syscall_emul.hh revision 13883
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <poll.h>
82#include <sys/mman.h>
83#include <sys/socket.h>
84#include <sys/stat.h>
85#if (NO_STATFS == 0)
86#include <sys/statfs.h>
87#else
88#include <sys/mount.h>
89#endif
90#include <sys/time.h>
91#include <sys/types.h>
92#include <sys/uio.h>
93#include <unistd.h>
94
95#include <cerrno>
96#include <memory>
97#include <string>
98
99#include "arch/generic/tlb.hh"
100#include "arch/utility.hh"
101#include "base/intmath.hh"
102#include "base/loader/object_file.hh"
103#include "base/logging.hh"
104#include "base/trace.hh"
105#include "base/types.hh"
106#include "config/the_isa.hh"
107#include "cpu/base.hh"
108#include "cpu/thread_context.hh"
109#include "mem/page_table.hh"
110#include "params/Process.hh"
111#include "sim/emul_driver.hh"
112#include "sim/futex_map.hh"
113#include "sim/process.hh"
114#include "sim/syscall_debug_macros.hh"
115#include "sim/syscall_desc.hh"
116#include "sim/syscall_emul_buf.hh"
117#include "sim/syscall_return.hh"
118
119#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
120#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
121#endif
122
123//////////////////////////////////////////////////////////////////////
124//
125// The following emulation functions are generic enough that they
126// don't need to be recompiled for different emulated OS's.  They are
127// defined in sim/syscall_emul.cc.
128//
129//////////////////////////////////////////////////////////////////////
130
131
132/// Handler for unimplemented syscalls that we haven't thought about.
133SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
134                                Process *p, ThreadContext *tc);
135
136/// Handler for unimplemented syscalls that we never intend to
137/// implement (signal handling, etc.) and should not affect the correct
138/// behavior of the program.  Print a warning only if the appropriate
139/// trace flag is enabled.  Return success to the target program.
140SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
141                         Process *p, ThreadContext *tc);
142
143// Target fallocateFunc() handler.
144SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
145                            Process *p, ThreadContext *tc);
146
147/// Target exit() handler: terminate current context.
148SyscallReturn exitFunc(SyscallDesc *desc, int num,
149                       Process *p, ThreadContext *tc);
150
151/// Target exit_group() handler: terminate simulation. (exit all threads)
152SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
153                       Process *p, ThreadContext *tc);
154
155/// Target set_tid_address() handler.
156SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
157                                Process *p, ThreadContext *tc);
158
159/// Target getpagesize() handler.
160SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
161                              Process *p, ThreadContext *tc);
162
163/// Target brk() handler: set brk address.
164SyscallReturn brkFunc(SyscallDesc *desc, int num,
165                      Process *p, ThreadContext *tc);
166
167/// Target close() handler.
168SyscallReturn closeFunc(SyscallDesc *desc, int num,
169                        Process *p, ThreadContext *tc);
170
171/// Target lseek() handler.
172SyscallReturn lseekFunc(SyscallDesc *desc, int num,
173                        Process *p, ThreadContext *tc);
174
175/// Target _llseek() handler.
176SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
177                          Process *p, ThreadContext *tc);
178
179/// Target munmap() handler.
180SyscallReturn munmapFunc(SyscallDesc *desc, int num,
181                         Process *p, ThreadContext *tc);
182
183/// Target shutdown() handler.
184SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
185                           Process *p, ThreadContext *tc);
186
187/// Target gethostname() handler.
188SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
189                              Process *p, ThreadContext *tc);
190
191/// Target getcwd() handler.
192SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
193                         Process *p, ThreadContext *tc);
194
195/// Target readlink() handler.
196SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
197                           Process *p, ThreadContext *tc,
198                           int index = 0);
199SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
200                           Process *p, ThreadContext *tc);
201
202/// Target unlink() handler.
203SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
204                           Process *p, ThreadContext *tc,
205                           int index);
206SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
207                         Process *p, ThreadContext *tc);
208
209/// Target link() handler
210SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
211                       ThreadContext *tc);
212
213/// Target symlink() handler.
214SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
215                          ThreadContext *tc);
216
217/// Target mkdir() handler.
218SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
219                        Process *p, ThreadContext *tc);
220
221/// Target mknod() handler.
222SyscallReturn mknodFunc(SyscallDesc *desc, int num,
223                        Process *p, ThreadContext *tc);
224
225/// Target chdir() handler.
226SyscallReturn chdirFunc(SyscallDesc *desc, int num,
227                        Process *p, ThreadContext *tc);
228
229// Target rmdir() handler.
230SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
231                        Process *p, ThreadContext *tc);
232
233/// Target rename() handler.
234SyscallReturn renameFunc(SyscallDesc *desc, int num,
235                         Process *p, ThreadContext *tc);
236
237
238/// Target truncate() handler.
239SyscallReturn truncateFunc(SyscallDesc *desc, int num,
240                           Process *p, ThreadContext *tc);
241
242
243/// Target ftruncate() handler.
244SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
245                            Process *p, ThreadContext *tc);
246
247
248/// Target truncate64() handler.
249SyscallReturn truncate64Func(SyscallDesc *desc, int num,
250                             Process *p, ThreadContext *tc);
251
252/// Target ftruncate64() handler.
253SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
254                              Process *p, ThreadContext *tc);
255
256
257/// Target umask() handler.
258SyscallReturn umaskFunc(SyscallDesc *desc, int num,
259                        Process *p, ThreadContext *tc);
260
261/// Target gettid() handler.
262SyscallReturn gettidFunc(SyscallDesc *desc, int num,
263                         Process *p, ThreadContext *tc);
264
265/// Target chown() handler.
266SyscallReturn chownFunc(SyscallDesc *desc, int num,
267                        Process *p, ThreadContext *tc);
268
269/// Target setpgid() handler.
270SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
271                          Process *p, ThreadContext *tc);
272
273/// Target fchown() handler.
274SyscallReturn fchownFunc(SyscallDesc *desc, int num,
275                         Process *p, ThreadContext *tc);
276
277/// Target dup() handler.
278SyscallReturn dupFunc(SyscallDesc *desc, int num,
279                      Process *process, ThreadContext *tc);
280
281/// Target dup2() handler.
282SyscallReturn dup2Func(SyscallDesc *desc, int num,
283                       Process *process, ThreadContext *tc);
284
285/// Target fcntl() handler.
286SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
287                        Process *process, ThreadContext *tc);
288
289/// Target fcntl64() handler.
290SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
291                          Process *process, ThreadContext *tc);
292
293/// Target setuid() handler.
294SyscallReturn setuidFunc(SyscallDesc *desc, int num,
295                         Process *p, ThreadContext *tc);
296
297/// Target pipe() handler.
298SyscallReturn pipeFunc(SyscallDesc *desc, int num,
299                       Process *p, ThreadContext *tc);
300
301/// Internal pipe() handler.
302SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
303                       ThreadContext *tc, bool pseudoPipe);
304
305/// Target getpid() handler.
306SyscallReturn getpidFunc(SyscallDesc *desc, int num,
307                         Process *p, ThreadContext *tc);
308
309// Target getpeername() handler.
310SyscallReturn getpeernameFunc(SyscallDesc *desc, int num,
311                              Process *p, ThreadContext *tc);
312
313// Target bind() handler.
314SyscallReturn bindFunc(SyscallDesc *desc, int num,
315                       Process *p, ThreadContext *tc);
316
317// Target listen() handler.
318SyscallReturn listenFunc(SyscallDesc *desc, int num,
319                         Process *p, ThreadContext *tc);
320
321// Target connect() handler.
322SyscallReturn connectFunc(SyscallDesc *desc, int num,
323                          Process *p, ThreadContext *tc);
324
325#if defined(SYS_getdents)
326// Target getdents() handler.
327SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
328                           Process *p, ThreadContext *tc);
329#endif
330
331#if defined(SYS_getdents64)
332// Target getdents() handler.
333SyscallReturn getdents64Func(SyscallDesc *desc, int num,
334                           Process *p, ThreadContext *tc);
335#endif
336
337// Target sendto() handler.
338SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
339                         Process *p, ThreadContext *tc);
340
341// Target recvfrom() handler.
342SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
343                           Process *p, ThreadContext *tc);
344
345// Target recvmsg() handler.
346SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
347                          Process *p, ThreadContext *tc);
348
349// Target sendmsg() handler.
350SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
351                          Process *p, ThreadContext *tc);
352
353// Target getuid() handler.
354SyscallReturn getuidFunc(SyscallDesc *desc, int num,
355                         Process *p, ThreadContext *tc);
356
357/// Target getgid() handler.
358SyscallReturn getgidFunc(SyscallDesc *desc, int num,
359                         Process *p, ThreadContext *tc);
360
361/// Target getppid() handler.
362SyscallReturn getppidFunc(SyscallDesc *desc, int num,
363                          Process *p, ThreadContext *tc);
364
365/// Target geteuid() handler.
366SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
367                          Process *p, ThreadContext *tc);
368
369/// Target getegid() handler.
370SyscallReturn getegidFunc(SyscallDesc *desc, int num,
371                          Process *p, ThreadContext *tc);
372
373/// Target access() handler
374SyscallReturn accessFunc(SyscallDesc *desc, int num,
375                         Process *p, ThreadContext *tc);
376SyscallReturn accessFunc(SyscallDesc *desc, int num,
377                         Process *p, ThreadContext *tc,
378                         int index);
379
380// Target getsockopt() handler.
381SyscallReturn getsockoptFunc(SyscallDesc *desc, int num,
382                             Process *p, ThreadContext *tc);
383
384// Target setsockopt() handler.
385SyscallReturn setsockoptFunc(SyscallDesc *desc, int num,
386                             Process *p, ThreadContext *tc);
387
388// Target getsockname() handler.
389SyscallReturn getsocknameFunc(SyscallDesc *desc, int num,
390                              Process *p, ThreadContext *tc);
391
392/// Futex system call
393/// Implemented by Daniel Sanchez
394/// Used by printf's in multi-threaded apps
395template <class OS>
396SyscallReturn
397futexFunc(SyscallDesc *desc, int callnum, Process *process,
398          ThreadContext *tc)
399{
400    using namespace std;
401
402    int index = 0;
403    Addr uaddr = process->getSyscallArg(tc, index);
404    int op = process->getSyscallArg(tc, index);
405    int val = process->getSyscallArg(tc, index);
406    int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
407    Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
408    int val3 = process->getSyscallArg(tc, index);
409
410    /*
411     * Unsupported option that does not affect the correctness of the
412     * application. This is a performance optimization utilized by Linux.
413     */
414    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
415    op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
416
417    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
418
419    if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
420        // Ensure futex system call accessed atomically.
421        BufferArg buf(uaddr, sizeof(int));
422        buf.copyIn(tc->getMemProxy());
423        int mem_val = *(int*)buf.bufferPtr();
424
425        /*
426         * The value in memory at uaddr is not equal with the expected val
427         * (a different thread must have changed it before the system call was
428         * invoked). In this case, we need to throw an error.
