syscall_emul.hh revision 13650:93efc0143eb7
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <poll.h>
82#include <sys/mman.h>
83#include <sys/socket.h>
84#include <sys/stat.h>
85#if (NO_STATFS == 0)
86#include <sys/statfs.h>
87#else
88#include <sys/mount.h>
89#endif
90#include <sys/time.h>
91#include <sys/types.h>
92#include <sys/uio.h>
93#include <unistd.h>
94
95#include <cerrno>
96#include <memory>
97#include <string>
98
99#include "arch/generic/tlb.hh"
100#include "arch/utility.hh"
101#include "base/intmath.hh"
102#include "base/loader/object_file.hh"
103#include "base/logging.hh"
104#include "base/trace.hh"
105#include "base/types.hh"
106#include "config/the_isa.hh"
107#include "cpu/base.hh"
108#include "cpu/thread_context.hh"
109#include "mem/page_table.hh"
110#include "params/Process.hh"
111#include "sim/emul_driver.hh"
112#include "sim/futex_map.hh"
113#include "sim/process.hh"
114#include "sim/syscall_debug_macros.hh"
115#include "sim/syscall_desc.hh"
116#include "sim/syscall_emul_buf.hh"
117#include "sim/syscall_return.hh"
118
119#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
120#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
121#endif
122
123//////////////////////////////////////////////////////////////////////
124//
125// The following emulation functions are generic enough that they
126// don't need to be recompiled for different emulated OS's.  They are
127// defined in sim/syscall_emul.cc.
128//
129//////////////////////////////////////////////////////////////////////
130
131
132/// Handler for unimplemented syscalls that we haven't thought about.
133SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
134                                Process *p, ThreadContext *tc);
135
136/// Handler for unimplemented syscalls that we never intend to
137/// implement (signal handling, etc.) and should not affect the correct
138/// behavior of the program.  Print a warning only if the appropriate
139/// trace flag is enabled.  Return success to the target program.
140SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
141                         Process *p, ThreadContext *tc);
142
143// Target fallocateFunc() handler.
144SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
145                            Process *p, ThreadContext *tc);
146
147/// Target exit() handler: terminate current context.
148SyscallReturn exitFunc(SyscallDesc *desc, int num,
149                       Process *p, ThreadContext *tc);
150
151/// Target exit_group() handler: terminate simulation. (exit all threads)
152SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
153                       Process *p, ThreadContext *tc);
154
155/// Target set_tid_address() handler.
156SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
157                                Process *p, ThreadContext *tc);
158
159/// Target getpagesize() handler.
160SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
161                              Process *p, ThreadContext *tc);
162
163/// Target brk() handler: set brk address.
164SyscallReturn brkFunc(SyscallDesc *desc, int num,
165                      Process *p, ThreadContext *tc);
166
167/// Target close() handler.
168SyscallReturn closeFunc(SyscallDesc *desc, int num,
169                        Process *p, ThreadContext *tc);
170
171/// Target lseek() handler.
172SyscallReturn lseekFunc(SyscallDesc *desc, int num,
173                        Process *p, ThreadContext *tc);
174
175/// Target _llseek() handler.
176SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
177                          Process *p, ThreadContext *tc);
178
179/// Target munmap() handler.
180SyscallReturn munmapFunc(SyscallDesc *desc, int num,
181                         Process *p, ThreadContext *tc);
182
183/// Target shutdown() handler.
184SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
185                           Process *p, ThreadContext *tc);
186
187/// Target gethostname() handler.
188SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
189                              Process *p, ThreadContext *tc);
190
191/// Target getcwd() handler.
192SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
193                         Process *p, ThreadContext *tc);
194
195/// Target readlink() handler.
196SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
197                           Process *p, ThreadContext *tc,
198                           int index = 0);
199SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
200                           Process *p, ThreadContext *tc);
201
202/// Target unlink() handler.
203SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
204                           Process *p, ThreadContext *tc,
205                           int index);
206SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
207                         Process *p, ThreadContext *tc);
208
209/// Target link() handler
210SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
211                       ThreadContext *tc);
212
213/// Target symlink() handler.
214SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
215                          ThreadContext *tc);
216
217/// Target mkdir() handler.
218SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
219                        Process *p, ThreadContext *tc);
220
221/// Target mknod() handler.
