return retval;
2780}
2781
2782template <class OS>
2783SyscallReturn
2784acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2785{
2786    struct sockaddr sa;
2787    socklen_t addrLen;
2788    int host_fd;
2789    int index = 0;
2790    int tgt_fd = p->getSyscallArg(tc, index);
2791    Addr addrPtr = p->getSyscallArg(tc, index);
2792    Addr lenPtr = p->getSyscallArg(tc, index);
2793
2794    BufferArg *lenBufPtr = nullptr;
2795    BufferArg *addrBufPtr = nullptr;
2796
2797    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2798    if (!sfdp)
2799        return -EBADF;
2800    int sim_fd = sfdp->getSimFD();
2801
2802    /**
2803     * We poll the socket file descriptor first to guarantee that we do not
2804     * block on our accept call. The socket can be opened without the
2805     * non-blocking flag (it blocks). This will cause deadlocks between
2806     * communicating processes.
2807     */
2808    struct pollfd pfd;
2809    pfd.fd = sim_fd;
2810    pfd.events = POLLIN | POLLPRI;
2811    if ((poll(&pfd, 1, 0) == 0)
2812        && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2813        return SyscallReturn::retry();
2814
2815    if (lenPtr) {
2816        lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2817        lenBufPtr->copyIn(tc->getMemProxy());
2818        memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2819               sizeof(socklen_t));
2820    }
2821
2822    if (addrPtr) {
2823        addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2824        addrBufPtr->copyIn(tc->getMemProxy());
2825        memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2826               sizeof(struct sockaddr));
2827    }
2828
2829    host_fd = accept(sim_fd, &sa, &addrLen);
2830
2831    if (host_fd == -1)
2832        return -errno;
2833
2834    if (addrPtr) {
2835        memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2836        addrBufPtr->copyOut(tc->getMemProxy());
2837        delete(addrBufPtr);
2838    }
2839
2840    if (lenPtr) {
2841        *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2842        lenBufPtr->copyOut(tc->getMemProxy());
2843        delete(lenBufPtr);
2844    }
2845
2846    auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2847                                                sfdp->_type, sfdp->_protocol);
2848    return p->fds->allocFD(afdp);
2849}
2850
2851/// Target eventfd() function.
2852template <class OS>
2853SyscallReturn
2854eventfdFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2855{
2856#if defined(__linux__)
2857    int index = 0;
2858    unsigned initval = p->getSyscallArg(tc, index);
2859    int in_flags = p->getSyscallArg(tc, index);
2860
2861    int sim_fd = eventfd(initval, in_flags);
2862    if (sim_fd == -1)
2863        return -errno;
2864
2865    bool cloexec = in_flags & OS::TGT_O_CLOEXEC;
2866
2867    int flags = cloexec ? OS::TGT_O_CLOEXEC : 0;
2868    flags |= (in_flags & OS::TGT_O_NONBLOCK) ? OS::TGT_O_NONBLOCK : 0;
2869
2870    auto hbfdp = std::make_shared<HBFDEntry>(flags, sim_fd, cloexec);
2871    int tgt_fd = p->fds->allocFD(hbfdp);
2872    return tgt_fd;
2873#else
2874    warnUnsupportedOS("eventfd");
2875    return -1;
2876#endif
2877}
2878
2879#endif // __SIM_SYSCALL_EMUL_HH__
2880