429         */
430        if (val != mem_val)
431            return -OS::TGT_EWOULDBLOCK;
432
433        if (OS::TGT_FUTEX_WAIT) {
434            futex_map.suspend(uaddr, process->tgid(), tc);
435        } else {
436            futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
437        }
438
439        return 0;
440    } else if (OS::TGT_FUTEX_WAKE == op) {
441        return futex_map.wakeup(uaddr, process->tgid(), val);
442    } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
443        return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
444    } else if (OS::TGT_FUTEX_REQUEUE == op ||
445               OS::TGT_FUTEX_CMP_REQUEUE == op) {
446
447        // Ensure futex system call accessed atomically.
448        BufferArg buf(uaddr, sizeof(int));
449        buf.copyIn(tc->getMemProxy());
450        int mem_val = *(int*)buf.bufferPtr();
451        /*
452         * For CMP_REQUEUE, the whole operation is only started only if
453         * val3 is still the value of the futex pointed to by uaddr.
454         */
455        if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
456            return -OS::TGT_EWOULDBLOCK;
457        return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
458    } else if (OS::TGT_FUTEX_WAKE_OP == op) {
459        /*
460         * The FUTEX_WAKE_OP operation is equivalent to executing the
461         * following code atomically and totally ordered with respect to
462         * other futex operations on any of the two supplied futex words:
463         *
464         *   int oldval = *(int *) addr2;
465         *   *(int *) addr2 = oldval op oparg;
466         *   futex(addr1, FUTEX_WAKE, val, 0, 0, 0);
467         *   if (oldval cmp cmparg)
468         *        futex(addr2, FUTEX_WAKE, val2, 0, 0, 0);
469         *
470         * (op, oparg, cmp, cmparg are encoded in val3)
471         *
472         * +---+---+-----------+-----------+
473         * |op |cmp|   oparg   |  cmparg   |
474         * +---+---+-----------+-----------+
475         *   4   4       12          12    <== # of bits
476         *
477         * reference: http://man7.org/linux/man-pages/man2/futex.2.html
478         *
479         */
480        // get value from simulated-space
481        BufferArg buf(uaddr2, sizeof(int));
482        buf.copyIn(tc->getMemProxy());
483        int oldval = *(int*)buf.bufferPtr();
484        int newval = oldval;
485        // extract op, oparg, cmp, cmparg from val3
486        int wake_cmparg =  val3 & 0xfff;
487        int wake_oparg  = (val3 & 0xfff000)   >> 12;
488        int wake_cmp    = (val3 & 0xf000000)  >> 24;
489        int wake_op     = (val3 & 0xf0000000) >> 28;
490        if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1)
491            wake_oparg = (1 << wake_oparg);
492        wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT;
493        // perform operation on the value of the second futex
494        if (wake_op == OS::TGT_FUTEX_OP_SET)
495            newval = wake_oparg;
496        else if (wake_op == OS::TGT_FUTEX_OP_ADD)
497            newval += wake_oparg;
498        else if (wake_op == OS::TGT_FUTEX_OP_OR)
499            newval |= wake_oparg;
500        else if (wake_op == OS::TGT_FUTEX_OP_ANDN)
501            newval &= ~wake_oparg;
502        else if (wake_op == OS::TGT_FUTEX_OP_XOR)
503            newval ^= wake_oparg;
504        // copy updated value back to simulated-space
505        *(int*)buf.bufferPtr() = newval;
506        buf.copyOut(tc->getMemProxy());
507        // perform the first wake-up
508        int woken1 = futex_map.wakeup(uaddr, process->tgid(), val);
509        int woken2 = 0;
510        // calculate the condition of the second wake-up
511        bool is_wake2 = false;
512        if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ)
513            is_wake2 = oldval == wake_cmparg;
514        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE)
515            is_wake2 = oldval != wake_cmparg;
516        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT)
517            is_wake2 = oldval < wake_cmparg;
518        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE)
519            is_wake2 = oldval <= wake_cmparg;
520        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT)
521            is_wake2 = oldval > wake_cmparg;
522        else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE)
523            is_wake2 = oldval >= wake_cmparg;
524        // perform the second wake-up
525        if (is_wake2)
526            woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout);
527
528        return woken1 + woken2;
529    }
530    warn("futex: op %d not implemented; ignoring.", op);
531    return -ENOSYS;
532}
533
534
535/// Pseudo Funcs  - These functions use a different return convension,
536/// returning a second value in a register other than the normal return register
537SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
538                             Process *process, ThreadContext *tc);
539
540/// Target getpidPseudo() handler.
541SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
542                               Process *p, ThreadContext *tc);
543
544/// Target getuidPseudo() handler.
545SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
546                               Process *p, ThreadContext *tc);
547
548/// Target getgidPseudo() handler.
549SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
550                               Process *p, ThreadContext *tc);
551
552
553/// A readable name for 1,000,000, for converting microseconds to seconds.
554const int one_million = 1000000;
555/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
556const int one_billion = 1000000000;
557
558/// Approximate seconds since the epoch (1/1/1970).  About a billion,
559/// by my reckoning.  We want to keep this a constant (not use the
560/// real-world time) to keep simulations repeatable.
561const unsigned seconds_since_epoch = 1000000000;
562
563/// Helper function to convert current elapsed time to seconds and
564/// microseconds.
565template <class T1, class T2>
566void
567getElapsedTimeMicro(T1 &sec, T2 &usec)
568{
569    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
570    sec = elapsed_usecs / one_million;
571    usec = elapsed_usecs % one_million;
572}
573
574/// Helper function to convert current elapsed time to seconds and
575/// nanoseconds.
576template <class T1, class T2>
577void
578getElapsedTimeNano(T1 &sec, T2 &nsec)
579{
580    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
581    sec = elapsed_nsecs / one_billion;
582    nsec = elapsed_nsecs % one_billion;
583}
584
585//////////////////////////////////////////////////////////////////////
586//
587// The following emulation functions are generic, but need to be
588// templated to account for differences in types, constants, etc.
589//
590//////////////////////////////////////////////////////////////////////
591
592    typedef struct statfs hst_statfs;
593#if NO_STAT64
594    typedef struct stat hst_stat;
595    typedef struct stat hst_stat64;
596#else
597    typedef struct stat hst_stat;
598    typedef struct stat64 hst_stat64;
599#endif
600
601//// Helper function to convert a host stat buffer to a target stat
602//// buffer.  Also copies the target buffer out to the simulated
603//// memory space.  Used by stat(), fstat(), and lstat().
604
605template <typename target_stat, typename host_stat>
606void
607convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
608{
609    using namespace TheISA;
610
611    if (fakeTTY)
612        tgt->st_dev = 0xA;
613    else
614        tgt->st_dev = host->st_dev;
615    tgt->st_dev = TheISA::htog(tgt->st_dev);
616    tgt->st_ino = host->st_ino;
617    tgt->st_ino = TheISA::htog(tgt->st_ino);
618    tgt->st_mode = host->st_mode;
619    if (fakeTTY) {
620        // Claim to be a character device
621        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
622        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
623    }
624    tgt->st_mode = TheISA::htog(tgt->st_mode);
625    tgt->st_nlink = host->st_nlink;
626    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
627    tgt->st_uid = host->st_uid;
628    tgt->st_uid = TheISA::htog(tgt->st_uid);
629    tgt->st_gid = host->st_gid;
630    tgt->st_gid = TheISA::htog(tgt->st_gid);
631    if (fakeTTY)
632        tgt->st_rdev = 0x880d;
633    else
634        tgt->st_rdev = host->st_rdev;
635    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
636    tgt->st_size = host->st_size;
637    tgt->st_size = TheISA::htog(tgt->st_size);
638    tgt->st_atimeX = host->st_atime;
639    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
640    tgt->st_mtimeX = host->st_mtime;
641    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
642    tgt->st_ctimeX = host->st_ctime;
643    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
644    // Force the block size to be 8KB. This helps to ensure buffered io works
645    // consistently across different hosts.
646    tgt->st_blksize = 0x2000;
647    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
648    tgt->st_blocks = host->st_blocks;
649    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
650}
651
652// Same for stat64
653
654template <typename target_stat, typename host_stat64>
655void
656convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
657{
658    using namespace TheISA;
659
660    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
661#if defined(STAT_HAVE_NSEC)
662    tgt->st_atime_nsec = host->st_atime_nsec;
663    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
664    tgt->st_mtime_nsec = host->st_mtime_nsec;
665    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
666    tgt->st_ctime_nsec = host->st_ctime_nsec;
667    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
668#else
669    tgt->st_atime_nsec = 0;
670    tgt->st_mtime_nsec = 0;
671    tgt->st_ctime_nsec = 0;
672#endif
673}
674
675// Here are a couple of convenience functions
676template<class OS>
677void
678copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
679               hst_stat *host, bool fakeTTY = false)
680{
681    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
682    tgt_stat_buf tgt(addr);
683    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
684    tgt.copyOut(mem);
685}
686
687template<class OS>
688void
689copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
690                 hst_stat64 *host, bool fakeTTY = false)
691{
692    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
693    tgt_stat_buf tgt(addr);
694    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
695    tgt.copyOut(mem);
696}
697
698template <class OS>
699void
700copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
701                 hst_statfs *host)
702{
703    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
704
705    tgt->f_type = TheISA::htog(host->f_type);
706#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
707    tgt->f_bsize = TheISA::htog(host->f_iosize);
708#else
709    tgt->f_bsize = TheISA::htog(host->f_bsize);
710#endif
711    tgt->f_blocks = TheISA::htog(host->f_blocks);
712    tgt->f_bfree = TheISA::htog(host->f_bfree);
713    tgt->f_bavail = TheISA::htog(host->f_bavail);
714    tgt->f_files = TheISA::htog(host->f_files);
715    tgt->f_ffree = TheISA::htog(host->f_ffree);
716    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
717#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
718    tgt->f_namelen = TheISA::htog(host->f_namemax);
719    tgt->f_frsize = TheISA::htog(host->f_bsize);
720#elif defined(__APPLE__)
721    tgt->f_namelen = 0;
722    tgt->f_frsize = 0;
723#else
724    tgt->f_namelen = TheISA::htog(host->f_namelen);
725    tgt->f_frsize = TheISA::htog(host->f_frsize);
726#endif
727#if defined(__linux__)
728    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
729#else
730    /*
731     * The fields are different sizes per OS. Don't bother with
732     * f_spare or f_reserved on non-Linux for now.
733     */
734    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
735#endif
736
737    tgt.copyOut(mem);
738}
739
740/// Target ioctl() handler.  For the most part, programs call ioctl()
741/// only to find out if their stdout is a tty, to determine whether to
742/// do line or block buffering.  We always claim that output fds are
743/// not TTYs to provide repeatable results.