222SyscallReturn mknodFunc(SyscallDesc *desc, int num,
223                        Process *p, ThreadContext *tc);
224
225/// Target chdir() handler.
226SyscallReturn chdirFunc(SyscallDesc *desc, int num,
227                        Process *p, ThreadContext *tc);
228
229// Target rmdir() handler.
230SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
231                        Process *p, ThreadContext *tc);
232
233/// Target rename() handler.
234SyscallReturn renameFunc(SyscallDesc *desc, int num,
235                         Process *p, ThreadContext *tc);
236
237
238/// Target truncate() handler.
239SyscallReturn truncateFunc(SyscallDesc *desc, int num,
240                           Process *p, ThreadContext *tc);
241
242
243/// Target ftruncate() handler.
244SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
245                            Process *p, ThreadContext *tc);
246
247
248/// Target truncate64() handler.
249SyscallReturn truncate64Func(SyscallDesc *desc, int num,
250                             Process *p, ThreadContext *tc);
251
252/// Target ftruncate64() handler.
253SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
254                              Process *p, ThreadContext *tc);
255
256
257/// Target umask() handler.
258SyscallReturn umaskFunc(SyscallDesc *desc, int num,
259                        Process *p, ThreadContext *tc);
260
261/// Target gettid() handler.
262SyscallReturn gettidFunc(SyscallDesc *desc, int num,
263                         Process *p, ThreadContext *tc);
264
265/// Target chown() handler.
266SyscallReturn chownFunc(SyscallDesc *desc, int num,
267                        Process *p, ThreadContext *tc);
268
269/// Target setpgid() handler.
270SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
271                          Process *p, ThreadContext *tc);
272
273/// Target fchown() handler.
274SyscallReturn fchownFunc(SyscallDesc *desc, int num,
275                         Process *p, ThreadContext *tc);
276
277/// Target dup() handler.
278SyscallReturn dupFunc(SyscallDesc *desc, int num,
279                      Process *process, ThreadContext *tc);
280
281/// Target dup2() handler.
282SyscallReturn dup2Func(SyscallDesc *desc, int num,
283                       Process *process, ThreadContext *tc);
284
285/// Target fcntl() handler.
286SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
287                        Process *process, ThreadContext *tc);
288
289/// Target fcntl64() handler.
290SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
291                          Process *process, ThreadContext *tc);
292
293/// Target setuid() handler.
294SyscallReturn setuidFunc(SyscallDesc *desc, int num,
295                         Process *p, ThreadContext *tc);
296
297/// Target pipe() handler.
298SyscallReturn pipeFunc(SyscallDesc *desc, int num,
299                       Process *p, ThreadContext *tc);
300
301/// Internal pipe() handler.
302SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
303                       ThreadContext *tc, bool pseudoPipe);
304
305/// Target getpid() handler.
306SyscallReturn getpidFunc(SyscallDesc *desc, int num,
307                         Process *p, ThreadContext *tc);
308
309// Target getpeername() handler.
310SyscallReturn getpeernameFunc(SyscallDesc *desc, int num,
311                              Process *p, ThreadContext *tc);
312
313// Target bind() handler.
314SyscallReturn bindFunc(SyscallDesc *desc, int num,
315                       Process *p, ThreadContext *tc);
316
317// Target listen() handler.
318SyscallReturn listenFunc(SyscallDesc *desc, int num,
319                         Process *p, ThreadContext *tc);
320
321// Target connect() handler.
322SyscallReturn connectFunc(SyscallDesc *desc, int num,
323                          Process *p, ThreadContext *tc);
324
325#if defined(SYS_getdents)
326// Target getdents() handler.
327SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
328                           Process *p, ThreadContext *tc);
329#endif
330
331#if defined(SYS_getdents64)
332// Target getdents() handler.
333SyscallReturn getdents64Func(SyscallDesc *desc, int num,
334                           Process *p, ThreadContext *tc);
335#endif
336
337// Target sendto() handler.
338SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
339                         Process *p, ThreadContext *tc);
340
341// Target recvfrom() handler.
342SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
343                           Process *p, ThreadContext *tc);
344
345// Target recvmsg() handler.
346SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
347                          Process *p, ThreadContext *tc);
348
349// Target sendmsg() handler.
350SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
351                          Process *p, ThreadContext *tc);
352
353// Target getuid() handler.
354SyscallReturn getuidFunc(SyscallDesc *desc, int num,
355                         Process *p, ThreadContext *tc);
356
357/// Target getgid() handler.
358SyscallReturn getgidFunc(SyscallDesc *desc, int num,
359                         Process *p, ThreadContext *tc);
360
361/// Target getppid() handler.
362SyscallReturn getppidFunc(SyscallDesc *desc, int num,
363                          Process *p, ThreadContext *tc);
364
365/// Target geteuid() handler.
366SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
367                          Process *p, ThreadContext *tc);
368
369/// Target getegid() handler.
370SyscallReturn getegidFunc(SyscallDesc *desc, int num,
371                          Process *p, ThreadContext *tc);
372
373/// Target access() handler
374SyscallReturn accessFunc(SyscallDesc *desc, int num,
375                         Process *p, ThreadContext *tc);
376SyscallReturn accessFunc(SyscallDesc *desc, int num,
377                         Process *p, ThreadContext *tc,
378                         int index);
379
380// Target getsockopt() handler.
381SyscallReturn getsockoptFunc(SyscallDesc *desc, int num,
382                             Process *p, ThreadContext *tc);
383
384// Target setsockopt() handler.
385SyscallReturn setsockoptFunc(SyscallDesc *desc, int num,
386                             Process *p, ThreadContext *tc);
387
388// Target getsockname() handler.
389SyscallReturn getsocknameFunc(SyscallDesc *desc, int num,
390                              Process *p, ThreadContext *tc);
391
392/// Futex system call
393/// Implemented by Daniel Sanchez
394/// Used by printf's in multi-threaded apps
395template <class OS>
396SyscallReturn
397futexFunc(SyscallDesc *desc, int callnum, Process *process,
398          ThreadContext *tc)
399{
400    using namespace std;
401
402    int index = 0;
403    Addr uaddr = process->getSyscallArg(tc, index);
404    int op = process->getSyscallArg(tc, index);
405    int val = process->getSyscallArg(tc, index);
406    int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
407    Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
408    int val3 = process->getSyscallArg(tc, index);
409
410    /*
411     * Unsupported option that does not affect the correctness of the
412     * application. This is a performance optimization utilized by Linux.
413     */
414    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
415    op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
416
417    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
418
419    if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
420        // Ensure futex system call accessed atomically.
421        BufferArg buf(uaddr, sizeof(int));
422        buf.copyIn(tc->getMemProxy());
423        int mem_val = *(int*)buf.bufferPtr();
424
425        /*
426         * The value in memory at uaddr is not equal with the expected val
427         * (a different thread must have changed it before the system call was
428         * invoked). In this case, we need to throw an error.
429         */
430        if (val != mem_val)
431            return -OS::TGT_EWOULDBLOCK;
432
433        if (OS::TGT_FUTEX_WAIT) {
434            futex_map.suspend(uaddr, process->tgid(), tc);
435        } else {
436            futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
437        }
438
439        return 0;
440    } else if (OS::TGT_FUTEX_WAKE == op) {
441        return futex_map.wakeup(uaddr, process->tgid(), val);
442    } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
443        return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
444    } else if (OS::TGT_FUTEX_REQUEUE == op ||
445               OS::TGT_FUTEX_CMP_REQUEUE == op) {
446
447        // Ensure futex system call accessed atomically.
448        BufferArg buf(uaddr, sizeof(int));
449        buf.copyIn(tc->getMemProxy());
450        int mem_val = *(int*)buf.bufferPtr();
451        /*
452         * For CMP_REQUEUE, the whole operation is only started only if
453         * val3 is still the value of the futex pointed to by uaddr.
454         */
455        if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
456            return -OS::TGT_EWOULDBLOCK;
457        return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
458    }
459    warn("futex: op %d not implemented; ignoring.", op);
460    return -ENOSYS;
461}
462
463
464/// Pseudo Funcs  - These functions use a different return convension,
465/// returning a second value in a register other than the normal return register
466SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
467                             Process *process, ThreadContext *tc);
468
469/// Target getpidPseudo() handler.
470SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
471                               Process *p, ThreadContext *tc);
472
473/// Target getuidPseudo() handler.
474SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
475                               Process *p, ThreadContext *tc);
476
477/// Target getgidPseudo() handler.
478SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
479                               Process *p, ThreadContext *tc);
480
481
482/// A readable name for 1,000,000, for converting microseconds to seconds.
483const int one_million = 1000000;
484/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
485const int one_billion = 1000000000;
486
487/// Approximate seconds since the epoch (1/1/1970).  About a billion,
488/// by my reckoning.  We want to keep this a constant (not use the
489/// real-world time) to keep simulations repeatable.
490const unsigned seconds_since_epoch = 1000000000;
491
492/// Helper function to convert current elapsed time to seconds and
493/// microseconds.
494template <class T1, class T2>
495void
496getElapsedTimeMicro(T1 &sec, T2 &usec)
497{
498    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
499    sec = elapsed_usecs / one_million;
500    usec = elapsed_usecs % one_million;
501}
502
503/// Helper function to convert current elapsed time to seconds and
504/// nanoseconds.
505template <class T1, class T2>
506void
507getElapsedTimeNano(T1 &sec, T2 &nsec)
508{
509    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
510    sec = elapsed_nsecs / one_billion;
511    nsec = elapsed_nsecs % one_billion;
512}
513
514//////////////////////////////////////////////////////////////////////
515//
516// The following emulation functions are generic, but need to be
517// templated to account for differences in types, constants, etc.
518//
519//////////////////////////////////////////////////////////////////////
520
521    typedef struct statfs hst_statfs;
522#if NO_STAT64
523    typedef struct stat hst_stat;
524    typedef struct stat hst_stat64;
525#else
526    typedef struct stat hst_stat;
527    typedef struct stat64 hst_stat64;
528#endif
529
530//// Helper function to convert a host stat buffer to a target stat
531//// buffer.  Also copies the target buffer out to the simulated
532//// memory space.  Used by stat(), fstat(), and lstat().
533
534template <typename target_stat, typename host_stat>
535void
536convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
537{
538    using namespace TheISA;
539
540    if (fakeTTY)
541        tgt->st_dev = 0xA;
542    else
543        tgt->st_dev = host->st_dev;
544    tgt->st_dev = TheISA::htog(tgt->st_dev);
545    tgt->st_ino = host->st_ino;
546    tgt->st_ino = TheISA::htog(tgt->st_ino);
547    tgt->st_mode = host->st_mode;
548    if (fakeTTY) {
549        // Claim to be a character device
550        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
551        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
552    }
553    tgt->st_mode = TheISA::htog(tgt->st_mode);
554    tgt->st_nlink = host->st_nlink;
555    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
556    tgt->st_uid = host->st_uid;
557    tgt->st_uid = TheISA::htog(tgt->st_uid);
558    tgt->st_gid = host->st_gid;
559    tgt->st_gid = TheISA::htog(tgt->st_gid);
560    if (fakeTTY)
561        tgt->st_rdev = 0x880d;
562    else
563        tgt->st_rdev = host->st_rdev;
564    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
565    tgt->st_size = host->st_size;
566    tgt->st_size = TheISA::htog(tgt->st_size);
567    tgt->st_atimeX = host->st_atime;
568    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
569    tgt->st_mtimeX = host->st_mtime;
570    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
571    tgt->st_ctimeX = host->st_ctime;
572    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
573    // Force the block size to be 8KB. This helps to ensure buffered io works
574    // consistently across different hosts.