744template <class OS>
745SyscallReturn
746ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
747{
748    int index = 0;
749    int tgt_fd = p->getSyscallArg(tc, index);
750    unsigned req = p->getSyscallArg(tc, index);
751
752    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
753
754    if (OS::isTtyReq(req))
755        return -ENOTTY;
756
757    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
758    if (!dfdp)
759        return -EBADF;
760
761    /**
762     * If the driver is valid, issue the ioctl through it. Otherwise,
763     * there's an implicit assumption that the device is a TTY type and we
764     * return that we do not have a valid TTY.
765     */
766    EmulatedDriver *emul_driver = dfdp->getDriver();
767    if (emul_driver)
768        return emul_driver->ioctl(p, tc, req);
769
770    /**
771     * For lack of a better return code, return ENOTTY. Ideally, we should
772     * return something better here, but at least we issue the warning.
773     */
774    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
775         tgt_fd, req, tc->pcState());
776    return -ENOTTY;
777}
778
779template <class OS>
780SyscallReturn
781openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
782         bool isopenat)
783{
784    int index = 0;
785    int tgt_dirfd = -1;
786
787    /**
788     * If using the openat variant, read in the target directory file
789     * descriptor from the simulated process.
790     */
791    if (isopenat)
792        tgt_dirfd = p->getSyscallArg(tc, index);
793
794    /**
795     * Retrieve the simulated process' memory proxy and then read in the path
796     * string from that memory space into the host's working memory space.
797     */
798    std::string path;
799    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
800        return -EFAULT;
801
802#ifdef __CYGWIN32__
803    int host_flags = O_BINARY;
804#else
805    int host_flags = 0;
806#endif
807    /**
808     * Translate target flags into host flags. Flags exist which are not
809     * ported between architectures which can cause check failures.
810     */
811    int tgt_flags = p->getSyscallArg(tc, index);
812    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
813        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
814            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
815            host_flags |= OS::openFlagTable[i].hostFlag;
816        }
817    }
818    if (tgt_flags) {
819        warn("open%s: cannot decode flags 0x%x",
820             isopenat ? "at" : "", tgt_flags);
821    }
822#ifdef __CYGWIN32__
823    host_flags |= O_BINARY;
824#endif
825
826    int mode = p->getSyscallArg(tc, index);
827
828    /**
829     * If the simulated process called open or openat with AT_FDCWD specified,
830     * take the current working directory value which was passed into the
831     * process class as a Python parameter and append the current path to
832     * create a full path.
833     * Otherwise, openat with a valid target directory file descriptor has
834     * been called. If the path option, which was passed in as a parameter,
835     * is not absolute, retrieve the directory file descriptor's path and
836     * prepend it to the path passed in as a parameter.
837     * In every case, we should have a full path (which is relevant to the
838     * host) to work with after this block has been passed.
839     */
840    std::string redir_path = path;
841    std::string abs_path = path;
842    if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) {
843        abs_path = p->absolutePath(path, true);
844        redir_path = p->checkPathRedirect(path);
845    } else if (!startswith(path, "/")) {
846        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
847        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
848        if (!ffdp)
849            return -EBADF;
850        abs_path = ffdp->getFileName() + path;
851        redir_path = p->checkPathRedirect(abs_path);
852    }
853
854    /**
855     * Since this is an emulated environment, we create pseudo file
856     * descriptors for device requests that have been registered with
857     * the process class through Python; this allows us to create a file
858     * descriptor for subsequent ioctl or mmap calls.
859     */
860    if (startswith(abs_path, "/dev/")) {
861        std::string filename = abs_path.substr(strlen("/dev/"));
862        EmulatedDriver *drv = p->findDriver(filename);
863        if (drv) {
864            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
865                            "driver open with path[%s]\n",
866                            isopenat ? "at" : "", abs_path.c_str());
867            return drv->open(p, tc, mode, host_flags);
868        }
869        /**
870         * Fall through here for pass through to host devices, such
871         * as /dev/zero
872         */
873    }
874
875    /**
876     * We make several attempts resolve a call to open.
877     *
878     * 1) Resolve any path redirection before hand. This will set the path
879     * up with variable 'redir_path' which may contain a modified path or
880     * the original path value. This should already be done in prior code.
881     * 2) Try to handle the access using 'special_paths'. Some special_paths
882     * and files cannot be called on the host and need to be handled as
883     * special cases inside the simulator. These special_paths are handled by
884     * C++ routines to provide output back to userspace.
885     * 3) If the full path that was created above does not match any of the
886     * special cases, pass it through to the open call on the __HOST__ to let
887     * the host open the file on our behalf. Again, the openImpl tries to
888     * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the
889     * faux-filesystem files). The faux-filesystem is dynamically created
890     * during simulator configuration using Python functions.
891     * 4) If the host cannot open the file, the open attempt failed in "3)".
892     * Return the host's error code back through the system call to the
893     * simulated process. If running a debug trace, also notify the user that
894     * the open call failed.
895     *
896     * Any success will set sim_fd to something other than -1 and skip the
897     * next conditions effectively bypassing them.
898     */
899    int sim_fd = -1;
900    std::string used_path;
901    std::vector<std::string> special_paths =
902            { "/proc/meminfo/", "/system/", "/sys/", "/platform/",
903              "/etc/passwd" };
904    for (auto entry : special_paths) {
905        if (startswith(path, entry)) {
906            sim_fd = OS::openSpecialFile(abs_path, p, tc);
907            used_path = abs_path;
908        }
909    }
910    if (sim_fd == -1) {
911        sim_fd = open(redir_path.c_str(), host_flags, mode);
912        used_path = redir_path;
913    }
914    if (sim_fd == -1) {
915        int local = -errno;
916        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s "
917                        "(inferred from:%s)\n", isopenat ? "at" : "",
918                        used_path.c_str(), path.c_str());
919        return local;
920    }
921
922    /**
923     * The file was opened successfully and needs to be recorded in the
924     * process' file descriptor array so that it can be retrieved later.
925     * The target file descriptor that is chosen will be the lowest unused
926     * file descriptor.
927     * Return the indirect target file descriptor back to the simulated
928     * process to act as a handle for the opened file.
929     */
930    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
931    int tgt_fd = p->fds->allocFD(ffdp);
932    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n"
933                    "(inferred from:%s)\n", isopenat ? "at" : "",
934                    sim_fd, tgt_fd, used_path.c_str(), path.c_str());
935    return tgt_fd;
936}
937
938/// Target open() handler.
939template <class OS>
940SyscallReturn
941openFunc(SyscallDesc *desc, int callnum, Process *process,
942         ThreadContext *tc)
943{
944    return openImpl<OS>(desc, callnum, process, tc, false);
945}
946
947/// Target openat() handler.
948template <class OS>
949SyscallReturn
950openatFunc(SyscallDesc *desc, int callnum, Process *process,
951           ThreadContext *tc)
952{
953    return openImpl<OS>(desc, callnum, process, tc, true);
954}
955
956/// Target unlinkat() handler.
957template <class OS>
958SyscallReturn
959unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
960             ThreadContext *tc)
961{
962    int index = 0;
963    int dirfd = process->getSyscallArg(tc, index);
964    if (dirfd != OS::TGT_AT_FDCWD)
965        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
966
967    return unlinkHelper(desc, callnum, process, tc, 1);
968}
969
970/// Target facessat() handler
971template <class OS>
972SyscallReturn
973faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
974              ThreadContext *tc)
975{
976    int index = 0;
977    int dirfd = process->getSyscallArg(tc, index);
978    if (dirfd != OS::TGT_AT_FDCWD)
979        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
980    return accessFunc(desc, callnum, process, tc, 1);
981}
982
983/// Target readlinkat() handler
984template <class OS>
985SyscallReturn
986readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
987               ThreadContext *tc)
988{
989    int index = 0;
990    int dirfd = process->getSyscallArg(tc, index);
991    if (dirfd != OS::TGT_AT_FDCWD)
992        warn("openat: first argument not AT_FDCWD; unlikely to work");
993    return readlinkFunc(desc, callnum, process, tc, 1);
994}
995
996/// Target renameat() handler.
997template <class OS>
998SyscallReturn
999renameatFunc(SyscallDesc *desc, int callnum, Process *process,
1000             ThreadContext *tc)
1001{
1002    int index = 0;
1003
1004    int olddirfd = process->getSyscallArg(tc, index);
1005    if (olddirfd != OS::TGT_AT_FDCWD)
1006        warn("renameat: first argument not AT_FDCWD; unlikely to work");
1007
1008    std::string old_name;
1009
1010    if (!tc->getMemProxy().tryReadString(old_name,
1011                                         process->getSyscallArg(tc, index)))
1012        return -EFAULT;
1013
1014    int newdirfd = process->getSyscallArg(tc, index);
1015    if (newdirfd != OS::TGT_AT_FDCWD)
1016        warn("renameat: third argument not AT_FDCWD; unlikely to work");
1017
1018    std::string new_name;
1019
1020    if (!tc->getMemProxy().tryReadString(new_name,
1021                                         process->getSyscallArg(tc, index)))
1022        return -EFAULT;
1023
1024    // Adjust path for cwd and redirection
1025    old_name = process->checkPathRedirect(old_name);
1026    new_name = process->checkPathRedirect(new_name);
1027
1028    int result = rename(old_name.c_str(), new_name.c_str());
1029    return (result == -1) ? -errno : result;
1030}
1031
1032/// Target sysinfo() handler.
1033template <class OS>
1034SyscallReturn
1035sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
1036            ThreadContext *tc)
1037{
1038
1039    int index = 0;
1040    TypedBufferArg<typename OS::tgt_sysinfo>
1041        sysinfo(process->getSyscallArg(tc, index));
1042
1043    sysinfo->uptime = seconds_since_epoch;
1044    sysinfo->totalram = process->system->memSize();
1045    sysinfo->mem_unit = 1;
1046
1047    sysinfo.copyOut(tc->getMemProxy());
1048
1049    return 0;
1050}
1051
1052/// Target chmod() handler.
1053template <class OS>
1054SyscallReturn
1055chmodFunc(SyscallDesc *desc, int callnum, Process *process,
1056          ThreadContext *tc)
1057{
1058    std::string path;
1059
1060    int index = 0;
1061    if (!tc->getMemProxy().tryReadString(path,
1062                process->getSyscallArg(tc, index))) {
1063        return -EFAULT;
1064    }
1065
1066    uint32_t mode = process->getSyscallArg(tc, index);
1067    mode_t hostMode = 0;
1068
1069    // XXX translate mode flags via OS::something???
1070    hostMode = mode;
1071
1072    // Adjust path for cwd and redirection
1073    path = process->checkPathRedirect(path);
1074
1075    // do the chmod
1076    int result = chmod(path.c_str(), hostMode);
1077    if (result < 0)
1078        return -errno;
1079
1080    return 0;
1081}
1082
1083template <class OS>
1084SyscallReturn
1085pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1086{
1087    int index = 0;
1088    Addr fdsPtr = p->getSyscallArg(tc, index);
1089    int nfds = p->getSyscallArg(tc, index);
1090    int tmout = p->getSyscallArg(tc, index);
1091
1092    BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
1093    fdsBuf.copyIn(tc->getMemProxy());
1094
1095    /**
1096     * Record the target file descriptors in a local variable. We need to
1097     * replace them with host file descriptors but we need a temporary copy
1098     * for later. Afterwards, replace each target file descriptor in the
1099     * poll_fd array with its host_fd.
1100     */
1101    int temp_tgt_fds[nfds];
1102    for (index = 0; index < nfds; index++) {
1103        temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1104        auto tgt_fd = temp_tgt_fds[index];
1105        auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1106        if (!hbfdp)
1107            return -EBADF;
1108        auto host_fd = hbfdp->getSimFD();
1109        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1110    }
1111
1112    /**
1113     * We cannot allow an infinite poll to occur or it will inevitably cause
1114     * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1115     * a non-negative value, however it also makes no sense to poll on the
1116     * underlying host for any other time than tmout a zero timeout.
1117     */
1118    int status;
1119    if (tmout < 0) {
1120        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1121        if (status == 0) {
1122            /**
1123             * If blocking indefinitely, check the signal list to see if a
1124             * signal would break the poll out of the retry cycle and try
1125             * to return the signal interrupt instead.
1126             */
1127            System *sysh = tc->getSystemPtr();
1128            std::list<BasicSignal>::iterator it;
1129            for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1130                if (it->receiver == p)
1131                    return -EINTR;
1132            return SyscallReturn::retry();
1133        }
1134    } else
1135        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1136
1137    if (status == -1)
1138        return -errno;
1139
1140    /**
1141     * Replace each host_fd in the returned poll_fd array with its original
1142     * target file descriptor.
1143     */
1144    for (index = 0; index < nfds; index++) {
1145        auto tgt_fd = temp_tgt_fds[index];
1146        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1147    }
1148
1149    /**
1150     * Copy out the pollfd struct because the host may have updated fields
1151     * in the structure.
1152     */
1153    fdsBuf.copyOut(tc->getMemProxy());
1154
1155    return status;
1156}
1157
1158/// Target fchmod() handler.
1159template <class OS>
1160SyscallReturn
1161fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1162{
1163    int index = 0;
1164    int tgt_fd = p->getSyscallArg(tc, index);
1165    uint32_t mode = p->getSyscallArg(tc, index);
1166
1167    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1168    if (!ffdp)
1169        return -EBADF;
1170    int sim_fd = ffdp->getSimFD();
1171
1172    mode_t hostMode = mode;
1173
1174    int result = fchmod(sim_fd, hostMode);
1175
1176    return (result < 0) ? -errno : 0;
1177}
1178
1179/// Target mremap() handler.
1180template <class OS>
1181SyscallReturn
1182mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1183{
1184    int index = 0;
1185    Addr start = process->getSyscallArg(tc, index);
1186    uint64_t old_length = process->getSyscallArg(tc, index);
1187    uint64_t new_length = process->getSyscallArg(tc, index);
1188    uint64_t flags = process->getSyscallArg(tc, index);
1189    uint64_t provided_address = 0;
1190    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1191
1192    if (use_provided_address)
1193        provided_address = process->getSyscallArg(tc, index);
1194
1195    if ((start % TheISA::PageBytes != 0) ||
1196        (provided_address % TheISA::PageBytes != 0)) {
1197        warn("mremap failing: arguments not page aligned");
1198        return -EINVAL;
1199    }
1200
1201    new_length = roundUp(new_length, TheISA::PageBytes);
1202
1203    if (new_length > old_length) {
1204        std::shared_ptr<MemState> mem_state = process->memState;
1205        Addr mmap_end = mem_state->getMmapEnd();
1206
1207        if ((start + old_length) == mmap_end &&
1208            (!use_provided_address || provided_address == start)) {
1209            // This case cannot occur when growing downward, as
1210            // start is greater than or equal to mmap_end.
1211            uint64_t diff = new_length - old_length;
1212            process->allocateMem(mmap_end, diff);
1213            mem_state->setMmapEnd(mmap_end + diff);
1214            return start;
1215        } else {
1216            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1217                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1218                return -ENOMEM;
1219            } else {
1220                uint64_t new_start = provided_address;
1221                if (!use_provided_address) {
1222                    new_start = process->mmapGrowsDown() ?
1223                                mmap_end - new_length : mmap_end;
1224                    mmap_end = process->mmapGrowsDown() ?
1225                               new_start : mmap_end + new_length;
1226                    mem_state->setMmapEnd(mmap_end);
1227                }
1228
1229                process->pTable->remap(start, old_length, new_start);
1230                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1231                     new_start, new_start + new_length,
1232                     new_length - old_length);
1233                // add on the remaining unallocated pages
1234                process->allocateMem(new_start + old_length,
1235                                     new_length - old_length,
1236                                     use_provided_address /* clobber */);
1237                if (use_provided_address &&
1238                    ((new_start + new_length > mem_state->getMmapEnd() &&
1239                      !process->mmapGrowsDown()) ||
1240                    (new_start < mem_state->getMmapEnd() &&
1241                      process->mmapGrowsDown()))) {
1242                    // something fishy going on here, at least notify the user
1243                    // @todo: increase mmap_end?
1244                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
1245                }
1246                warn("returning %08p as start\n", new_start);
1247                return new_start;
1248            }
1249        }
1250    } else {
1251        if (use_provided_address && provided_address != start)
1252            process->pTable->remap(start, new_length, provided_address);
1253        process->pTable->unmap(start + new_length, old_length - new_length);
1254        return use_provided_address ? provided_address : start;
1255    }
1256}
1257
1258/// Target stat() handler.
1259template <class OS>
1260SyscallReturn
1261statFunc(SyscallDesc *desc, int callnum, Process *process,
1262         ThreadContext *tc)
1263{
1264    std::string path;
1265
1266    int index = 0;
1267    if (!tc->getMemProxy().tryReadString(path,
1268                process->getSyscallArg(tc, index))) {
1269        return -EFAULT;
1270    }
1271    Addr bufPtr = process->getSyscallArg(tc, index);
1272
1273    // Adjust path for cwd and redirection
1274    path = process->checkPathRedirect(path);
1275
1276    struct stat hostBuf;
1277    int result = stat(path.c_str(), &hostBuf);
1278
1279    if (result < 0)
1280        return -errno;
1281
1282    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1283
1284    return 0;
1285}
1286
1287
1288/// Target stat64() handler.
1289template <class OS>
1290SyscallReturn
1291stat64Func(SyscallDesc *desc, int callnum, Process *process,
1292           ThreadContext *tc)
1293{
1294    std::string path;
1295
1296    int index = 0;
1297    if (!tc->getMemProxy().tryReadString(path,
1298                process->getSyscallArg(tc, index)))
1299        return -EFAULT;
1300    Addr bufPtr = process->getSyscallArg(tc, index);
1301
1302    // Adjust path for cwd and redirection
1303    path = process->checkPathRedirect(path);
1304
1305#if NO_STAT64
1306    struct stat  hostBuf;
1307    int result = stat(path.c_str(), &hostBuf);
1308#else
1309    struct stat64 hostBuf;
1310    int result = stat64(path.c_str(), &hostBuf);
1311#endif
1312
1313    if (result < 0)
1314        return -errno;
1315
1316    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1317
1318    return 0;
1319}
1320
1321
1322/// Target fstatat64() handler.
1323template <class OS>
1324SyscallReturn
1325fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1326              ThreadContext *tc)
1327{
1328    int index = 0;
1329    int dirfd = process->getSyscallArg(tc, index);
1330    if (dirfd != OS::TGT_AT_FDCWD)
1331        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1332
1333    std::string path;
1334    if (!tc->getMemProxy().tryReadString(path,
1335                process->getSyscallArg(tc, index)))
1336        return -EFAULT;
1337    Addr bufPtr = process->getSyscallArg(tc, index);
1338
1339    // Adjust path for cwd and redirection
1340    path = process->checkPathRedirect(path);
1341
1342#if NO_STAT64
1343    struct stat  hostBuf;
1344    int result = stat(path.c_str(), &hostBuf);
1345#else
1346    struct stat64 hostBuf;
1347    int result = stat64(path.c_str(), &hostBuf);
1348#endif
1349
1350    if (result < 0)
1351        return -errno;
1352
1353    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1354
1355    return 0;
1356}
1357
1358
1359/// Target fstat64() handler.
1360template <class OS>
1361SyscallReturn
1362fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1363{
1364    int index = 0;
1365    int tgt_fd = p->getSyscallArg(tc, index);
1366    Addr bufPtr = p->getSyscallArg(tc, index);
1367
1368    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1369    if (!ffdp)
1370        return -EBADF;
1371    int sim_fd = ffdp->getSimFD();
1372
1373#if NO_STAT64
1374    struct stat  hostBuf;
1375    int result = fstat(sim_fd, &hostBuf);
1376#else
1377    struct stat64  hostBuf;
1378    int result = fstat64(sim_fd, &hostBuf);
1379#endif
1380
1381    if (result < 0)
1382        return -errno;
1383
1384    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1385
1386    return 0;
1387}
1388
1389
1390/// Target lstat() handler.
1391template <class OS>
1392SyscallReturn
1393lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1394          ThreadContext *tc)
1395{
1396    std::string path;
1397
1398    int index = 0;
1399    if (!tc->getMemProxy().tryReadString(path,
1400                process->getSyscallArg(tc, index))) {
1401        return -EFAULT;
1402    }
1403    Addr bufPtr = process->getSyscallArg(tc, index);
1404
1405    // Adjust path for cwd and redirection
1406    path = process->checkPathRedirect(path);
1407
1408    struct stat hostBuf;
1409    int result = lstat(path.c_str(), &hostBuf);
1410
1411    if (result < 0)
1412        return -errno;
1413
1414    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1415
1416    return 0;
1417}
1418
1419/// Target lstat64() handler.
1420template <class OS>
1421SyscallReturn
1422lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1423            ThreadContext *tc)
1424{
1425    std::string path;
1426
1427    int index = 0;
1428    if (!tc->getMemProxy().tryReadString(path,
1429                process->getSyscallArg(tc, index))) {
1430        return -EFAULT;
1431    }
1432    Addr bufPtr = process->getSyscallArg(tc, index);
1433
1434    // Adjust path for cwd and redirection
1435    path = process->checkPathRedirect(path);
1436
1437#if NO_STAT64
1438    struct stat hostBuf;
1439    int result = lstat(path.c_str(), &hostBuf);
1440#else
1441    struct stat64 hostBuf;
1442    int result = lstat64(path.c_str(), &hostBuf);
1443#endif
1444
1445    if (result < 0)
1446        return -errno;
1447
1448    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1449
1450    return 0;
1451}
1452
1453/// Target fstat() handler.