575    tgt->st_blksize = 0x2000;
576    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
577    tgt->st_blocks = host->st_blocks;
578    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
579}
580
581// Same for stat64
582
583template <typename target_stat, typename host_stat64>
584void
585convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
586{
587    using namespace TheISA;
588
589    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
590#if defined(STAT_HAVE_NSEC)
591    tgt->st_atime_nsec = host->st_atime_nsec;
592    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
593    tgt->st_mtime_nsec = host->st_mtime_nsec;
594    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
595    tgt->st_ctime_nsec = host->st_ctime_nsec;
596    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
597#else
598    tgt->st_atime_nsec = 0;
599    tgt->st_mtime_nsec = 0;
600    tgt->st_ctime_nsec = 0;
601#endif
602}
603
604// Here are a couple of convenience functions
605template<class OS>
606void
607copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
608               hst_stat *host, bool fakeTTY = false)
609{
610    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
611    tgt_stat_buf tgt(addr);
612    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
613    tgt.copyOut(mem);
614}
615
616template<class OS>
617void
618copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
619                 hst_stat64 *host, bool fakeTTY = false)
620{
621    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
622    tgt_stat_buf tgt(addr);
623    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
624    tgt.copyOut(mem);
625}
626
627template <class OS>
628void
629copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
630                 hst_statfs *host)
631{
632    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
633
634    tgt->f_type = TheISA::htog(host->f_type);
635#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
636    tgt->f_bsize = TheISA::htog(host->f_iosize);
637#else
638    tgt->f_bsize = TheISA::htog(host->f_bsize);
639#endif
640    tgt->f_blocks = TheISA::htog(host->f_blocks);
641    tgt->f_bfree = TheISA::htog(host->f_bfree);
642    tgt->f_bavail = TheISA::htog(host->f_bavail);
643    tgt->f_files = TheISA::htog(host->f_files);
644    tgt->f_ffree = TheISA::htog(host->f_ffree);
645    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
646#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
647    tgt->f_namelen = TheISA::htog(host->f_namemax);
648    tgt->f_frsize = TheISA::htog(host->f_bsize);
649#elif defined(__APPLE__)
650    tgt->f_namelen = 0;
651    tgt->f_frsize = 0;
652#else
653    tgt->f_namelen = TheISA::htog(host->f_namelen);
654    tgt->f_frsize = TheISA::htog(host->f_frsize);
655#endif
656#if defined(__linux__)
657    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
658#else
659    /*
660     * The fields are different sizes per OS. Don't bother with
661     * f_spare or f_reserved on non-Linux for now.
662     */
663    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
664#endif
665
666    tgt.copyOut(mem);
667}
668
669/// Target ioctl() handler.  For the most part, programs call ioctl()
670/// only to find out if their stdout is a tty, to determine whether to
671/// do line or block buffering.  We always claim that output fds are
672/// not TTYs to provide repeatable results.
673template <class OS>
674SyscallReturn
675ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
676{
677    int index = 0;
678    int tgt_fd = p->getSyscallArg(tc, index);
679    unsigned req = p->getSyscallArg(tc, index);
680
681    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
682
683    if (OS::isTtyReq(req))
684        return -ENOTTY;
685
686    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
687    if (!dfdp)
688        return -EBADF;
689
690    /**
691     * If the driver is valid, issue the ioctl through it. Otherwise,
692     * there's an implicit assumption that the device is a TTY type and we
693     * return that we do not have a valid TTY.
694     */
695    EmulatedDriver *emul_driver = dfdp->getDriver();
696    if (emul_driver)
697        return emul_driver->ioctl(p, tc, req);
698
699    /**
700     * For lack of a better return code, return ENOTTY. Ideally, we should
701     * return something better here, but at least we issue the warning.
702     */
703    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
704         tgt_fd, req, tc->pcState());
705    return -ENOTTY;
706}
707
708template <class OS>
709SyscallReturn
710openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
711         bool isopenat)
712{
713    int index = 0;
714    int tgt_dirfd = -1;
715
716    /**
717     * If using the openat variant, read in the target directory file
718     * descriptor from the simulated process.
719     */
720    if (isopenat)
721        tgt_dirfd = p->getSyscallArg(tc, index);
722
723    /**
724     * Retrieve the simulated process' memory proxy and then read in the path
725     * string from that memory space into the host's working memory space.
726     */
727    std::string path;
728    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
729        return -EFAULT;
730
731#ifdef __CYGWIN32__
732    int host_flags = O_BINARY;
733#else
734    int host_flags = 0;
735#endif
736    /**
737     * Translate target flags into host flags. Flags exist which are not
738     * ported between architectures which can cause check failures.
739     */
740    int tgt_flags = p->getSyscallArg(tc, index);
741    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
742        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
743            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
744            host_flags |= OS::openFlagTable[i].hostFlag;
745        }
746    }
747    if (tgt_flags) {
748        warn("open%s: cannot decode flags 0x%x",
749             isopenat ? "at" : "", tgt_flags);
750    }
751#ifdef __CYGWIN32__
752    host_flags |= O_BINARY;
753#endif
754
755    int mode = p->getSyscallArg(tc, index);
756
757    /**
758     * If the simulated process called open or openat with AT_FDCWD specified,
759     * take the current working directory value which was passed into the
760     * process class as a Python parameter and append the current path to
761     * create a full path.