1454template <class OS>
1455SyscallReturn
1456fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1457{
1458    int index = 0;
1459    int tgt_fd = p->getSyscallArg(tc, index);
1460    Addr bufPtr = p->getSyscallArg(tc, index);
1461
1462    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1463
1464    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1465    if (!ffdp)
1466        return -EBADF;
1467    int sim_fd = ffdp->getSimFD();
1468
1469    struct stat hostBuf;
1470    int result = fstat(sim_fd, &hostBuf);
1471
1472    if (result < 0)
1473        return -errno;
1474
1475    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1476
1477    return 0;
1478}
1479
1480/// Target statfs() handler.
1481template <class OS>
1482SyscallReturn
1483statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1484           ThreadContext *tc)
1485{
1486#if NO_STATFS
1487    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1488#else
1489    std::string path;
1490
1491    int index = 0;
1492    if (!tc->getMemProxy().tryReadString(path,
1493                process->getSyscallArg(tc, index))) {
1494        return -EFAULT;
1495    }
1496    Addr bufPtr = process->getSyscallArg(tc, index);
1497
1498    // Adjust path for cwd and redirection
1499    path = process->checkPathRedirect(path);
1500
1501    struct statfs hostBuf;
1502    int result = statfs(path.c_str(), &hostBuf);
1503
1504    if (result < 0)
1505        return -errno;
1506
1507    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1508#endif
1509    return 0;
1510}
1511
1512template <class OS>
1513SyscallReturn
1514cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1515{
1516    int index = 0;
1517
1518    RegVal flags = p->getSyscallArg(tc, index);
1519    RegVal newStack = p->getSyscallArg(tc, index);
1520    Addr ptidPtr = p->getSyscallArg(tc, index);
1521
1522#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1523    /**
1524     * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1525     * The flag defines the list of clone() arguments in the following
1526     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1527     */
1528    Addr tlsPtr = p->getSyscallArg(tc, index);
1529    Addr ctidPtr = p->getSyscallArg(tc, index);
1530#else
1531    Addr ctidPtr = p->getSyscallArg(tc, index);
1532    Addr tlsPtr = p->getSyscallArg(tc, index);
1533#endif
1534
1535    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1536        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1537        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1538        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1539        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1540        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1541        return -EINVAL;
1542
1543    ThreadContext *ctc;
1544    if (!(ctc = p->findFreeContext())) {
1545        DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1546                        "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1547        return -EAGAIN;
1548    }
1549
1550    /**
1551     * Note that ProcessParams is generated by swig and there are no other
1552     * examples of how to create anything but this default constructor. The
1553     * fields are manually initialized instead of passing parameters to the
1554     * constructor.
1555     */
1556    ProcessParams *pp = new ProcessParams();
1557    pp->executable.assign(*(new std::string(p->progName())));
1558    pp->cmd.push_back(*(new std::string(p->progName())));
1559    pp->system = p->system;
1560    pp->cwd.assign(p->tgtCwd);
1561    pp->input.assign("stdin");
1562    pp->output.assign("stdout");
1563    pp->errout.assign("stderr");
1564    pp->uid = p->uid();
1565    pp->euid = p->euid();
1566    pp->gid = p->gid();
1567    pp->egid = p->egid();
1568
1569    /* Find the first free PID that's less than the maximum */
1570    std::set<int> const& pids = p->system->PIDs;
1571    int temp_pid = *pids.begin();
1572    do {
1573        temp_pid++;
1574    } while (pids.find(temp_pid) != pids.end());
1575    if (temp_pid >= System::maxPID)
1576        fatal("temp_pid is too large: %d", temp_pid);
1577
1578    pp->pid = temp_pid;
1579    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1580    pp->useArchPT = p->useArchPT;
1581    pp->kvmInSE = p->kvmInSE;
1582    Process *cp = pp->create();
1583    delete pp;
1584
1585    Process *owner = ctc->getProcessPtr();
1586    ctc->setProcessPtr(cp);
1587    cp->assignThreadContext(ctc->contextId());
1588    owner->revokeThreadContext(ctc->contextId());
1589
1590    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1591        BufferArg ptidBuf(ptidPtr, sizeof(long));
1592        long *ptid = (long *)ptidBuf.bufferPtr();
1593        *ptid = cp->pid();
1594        ptidBuf.copyOut(tc->getMemProxy());
1595    }
1596
1597    if (flags & OS::TGT_CLONE_THREAD) {
1598        cp->pTable->shared = true;
1599        cp->useForClone = true;
1600    }
1601    cp->initState();
1602    p->clone(tc, ctc, cp, flags);
1603
1604    if (flags & OS::TGT_CLONE_THREAD) {
1605        delete cp->sigchld;
1606        cp->sigchld = p->sigchld;
1607    } else if (flags & OS::TGT_SIGCHLD) {
1608        *cp->sigchld = true;
1609    }
1610
1611    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1612        BufferArg ctidBuf(ctidPtr, sizeof(long));
1613        long *ctid = (long *)ctidBuf.bufferPtr();
1614        *ctid = cp->pid();
1615        ctidBuf.copyOut(ctc->getMemProxy());
1616    }
1617
1618    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1619        cp->childClearTID = (uint64_t)ctidPtr;
1620
1621    ctc->clearArchRegs();
1622
1623    OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1624
1625    cp->setSyscallReturn(ctc, 0);
1626
1627#if THE_ISA == ALPHA_ISA
1628    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1629#elif THE_ISA == SPARC_ISA
1630    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1631    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1632#endif
1633
1634    if (p->kvmInSE) {
1635#if THE_ISA == X86_ISA
1636        ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX));
1637#else
1638        panic("KVM CPU model is not supported for this ISA");
1639#endif
1640    } else {
1641        TheISA::PCState cpc = tc->pcState();
1642        cpc.advance();
1643        ctc->pcState(cpc);
1644    }
1645    ctc->activate();
1646
1647    return cp->pid();
1648}
1649
1650/// Target fstatfs() handler.
1651template <class OS>
1652SyscallReturn
1653fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1654{
1655    int index = 0;
1656    int tgt_fd = p->getSyscallArg(tc, index);
1657    Addr bufPtr = p->getSyscallArg(tc, index);
1658
1659    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1660    if (!ffdp)
1661        return -EBADF;
1662    int sim_fd = ffdp->getSimFD();
1663
1664    struct statfs hostBuf;
1665    int result = fstatfs(sim_fd, &hostBuf);
1666
1667    if (result < 0)
1668        return -errno;
1669
1670    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1671
1672    return 0;
1673}
1674
1675/// Target readv() handler.
1676template <class OS>
1677SyscallReturn
1678readvFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1679{
1680    int index = 0;
1681    int tgt_fd = p->getSyscallArg(tc, index);
1682
1683    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1684    if (!ffdp)
1685        return -EBADF;
1686    int sim_fd = ffdp->getSimFD();
1687
1688    SETranslatingPortProxy &prox = tc->getMemProxy();
1689    uint64_t tiov_base = p->getSyscallArg(tc, index);
1690    size_t count = p->getSyscallArg(tc, index);
1691    typename OS::tgt_iovec tiov[count];
1692    struct iovec hiov[count];
1693    for (size_t i = 0; i < count; ++i) {
1694        prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1695                      (uint8_t*)&tiov[i], sizeof(typename OS::tgt_iovec));
1696        hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1697        hiov[i].iov_base = new char [hiov[i].iov_len];
1698    }
1699
1700    int result = readv(sim_fd, hiov, count);
1701    int local_errno = errno;
1702
1703    for (size_t i = 0; i < count; ++i) {
1704        if (result != -1) {
1705            prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1706                           (uint8_t*)hiov[i].iov_base, hiov[i].iov_len);
1707        }
1708        delete [] (char *)hiov[i].iov_base;
1709    }
1710
1711    return (result == -1) ? -local_errno : result;
1712}
1713
1714/// Target writev() handler.
1715template <class OS>
1716SyscallReturn
1717writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1718{
1719    int index = 0;
1720    int tgt_fd = p->getSyscallArg(tc, index);
1721
1722    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1723    if (!hbfdp)
1724        return -EBADF;
1725    int sim_fd = hbfdp->getSimFD();
1726
1727    SETranslatingPortProxy &prox = tc->getMemProxy();
1728    uint64_t tiov_base = p->getSyscallArg(tc, index);
1729    size_t count = p->getSyscallArg(tc, index);
1730    struct iovec hiov[count];
1731    for (size_t i = 0; i < count; ++i) {
1732        typename OS::tgt_iovec tiov;
1733
1734        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1735                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1736        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1737        hiov[i].iov_base = new char [hiov[i].iov_len];
1738        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1739                      hiov[i].iov_len);
1740    }
1741
1742    int result = writev(sim_fd, hiov, count);
1743
1744    for (size_t i = 0; i < count; ++i)
1745        delete [] (char *)hiov[i].iov_base;
1746
1747    return (result == -1) ? -errno : result;
1748}
1749
1750/// Real mmap handler.
1751template <class OS>
1752SyscallReturn
1753mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1754         bool is_mmap2)
1755{
1756    int index = 0;
1757    Addr start = p->getSyscallArg(tc, index);
1758    uint64_t length = p->getSyscallArg(tc, index);
1759    int prot = p->getSyscallArg(tc, index);
1760    int tgt_flags = p->getSyscallArg(tc, index);
1761    int tgt_fd = p->getSyscallArg(tc, index);
1762    int offset = p->getSyscallArg(tc, index);
1763
1764    if (is_mmap2)
1765        offset *= TheISA::PageBytes;
1766
1767    if (start & (TheISA::PageBytes - 1) ||
1768        offset & (TheISA::PageBytes - 1) ||
1769        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1770         tgt_flags & OS::TGT_MAP_SHARED) ||
1771        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1772         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1773        !length) {
1774        return -EINVAL;
1775    }
1776
1777    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1778        // With shared mmaps, there are two cases to consider:
1779        // 1) anonymous: writes should modify the mapping and this should be
1780        // visible to observers who share the mapping. Currently, it's
1781        // difficult to update the shared mapping because there's no
1782        // structure which maintains information about the which virtual
1783        // memory areas are shared. If that structure existed, it would be
1784        // possible to make the translations point to the same frames.
1785        // 2) file-backed: writes should modify the mapping and the file
1786        // which is backed by the mapping. The shared mapping problem is the
1787        // same as what was mentioned about the anonymous mappings. For
1788        // file-backed mappings, the writes to the file are difficult
1789        // because it requires syncing what the mapping holds with the file
1790        // that resides on the host system. So, any write on a real system
1791        // would cause the change to be propagated to the file mapping at
1792        // some point in the future (the inode is tracked along with the
1793        // mapping). This isn't guaranteed to always happen, but it usually
1794        // works well enough. The guarantee is provided by the msync system
1795        // call. We could force the change through with shared mappings with
1796        // a call to msync, but that again would require more information
1797        // than we currently maintain.
1798        warn("mmap: writing to shared mmap region is currently "
1799             "unsupported. The write succeeds on the target, but it "
1800             "will not be propagated to the host or shared mappings");
1801    }
1802
1803    length = roundUp(length, TheISA::PageBytes);
1804
1805    int sim_fd = -1;
1806    uint8_t *pmap = nullptr;
1807    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1808        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1809
1810        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1811        if (dfdp) {
1812            EmulatedDriver *emul_driver = dfdp->getDriver();
1813            return emul_driver->mmap(p, tc, start, length, prot,
1814                                     tgt_flags, tgt_fd, offset);
1815        }
1816
1817        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1818        if (!ffdp)
1819            return -EBADF;
1820        sim_fd = ffdp->getSimFD();
1821
1822        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1823                                    sim_fd, offset);
1824
1825        if (pmap == (decltype(pmap))-1) {
1826            warn("mmap: failed to map file into host address space");
1827            return -errno;
1828        }
1829    }
1830
1831    // Extend global mmap region if necessary. Note that we ignore the
1832    // start address unless MAP_FIXED is specified.
1833    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1834        std::shared_ptr<MemState> mem_state = p->memState;
1835        Addr mmap_end = mem_state->getMmapEnd();
1836
1837        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1838        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1839
1840        mem_state->setMmapEnd(mmap_end);
1841    }
1842
1843    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1844                    start, start + length - 1);
1845
1846    // We only allow mappings to overwrite existing mappings if
1847    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1848    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1849    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1850    if (clobber) {
1851        for (auto tc : p->system->threadContexts) {
1852            // If we might be overwriting old mappings, we need to
1853            // invalidate potentially stale mappings out of the TLBs.
1854            tc->getDTBPtr()->flushAll();
1855            tc->getITBPtr()->flushAll();
1856        }
1857    }
1858
1859    // Allocate physical memory and map it in. If the page table is already
1860    // mapped and clobber is not set, the simulator will issue throw a
1861    // fatal and bail out of the simulation.
1862    p->allocateMem(start, length, clobber);
1863
1864    // Transfer content into target address space.
1865    SETranslatingPortProxy &tp = tc->getMemProxy();
1866    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1867        // In general, we should zero the mapped area for anonymous mappings,
1868        // with something like:
1869        //     tp.memsetBlob(start, 0, length);
1870        // However, given that we don't support sparse mappings, and
1871        // some applications can map a couple of gigabytes of space
1872        // (intending sparse usage), that can get painfully expensive.
1873        // Fortunately, since we don't properly implement munmap either,
1874        // there's no danger of remapping used memory, so for now all
1875        // newly mapped memory should already be zeroed so we can skip it.
1876    } else {
1877        // It is possible to mmap an area larger than a file, however
1878        // accessing unmapped portions the system triggers a "Bus error"
1879        // on the host. We must know when to stop copying the file from
1880        // the host into the target address space.
1881        struct stat file_stat;
1882        if (fstat(sim_fd, &file_stat) > 0)
1883            fatal("mmap: cannot stat file");
1884
1885        // Copy the portion of the file that is resident. This requires
1886        // checking both the mmap size and the filesize that we are
1887        // trying to mmap into this space; the mmap size also depends
1888        // on the specified offset into the file.
1889        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1890                                 length);
1891        tp.writeBlob(start, pmap, size);
1892
1893        // Cleanup the mmap region before exiting this function.
1894        munmap(pmap, length);
1895
1896        // Maintain the symbol table for dynamic executables.
1897        // The loader will call mmap to map the images into its address
1898        // space and we intercept that here. We can verify that we are
1899        // executing inside the loader by checking the program counter value.
1900        // XXX: with multiprogrammed workloads or multi-node configurations,
1901        // this will not work since there is a single global symbol table.
1902        ObjectFile *interpreter = p->getInterpreter();
1903        if (interpreter) {
1904            Addr text_start = interpreter->textBase();
1905            Addr text_end = text_start + interpreter->textSize();
1906
1907            Addr pc = tc->pcState().pc();
1908
1909            if (pc >= text_start && pc < text_end) {
1910                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1911                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1912                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1913
1914                if (lib) {
1915                    lib->loadAllSymbols(debugSymbolTable,
1916                                        lib->textBase(), start);
1917                }
1918            }
1919        }
1920
1921        // Note that we do not zero out the remainder of the mapping. This
1922        // is done by a real system, but it probably will not affect
1923        // execution (hopefully).
1924    }
1925
1926    return start;
1927}
1928
1929template <class OS>
1930SyscallReturn
1931pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1932{
1933    int index = 0;
1934    int tgt_fd = p->getSyscallArg(tc, index);
1935    Addr bufPtr = p->getSyscallArg(tc, index);
1936    int nbytes = p->getSyscallArg(tc, index);
1937    int offset = p->getSyscallArg(tc, index);
1938
1939    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1940    if (!ffdp)
1941        return -EBADF;
1942    int sim_fd = ffdp->getSimFD();
1943
1944    BufferArg bufArg(bufPtr, nbytes);
1945    bufArg.copyIn(tc->getMemProxy());
1946
1947    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1948
1949    return (bytes_written == -1) ? -errno : bytes_written;
1950}
1951
1952/// Target mmap() handler.
1953template <class OS>
1954SyscallReturn
1955mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1956{
1957    return mmapImpl<OS>(desc, num, p, tc, false);
1958}
1959
1960/// Target mmap2() handler.
1961template <class OS>
1962SyscallReturn
1963mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1964{
1965    return mmapImpl<OS>(desc, num, p, tc, true);
1966}
1967
1968/// Target getrlimit() handler.
1969template <class OS>
1970SyscallReturn
1971getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1972              ThreadContext *tc)
1973{
1974    int index = 0;
1975    unsigned resource = process->getSyscallArg(tc, index);
1976    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1977
1978    switch (resource) {
1979      case OS::TGT_RLIMIT_STACK:
1980        // max stack size in bytes: make up a number (8MB for now)
1981        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1982        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1983        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1984        break;
1985
1986      case OS::TGT_RLIMIT_DATA:
1987        // max data segment size in bytes: make up a number
1988        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1989        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1990        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1991        break;
1992
1993      default:
1994        warn("getrlimit: unimplemented resource %d", resource);
1995        return -EINVAL;
1996        break;
1997    }
1998
1999    rlp.copyOut(tc->getMemProxy());
2000    return 0;
2001}
2002
2003template <class OS>
2004SyscallReturn
2005prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
2006            ThreadContext *tc)
2007{
2008    int index = 0;
2009    if (process->getSyscallArg(tc, index) != 0)
2010    {
2011        warn("prlimit: ignoring rlimits for nonzero pid");
2012        return -EPERM;
2013    }
2014    int resource = process->getSyscallArg(tc, index);
2015    Addr n = process->getSyscallArg(tc, index);
2016    if (n != 0)
2017        warn("prlimit: ignoring new rlimit");
2018    Addr o = process->getSyscallArg(tc, index);
2019    if (o != 0)
2020    {
2021        TypedBufferArg<typename OS::rlimit> rlp(o);
2022        switch (resource) {
2023          case OS::TGT_RLIMIT_STACK:
2024            // max stack size in bytes: make up a number (8MB for now)
2025            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2026            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2027            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2028            break;
2029          case OS::TGT_RLIMIT_DATA:
2030            // max data segment size in bytes: make up a number
2031            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
2032            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2033            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2034            break;
2035          default:
2036            warn("prlimit: unimplemented resource %d", resource);
2037            return -EINVAL;
2038            break;
2039        }
2040        rlp.copyOut(tc->getMemProxy());
2041    }
2042    return 0;
2043}
2044
2045/// Target clock_gettime() function.
2046template <class OS>
2047SyscallReturn
2048clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2049{
2050    int index = 1;
2051    //int clk_id = p->getSyscallArg(tc, index);
2052    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2053
2054    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
2055    tp->tv_sec += seconds_since_epoch;
2056    tp->tv_sec = TheISA::htog(tp->tv_sec);
2057    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
2058
2059    tp.copyOut(tc->getMemProxy());
2060
2061    return 0;
2062}
2063
2064/// Target clock_getres() function.
2065template <class OS>
2066SyscallReturn
2067clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2068{
2069    int index = 1;
2070    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2071
2072    // Set resolution at ns, which is what clock_gettime() returns
2073    tp->tv_sec = 0;
2074    tp->tv_nsec = 1;
2075
2076    tp.copyOut(tc->getMemProxy());
2077
2078    return 0;
2079}
2080
2081/// Target gettimeofday() handler.
2082template <class OS>
2083SyscallReturn
2084gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
2085                 ThreadContext *tc)
2086{
2087    int index = 0;
2088    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
2089
2090    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
2091    tp->tv_sec += seconds_since_epoch;
2092    tp->tv_sec = TheISA::htog(tp->tv_sec);
2093    tp->tv_usec = TheISA::htog(tp->tv_usec);
2094
2095    tp.copyOut(tc->getMemProxy());
2096
2097    return 0;
2098}
2099
2100
2101/// Target utimes() handler.
2102template <class OS>
2103SyscallReturn
2104utimesFunc(SyscallDesc *desc, int callnum, Process *process,
2105           ThreadContext *tc)
2106{
2107    std::string path;
2108
2109    int index = 0;
2110    if (!tc->getMemProxy().tryReadString(path,
2111                process->getSyscallArg(tc, index))) {
2112        return -EFAULT;
2113    }
2114
2115    TypedBufferArg<typename OS::timeval [2]>
2116        tp(process->getSyscallArg(tc, index));
2117    tp.copyIn(tc->getMemProxy());
2118
2119    struct timeval hostTimeval[2];
2120    for (int i = 0; i < 2; ++i) {
2121        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2122        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2123    }
2124
2125    // Adjust path for cwd and redirection
2126    path = process->checkPathRedirect(path);
2127
2128    int result = utimes(path.c_str(), hostTimeval);
2129
2130    if (result < 0)
2131        return -errno;
2132
2133    return 0;
2134}
2135
2136template <class OS>
2137SyscallReturn
2138execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2139{
2140    desc->setFlags(0);
2141
2142    int index = 0;
2143    std::string path;
2144    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
2145    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2146        return -EFAULT;
2147
2148    if (access(path.c_str(), F_OK) == -1)
2149        return -EACCES;
2150
2151    auto read_in = [](std::vector<std::string> & vect,
2152                      SETranslatingPortProxy & mem_proxy,
2153                      Addr mem_loc)
2154    {
2155        for (int inc = 0; ; inc++) {
2156            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2157            b.copyIn(mem_proxy);
2158
2159            if (!*(Addr*)b.bufferPtr())
2160                break;
2161
2162            vect.push_back(std::string());
2163            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2164        }
2165    };
2166
2167    /**
2168     * Note that ProcessParams is generated by swig and there are no other
2169     * examples of how to create anything but this default constructor. The
2170     * fields are manually initialized instead of passing parameters to the
2171     * constructor.