762     * Otherwise, openat with a valid target directory file descriptor has
763     * been called. If the path option, which was passed in as a parameter,
764     * is not absolute, retrieve the directory file descriptor's path and
765     * prepend it to the path passed in as a parameter.
766     * In every case, we should have a full path (which is relevant to the
767     * host) to work with after this block has been passed.
768     */
769    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
770        path = p->fullPath(path);
771    } else if (!startswith(path, "/")) {
772        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
773        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
774        if (!ffdp)
775            return -EBADF;
776        path.insert(0, ffdp->getFileName() + "/");
777    }
778
779    /**
780     * Since this is an emulated environment, we create pseudo file
781     * descriptors for device requests that have been registered with
782     * the process class through Python; this allows us to create a file
783     * descriptor for subsequent ioctl or mmap calls.
784     */
785    if (startswith(path, "/dev/")) {
786        std::string filename = path.substr(strlen("/dev/"));
787        EmulatedDriver *drv = p->findDriver(filename);
788        if (drv) {
789            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
790                            "driver open with path[%s]\n",
791                            isopenat ? "at" : "", path.c_str());
792            return drv->open(p, tc, mode, host_flags);
793        }
794        /**
795         * Fall through here for pass through to host devices, such
796         * as /dev/zero
797         */
798    }
799
800    /**
801     * Some special paths and files cannot be called on the host and need
802     * to be handled as special cases inside the simulator.
803     * If the full path that was created above does not match any of the
804     * special cases, pass it through to the open call on the host to let
805     * the host open the file on our behalf.
806     * If the host cannot open the file, return the host's error code back
807     * through the system call to the simulated process.
808     */
809    int sim_fd = -1;
810    std::vector<std::string> special_paths =
811            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
812    for (auto entry : special_paths) {
813        if (startswith(path, entry))
814            sim_fd = OS::openSpecialFile(path, p, tc);
815    }
816    if (sim_fd == -1) {
817        sim_fd = open(path.c_str(), host_flags, mode);
818    }
819    if (sim_fd == -1) {
820        int local = -errno;
821        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
822                        isopenat ? "at" : "", path.c_str());
823        return local;
824    }
825
826    /**
827     * The file was opened successfully and needs to be recorded in the
828     * process' file descriptor array so that it can be retrieved later.
829     * The target file descriptor that is chosen will be the lowest unused
830     * file descriptor.
831     * Return the indirect target file descriptor back to the simulated
832     * process to act as a handle for the opened file.
833     */
834    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
835    int tgt_fd = p->fds->allocFD(ffdp);
836    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
837                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
838    return tgt_fd;
839}
840
841/// Target open() handler.
842template <class OS>
843SyscallReturn
844openFunc(SyscallDesc *desc, int callnum, Process *process,
845         ThreadContext *tc)
846{
847    return openImpl<OS>(desc, callnum, process, tc, false);
848}
849
850/// Target openat() handler.
851template <class OS>
852SyscallReturn
853openatFunc(SyscallDesc *desc, int callnum, Process *process,
854           ThreadContext *tc)
855{
856    return openImpl<OS>(desc, callnum, process, tc, true);
857}
858
859/// Target unlinkat() handler.
860template <class OS>
861SyscallReturn
862unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
863             ThreadContext *tc)
864{
865    int index = 0;
866    int dirfd = process->getSyscallArg(tc, index);
867    if (dirfd != OS::TGT_AT_FDCWD)
868        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
869
870    return unlinkHelper(desc, callnum, process, tc, 1);
871}
872
873/// Target facessat() handler
874template <class OS>
875SyscallReturn
876faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
877              ThreadContext *tc)
878{
879    int index = 0;
880    int dirfd = process->getSyscallArg(tc, index);
881    if (dirfd != OS::TGT_AT_FDCWD)
882        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
883    return accessFunc(desc, callnum, process, tc, 1);
884}
885
886/// Target readlinkat() handler
887template <class OS>
888SyscallReturn
889readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
890               ThreadContext *tc)
891{
892    int index = 0;
893    int dirfd = process->getSyscallArg(tc, index);
894    if (dirfd != OS::TGT_AT_FDCWD)
895        warn("openat: first argument not AT_FDCWD; unlikely to work");
896    return readlinkFunc(desc, callnum, process, tc, 1);
897}
898
899/// Target renameat() handler.
900template <class OS>
901SyscallReturn
902renameatFunc(SyscallDesc *desc, int callnum, Process *process,
903             ThreadContext *tc)
904{
905    int index = 0;
906
907    int olddirfd = process->getSyscallArg(tc, index);
908    if (olddirfd != OS::TGT_AT_FDCWD)
909        warn("renameat: first argument not AT_FDCWD; unlikely to work");
910
911    std::string old_name;
912
913    if (!tc->getMemProxy().tryReadString(old_name,
914                                         process->getSyscallArg(tc, index)))
915        return -EFAULT;
916
917    int newdirfd = process->getSyscallArg(tc, index);
918    if (newdirfd != OS::TGT_AT_FDCWD)
919        warn("renameat: third argument not AT_FDCWD; unlikely to work");
920
921    std::string new_name;
922
923    if (!tc->getMemProxy().tryReadString(new_name,
924                                         process->getSyscallArg(tc, index)))
925        return -EFAULT;
926
927    // Adjust path for current working directory
928    old_name = process->fullPath(old_name);
929    new_name = process->fullPath(new_name);
930
931    int result = rename(old_name.c_str(), new_name.c_str());
932    return (result == -1) ? -errno : result;
933}
934
935/// Target sysinfo() handler.
936template <class OS>
937SyscallReturn
938sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
939            ThreadContext *tc)
940{
941
942    int index = 0;
943    TypedBufferArg<typename OS::tgt_sysinfo>
944        sysinfo(process->getSyscallArg(tc, index));
945
946    sysinfo->uptime = seconds_since_epoch;
947    sysinfo->totalram = process->system->memSize();
948    sysinfo->mem_unit = 1;
949
950    sysinfo.copyOut(tc->getMemProxy());
951
952    return 0;
953}
954
955/// Target chmod() handler.
956template <class OS>
957SyscallReturn
958chmodFunc(SyscallDesc *desc, int callnum, Process *process,
959          ThreadContext *tc)
960{
961    std::string path;
962
963    int index = 0;
964    if (!tc->getMemProxy().tryReadString(path,
965                process->getSyscallArg(tc, index))) {
966        return -EFAULT;
967    }
968
969    uint32_t mode = process->getSyscallArg(tc, index);
970    mode_t hostMode = 0;
971
972    // XXX translate mode flags via OS::something???
973    hostMode = mode;
974
975    // Adjust path for current working directory
976    path = process->fullPath(path);
977
978    // do the chmod
979    int result = chmod(path.c_str(), hostMode);
980    if (result < 0)
981        return -errno;
982
983    return 0;
984}
985
986template <class OS>
987SyscallReturn
988pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
989{
990    int index = 0;
991    Addr fdsPtr = p->getSyscallArg(tc, index);
992    int nfds = p->getSyscallArg(tc, index);
993    int tmout = p->getSyscallArg(tc, index);
994
995    BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
996    fdsBuf.copyIn(tc->getMemProxy());
997
998    /**
999     * Record the target file descriptors in a local variable. We need to
1000     * replace them with host file descriptors but we need a temporary copy
1001     * for later. Afterwards, replace each target file descriptor in the
1002     * poll_fd array with its host_fd.
1003     */
1004    int temp_tgt_fds[nfds];
1005    for (index = 0; index < nfds; index++) {
1006        temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1007        auto tgt_fd = temp_tgt_fds[index];
1008        auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1009        if (!hbfdp)
1010            return -EBADF;
1011        auto host_fd = hbfdp->getSimFD();
1012        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1013    }
1014
1015    /**
1016     * We cannot allow an infinite poll to occur or it will inevitably cause
1017     * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1018     * a non-negative value, however it also makes no sense to poll on the
1019     * underlying host for any other time than tmout a zero timeout.
1020     */
1021    int status;
1022    if (tmout < 0) {
1023        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1024        if (status == 0) {
1025            /**
1026             * If blocking indefinitely, check the signal list to see if a
1027             * signal would break the poll out of the retry cycle and try
1028             * to return the signal interrupt instead.