2172     */
2173    ProcessParams *pp = new ProcessParams();
2174    pp->executable = path;
2175    Addr argv_mem_loc = p->getSyscallArg(tc, index);
2176    read_in(pp->cmd, mem_proxy, argv_mem_loc);
2177    Addr envp_mem_loc = p->getSyscallArg(tc, index);
2178    read_in(pp->env, mem_proxy, envp_mem_loc);
2179    pp->uid = p->uid();
2180    pp->egid = p->egid();
2181    pp->euid = p->euid();
2182    pp->gid = p->gid();
2183    pp->ppid = p->ppid();
2184    pp->pid = p->pid();
2185    pp->input.assign("cin");
2186    pp->output.assign("cout");
2187    pp->errout.assign("cerr");
2188    pp->cwd.assign(p->tgtCwd);
2189    pp->system = p->system;
2190    /**
2191     * Prevent process object creation with identical PIDs (which will trip
2192     * a fatal check in Process constructor). The execve call is supposed to
2193     * take over the currently executing process' identity but replace
2194     * whatever it is doing with a new process image. Instead of hijacking
2195     * the process object in the simulator, we create a new process object
2196     * and bind to the previous process' thread below (hijacking the thread).
2197     */
2198    p->system->PIDs.erase(p->pid());
2199    Process *new_p = pp->create();
2200    delete pp;
2201
2202    /**
2203     * Work through the file descriptor array and close any files marked
2204     * close-on-exec.
2205     */
2206    new_p->fds = p->fds;
2207    for (int i = 0; i < new_p->fds->getSize(); i++) {
2208        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2209        if (fdep && fdep->getCOE())
2210            new_p->fds->closeFDEntry(i);
2211    }
2212
2213    *new_p->sigchld = true;
2214
2215    delete p;
2216    tc->clearArchRegs();
2217    tc->setProcessPtr(new_p);
2218    new_p->assignThreadContext(tc->contextId());
2219    new_p->initState();
2220    tc->activate();
2221    TheISA::PCState pcState = tc->pcState();
2222    tc->setNPC(pcState.instAddr());
2223
2224    desc->setFlags(SyscallDesc::SuppressReturnValue);
2225    return 0;
2226}
2227
2228/// Target getrusage() function.
2229template <class OS>
2230SyscallReturn
2231getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2232              ThreadContext *tc)
2233{
2234    int index = 0;
2235    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2236    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2237
2238    rup->ru_utime.tv_sec = 0;
2239    rup->ru_utime.tv_usec = 0;
2240    rup->ru_stime.tv_sec = 0;
2241    rup->ru_stime.tv_usec = 0;
2242    rup->ru_maxrss = 0;
2243    rup->ru_ixrss = 0;
2244    rup->ru_idrss = 0;
2245    rup->ru_isrss = 0;
2246    rup->ru_minflt = 0;
2247    rup->ru_majflt = 0;
2248    rup->ru_nswap = 0;
2249    rup->ru_inblock = 0;
2250    rup->ru_oublock = 0;
2251    rup->ru_msgsnd = 0;
2252    rup->ru_msgrcv = 0;
2253    rup->ru_nsignals = 0;
2254    rup->ru_nvcsw = 0;
2255    rup->ru_nivcsw = 0;
2256
2257    switch (who) {
2258      case OS::TGT_RUSAGE_SELF:
2259        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2260        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2261        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2262        break;
2263
2264      case OS::TGT_RUSAGE_CHILDREN:
2265        // do nothing.  We have no child processes, so they take no time.
2266        break;
2267
2268      default:
2269        // don't really handle THREAD or CHILDREN, but just warn and
2270        // plow ahead
2271        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
2272             who);
2273    }
2274
2275    rup.copyOut(tc->getMemProxy());
2276
2277    return 0;
2278}
2279
2280/// Target times() function.
2281template <class OS>
2282SyscallReturn
2283timesFunc(SyscallDesc *desc, int callnum, Process *process,
2284          ThreadContext *tc)
2285{
2286    int index = 0;
2287    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2288
2289    // Fill in the time structure (in clocks)
2290    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2291    bufp->tms_utime = clocks;
2292    bufp->tms_stime = 0;
2293    bufp->tms_cutime = 0;
2294    bufp->tms_cstime = 0;
2295
2296    // Convert to host endianness
2297    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2298
2299    // Write back
2300    bufp.copyOut(tc->getMemProxy());
2301
2302    // Return clock ticks since system boot
2303    return clocks;
2304}
2305
2306/// Target time() function.
2307template <class OS>
2308SyscallReturn
2309timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2310{
2311    typename OS::time_t sec, usec;
2312    getElapsedTimeMicro(sec, usec);
2313    sec += seconds_since_epoch;
2314
2315    int index = 0;
2316    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2317    if (taddr != 0) {
2318        typename OS::time_t t = sec;
2319        t = TheISA::htog(t);
2320        SETranslatingPortProxy &p = tc->getMemProxy();
2321        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2322    }
2323    return sec;
2324}
2325
2326template <class OS>
2327SyscallReturn
2328tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2329{
2330    int index = 0;
2331    int tgid = process->getSyscallArg(tc, index);
2332    int tid = process->getSyscallArg(tc, index);
2333    int sig = process->getSyscallArg(tc, index);
2334
2335    /**
2336     * This system call is intended to allow killing a specific thread
2337     * within an arbitrary thread group if sanctioned with permission checks.
2338     * It's usually true that threads share the termination signal as pointed
2339     * out by the pthread_kill man page and this seems to be the intended
2340     * usage. Due to this being an emulated environment, assume the following:
2341     * Threads are allowed to call tgkill because the EUID for all threads
2342     * should be the same. There is no signal handling mechanism for kernel
2343     * registration of signal handlers since signals are poorly supported in
2344     * emulation mode. Since signal handlers cannot be registered, all
2345     * threads within in a thread group must share the termination signal.
2346     * We never exhaust PIDs so there's no chance of finding the wrong one
2347     * due to PID rollover.
2348     */
2349
2350    System *sys = tc->getSystemPtr();
2351    Process *tgt_proc = nullptr;
2352    for (int i = 0; i < sys->numContexts(); i++) {
2353        Process *temp = sys->threadContexts[i]->getProcessPtr();
2354        if (temp->pid() == tid) {
2355            tgt_proc = temp;
2356            break;
2357        }
2358    }
2359
2360    if (sig != 0 || sig != OS::TGT_SIGABRT)
2361        return -EINVAL;
2362
2363    if (tgt_proc == nullptr)
2364        return -ESRCH;
2365
2366    if (tgid != -1 && tgt_proc->tgid() != tgid)
2367        return -ESRCH;
2368
2369    if (sig == OS::TGT_SIGABRT)
2370        exitGroupFunc(desc, 252, process, tc);
2371
2372    return 0;
2373}
2374
2375template <class OS>
2376SyscallReturn
2377socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2378{
2379    int index = 0;
2380    int domain = p->getSyscallArg(tc, index);
2381    int type = p->getSyscallArg(tc, index);
2382    int prot = p->getSyscallArg(tc, index);
2383
2384    int sim_fd = socket(domain, type, prot);
2385    if (sim_fd == -1)
2386        return -errno;
2387
2388    auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2389    int tgt_fd = p->fds->allocFD(sfdp);
2390
2391    return tgt_fd;
2392}
2393
2394template <class OS>
2395SyscallReturn
2396socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2397{
2398    int index = 0;
2399    int domain = p->getSyscallArg(tc, index);
2400    int type = p->getSyscallArg(tc, index);
2401    int prot = p->getSyscallArg(tc, index);
2402    Addr svPtr = p->getSyscallArg(tc, index);
2403
2404    BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2405    int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2406    if (status == -1)
2407        return -errno;
2408
2409    int *fds = (int *)svBuf.bufferPtr();
2410
2411    auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2412    fds[0] = p->fds->allocFD(sfdp1);
2413    auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2414    fds[1] = p->fds->allocFD(sfdp2);
2415    svBuf.copyOut(tc->getMemProxy());
2416
2417    return status;
2418}
2419
2420template <class OS>
2421SyscallReturn
2422selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2423{
2424    int retval;
2425
2426    int index = 0;
2427    int nfds_t = p->getSyscallArg(tc, index);
2428    Addr fds_read_ptr = p->getSyscallArg(tc, index);
2429    Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2430    Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2431    Addr time_val_ptr = p->getSyscallArg(tc, index);
2432
2433    TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2434    TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2435    TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2436    TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2437
2438    /**
2439     * Host fields. Notice that these use the definitions from the system
2440     * headers instead of the gem5 headers and libraries. If the host and
2441     * target have different header file definitions, this will not work.
2442     */
2443    fd_set rd_h;
2444    FD_ZERO(&rd_h);
2445    fd_set wr_h;
2446    FD_ZERO(&wr_h);
2447    fd_set ex_h;
2448    FD_ZERO(&ex_h);
2449
2450    /**
2451     * Copy in the fd_set from the target.
2452     */
2453    if (fds_read_ptr)
2454        rd_t.copyIn(tc->getMemProxy());
2455    if (fds_writ_ptr)
2456        wr_t.copyIn(tc->getMemProxy());
2457    if (fds_excp_ptr)
2458        ex_t.copyIn(tc->getMemProxy());
2459
2460    /**
2461     * We need to translate the target file descriptor set into a host file
2462     * descriptor set. This involves both our internal process fd array
2463     * and the fd_set defined in Linux header files. The nfds field also
2464     * needs to be updated as it will be only target specific after
2465     * retrieving it from the target; the nfds value is expected to be the
2466     * highest file descriptor that needs to be checked, so we need to extend
2467     * it out for nfds_h when we do the update.
2468     */
2469    int nfds_h = 0;
2470    std::map<int, int> trans_map;
2471    auto try_add_host_set = [&](fd_set *tgt_set_entry,
2472                                fd_set *hst_set_entry,
2473                                int iter) -> bool
2474    {
2475        /**
2476         * By this point, we know that we are looking at a valid file
2477         * descriptor set on the target. We need to check if the target file
2478         * descriptor value passed in as iter is part of the set.
2479         */
2480        if (FD_ISSET(iter, tgt_set_entry)) {
2481            /**
2482             * We know that the target file descriptor belongs to the set,
2483             * but we do not yet know if the file descriptor is valid or
2484             * that we have a host mapping. Check that now.
2485             */
2486            auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2487            if (!hbfdp)
2488                return true;
2489            auto sim_fd = hbfdp->getSimFD();
2490
2491            /**
2492             * Add the sim_fd to tgt_fd translation into trans_map for use
2493             * later when we need to zero the target fd_set structures and
2494             * then update them with hits returned from the host select call.
2495             */
2496            trans_map[sim_fd] = iter;
2497
2498            /**
2499             * We know that the host file descriptor exists so now we check
2500             * if we need to update the max count for nfds_h before passing
2501             * the duplicated structure into the host.
2502             */
2503            nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2504
2505            /**
2506             * Add the host file descriptor to the set that we are going to
2507             * pass into the host.
2508             */
2509            FD_SET(sim_fd, hst_set_entry);
2510        }
2511        return false;
2512    };
2513
2514    for (int i = 0; i < nfds_t; i++) {
2515        if (fds_read_ptr) {
2516            bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2517            if (ebadf) return -EBADF;
2518        }
2519        if (fds_writ_ptr) {
2520            bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2521            if (ebadf) return -EBADF;
2522        }
2523        if (fds_excp_ptr) {
2524            bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2525            if (ebadf) return -EBADF;
2526        }
2527    }
2528
2529    if (time_val_ptr) {
2530        /**
2531         * It might be possible to decrement the timeval based on some
2532         * derivation of wall clock determined from elapsed simulator ticks
2533         * but that seems like overkill. Rather, we just set the timeval with
2534         * zero timeout. (There is no reason to block during the simulation
2535         * as it only decreases simulator performance.)
2536         */
2537        tp->tv_sec = 0;
2538        tp->tv_usec = 0;
2539
2540        retval = select(nfds_h,
2541                        fds_read_ptr ? &rd_h : nullptr,
2542                        fds_writ_ptr ? &wr_h : nullptr,
2543                        fds_excp_ptr ? &ex_h : nullptr,
2544                        (timeval*)&*tp);
2545    } else {
2546        /**
2547         * If the timeval pointer is null, setup a new timeval structure to
2548         * pass into the host select call. Unfortunately, we will need to
2549         * manually check the return value and throw a retry fault if the
2550         * return value is zero. Allowing the system call to block will
2551         * likely deadlock the event queue.
2552         */
2553        struct timeval tv = { 0, 0 };
2554
2555        retval = select(nfds_h,
2556                        fds_read_ptr ? &rd_h : nullptr,
2557                        fds_writ_ptr ? &wr_h : nullptr,
2558                        fds_excp_ptr ? &ex_h : nullptr,
2559                        &tv);
2560
2561        if (retval == 0) {
2562            /**
2563             * If blocking indefinitely, check the signal list to see if a
2564             * signal would break the poll out of the retry cycle and try to
2565             * return the signal interrupt instead.
2566             */
2567            for (auto sig : tc->getSystemPtr()->signalList)
2568                if (sig.receiver == p)
2569                    return -EINTR;
2570            return SyscallReturn::retry();
2571        }
2572    }
2573
2574    if (retval == -1)
2575        return -errno;
2576
2577    FD_ZERO((fd_set*)&*rd_t);
2578    FD_ZERO((fd_set*)&*wr_t);
2579    FD_ZERO((fd_set*)&*ex_t);
2580
2581    /**
2582     * We need to translate the host file descriptor set into a target file
2583     * descriptor set. This involves both our internal process fd array
2584     * and the fd_set defined in header files.
2585     */
2586    for (int i = 0; i < nfds_h; i++) {
2587        if (fds_read_ptr) {
2588            if (FD_ISSET(i, &rd_h))
2589                FD_SET(trans_map[i], (fd_set*)&*rd_t);
2590        }
2591
2592        if (fds_writ_ptr) {
2593            if (FD_ISSET(i, &wr_h))
2594                FD_SET(trans_map[i], (fd_set*)&*wr_t);
2595        }
2596
2597        if (fds_excp_ptr) {
2598            if (FD_ISSET(i, &ex_h))
2599                FD_SET(trans_map[i], (fd_set*)&*ex_t);
2600        }
2601    }
2602
2603    if (fds_read_ptr)
2604        rd_t.copyOut(tc->getMemProxy());
2605    if (fds_writ_ptr)
2606        wr_t.copyOut(tc->getMemProxy());
2607    if (fds_excp_ptr)
2608        ex_t.copyOut(tc->getMemProxy());
2609    if (time_val_ptr)
2610        tp.copyOut(tc->getMemProxy());
2611
2612    return retval;
2613}
2614
2615template <class OS>
2616SyscallReturn
2617readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2618{
2619    int index = 0;
2620    int tgt_fd = p->getSyscallArg(tc, index);
2621    Addr buf_ptr = p->getSyscallArg(tc, index);
2622    int nbytes = p->getSyscallArg(tc, index);
2623
2624    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2625    if (!hbfdp)
2626        return -EBADF;
2627    int sim_fd = hbfdp->getSimFD();
2628
2629    struct pollfd pfd;
2630    pfd.fd = sim_fd;
2631    pfd.events = POLLIN | POLLPRI;
2632    if ((poll(&pfd, 1, 0) == 0)
2633        && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2634        return SyscallReturn::retry();
2635
2636    BufferArg buf_arg(buf_ptr, nbytes);
2637    int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2638
2639    if (bytes_read > 0)
2640        buf_arg.copyOut(tc->getMemProxy());
2641
2642    return (bytes_read == -1) ? -errno : bytes_read;
2643}
2644
2645template <class OS>
2646SyscallReturn
2647writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2648{
2649    int index = 0;
2650    int tgt_fd = p->getSyscallArg(tc, index);
2651    Addr buf_ptr = p->getSyscallArg(tc, index);
2652    int nbytes = p->getSyscallArg(tc, index);
2653
2654    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2655    if (!hbfdp)
2656        return -EBADF;
2657    int sim_fd = hbfdp->getSimFD();
2658
2659    BufferArg buf_arg(buf_ptr, nbytes);
2660    buf_arg.copyIn(tc->getMemProxy());
2661
2662    struct pollfd pfd;
2663    pfd.fd = sim_fd;
2664    pfd.events = POLLOUT;
2665
2666    /**
2667     * We don't want to poll on /dev/random. The kernel will not enable the
2668     * file descriptor for writing unless the entropy in the system falls
2669     * below write_wakeup_threshold. This is not guaranteed to happen
2670     * depending on host settings.
2671     */
2672    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2673    if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2674        if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2675            return SyscallReturn::retry();
2676    }
2677
2678    int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2679
2680    if (bytes_written != -1)
2681        fsync(sim_fd);
2682
2683    return (bytes_written == -1) ? -errno : bytes_written;
2684}
2685
2686template <class OS>
2687SyscallReturn
2688wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2689{
2690    int index = 0;
2691    pid_t pid = p->getSyscallArg(tc, index);
2692    Addr statPtr = p->getSyscallArg(tc, index);
2693    int options = p->getSyscallArg(tc, index);
2694    Addr rusagePtr = p->getSyscallArg(tc, index);
2695
2696    if (rusagePtr)
2697        DPRINTFR(SyscallVerbose,
2698                 "%d: %s: syscall wait4: rusage pointer provided however "
2699                 "functionality not supported. Ignoring rusage pointer.\n",
2700                 curTick(), tc->getCpuPtr()->name());
2701
2702    /**
2703     * Currently, wait4 is only implemented so that it will wait for children
2704     * exit conditions which are denoted by a SIGCHLD signals posted into the
2705     * system signal list. We return no additional information via any of the
2706     * parameters supplied to wait4. If nothing is found in the system signal
2707     * list, we will wait indefinitely for SIGCHLD to post by retrying the
2708     * call.
2709     */
2710    System *sysh = tc->getSystemPtr();
2711    std::list<BasicSignal>::iterator iter;
2712    for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2713        if (iter->receiver == p) {
2714            if (pid < -1) {
2715                if ((iter->sender->pgid() == -pid)
2716                    && (iter->signalValue == OS::TGT_SIGCHLD))
2717                    goto success;
2718            } else if (pid == -1) {
2719                if (iter->signalValue == OS::TGT_SIGCHLD)
2720                    goto success;
2721            } else if (pid == 0) {
2722                if ((iter->sender->pgid() == p->pgid())
2723                    && (iter->signalValue == OS::TGT_SIGCHLD))
2724                    goto success;
2725            } else {
2726                if ((iter->sender->pid() == pid)
2727                    && (iter->signalValue == OS::TGT_SIGCHLD))
2728                    goto success;
2729            }
2730        }
2731    }
2732
2733    return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2734
2735success:
2736    // Set status to EXITED for WIFEXITED evaluations.
2737    const int EXITED = 0;
2738    BufferArg statusBuf(statPtr, sizeof(int));
2739    *(int *)statusBuf.bufferPtr() = EXITED;
2740    statusBuf.copyOut(tc->getMemProxy());
2741
2742    // Return the child PID.
2743    pid_t retval = iter->sender->pid();
2744    sysh->signalList.erase(iter);
2745    return retval;
2746}
2747
2748template <class OS>
2749SyscallReturn
2750acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2751{
2752    struct sockaddr sa;
2753    socklen_t addrLen;
2754    int host_fd;
2755    int index = 0;
2756    int tgt_fd = p->getSyscallArg(tc, index);
2757    Addr addrPtr = p->getSyscallArg(tc, index);
2758    Addr lenPtr = p->getSyscallArg(tc, index);
2759
2760    BufferArg *lenBufPtr = nullptr;
2761    BufferArg *addrBufPtr = nullptr;
2762
2763    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2764    if (!sfdp)
2765        return -EBADF;
2766    int sim_fd = sfdp->getSimFD();
2767
2768    /**
2769     * We poll the socket file descriptor first to guarantee that we do not
2770     * block on our accept call. The socket can be opened without the
2771     * non-blocking flag (it blocks). This will cause deadlocks between
2772     * communicating processes.
2773     */
2774    struct pollfd pfd;
2775    pfd.fd = sim_fd;
2776    pfd.events = POLLIN | POLLPRI;
2777    if ((poll(&pfd, 1, 0) == 0)
2778        && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2779        return SyscallReturn::retry();
2780
2781    if (lenPtr) {
2782        lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2783        lenBufPtr->copyIn(tc->getMemProxy());
2784        memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2785               sizeof(socklen_t));
2786    }
2787
2788    if (addrPtr) {
2789        addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2790        addrBufPtr->copyIn(tc->getMemProxy());
2791        memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2792               sizeof(struct sockaddr));
2793    }
2794
2795    host_fd = accept(sim_fd, &sa, &addrLen);
2796
2797    if (host_fd == -1)
2798        return -errno;
2799
2800    if (addrPtr) {
2801        memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2802        addrBufPtr->copyOut(tc->getMemProxy());
2803        delete(addrBufPtr);
2804    }
2805
2806    if (lenPtr) {
2807        *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2808        lenBufPtr->copyOut(tc->getMemProxy());
2809        delete(lenBufPtr);
2810    }
2811
2812    auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2813                                                sfdp->_type, sfdp->_protocol);
2814    return p->fds->allocFD(afdp);
2815}
2816
2817#endif // __SIM_SYSCALL_EMUL_HH__
2818