1029             */
1030            System *sysh = tc->getSystemPtr();
1031            std::list<BasicSignal>::iterator it;
1032            for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1033                if (it->receiver == p)
1034                    return -EINTR;
1035            return SyscallReturn::retry();
1036        }
1037    } else
1038        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1039
1040    if (status == -1)
1041        return -errno;
1042
1043    /**
1044     * Replace each host_fd in the returned poll_fd array with its original
1045     * target file descriptor.
1046     */
1047    for (index = 0; index < nfds; index++) {
1048        auto tgt_fd = temp_tgt_fds[index];
1049        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1050    }
1051
1052    /**
1053     * Copy out the pollfd struct because the host may have updated fields
1054     * in the structure.
1055     */
1056    fdsBuf.copyOut(tc->getMemProxy());
1057
1058    return status;
1059}
1060
1061/// Target fchmod() handler.
1062template <class OS>
1063SyscallReturn
1064fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1065{
1066    int index = 0;
1067    int tgt_fd = p->getSyscallArg(tc, index);
1068    uint32_t mode = p->getSyscallArg(tc, index);
1069
1070    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1071    if (!ffdp)
1072        return -EBADF;
1073    int sim_fd = ffdp->getSimFD();
1074
1075    mode_t hostMode = mode;
1076
1077    int result = fchmod(sim_fd, hostMode);
1078
1079    return (result < 0) ? -errno : 0;
1080}
1081
1082/// Target mremap() handler.
1083template <class OS>
1084SyscallReturn
1085mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1086{
1087    int index = 0;
1088    Addr start = process->getSyscallArg(tc, index);
1089    uint64_t old_length = process->getSyscallArg(tc, index);
1090    uint64_t new_length = process->getSyscallArg(tc, index);
1091    uint64_t flags = process->getSyscallArg(tc, index);
1092    uint64_t provided_address = 0;
1093    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1094
1095    if (use_provided_address)
1096        provided_address = process->getSyscallArg(tc, index);
1097
1098    if ((start % TheISA::PageBytes != 0) ||
1099        (provided_address % TheISA::PageBytes != 0)) {
1100        warn("mremap failing: arguments not page aligned");
1101        return -EINVAL;
1102    }
1103
1104    new_length = roundUp(new_length, TheISA::PageBytes);
1105
1106    if (new_length > old_length) {
1107        std::shared_ptr<MemState> mem_state = process->memState;
1108        Addr mmap_end = mem_state->getMmapEnd();
1109
1110        if ((start + old_length) == mmap_end &&
1111            (!use_provided_address || provided_address == start)) {
1112            // This case cannot occur when growing downward, as
1113            // start is greater than or equal to mmap_end.
1114            uint64_t diff = new_length - old_length;
1115            process->allocateMem(mmap_end, diff);
1116            mem_state->setMmapEnd(mmap_end + diff);
1117            return start;
1118        } else {
1119            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1120                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1121                return -ENOMEM;
1122            } else {
1123                uint64_t new_start = provided_address;
1124                if (!use_provided_address) {
1125                    new_start = process->mmapGrowsDown() ?
1126                                mmap_end - new_length : mmap_end;
1127                    mmap_end = process->mmapGrowsDown() ?
1128                               new_start : mmap_end + new_length;
1129                    mem_state->setMmapEnd(mmap_end);
1130                }
1131
1132                process->pTable->remap(start, old_length, new_start);
1133                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1134                     new_start, new_start + new_length,
1135                     new_length - old_length);
1136                // add on the remaining unallocated pages
1137                process->allocateMem(new_start + old_length,
1138                                     new_length - old_length,
1139                                     use_provided_address /* clobber */);
1140                if (use_provided_address &&
1141                    ((new_start + new_length > mem_state->getMmapEnd() &&
1142                      !process->mmapGrowsDown()) ||
1143                    (new_start < mem_state->getMmapEnd() &&
1144                      process->mmapGrowsDown()))) {
1145                    // something fishy going on here, at least notify the user
1146                    // @todo: increase mmap_end?
1147                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
1148                }
1149                warn("returning %08p as start\n", new_start);
1150                return new_start;
1151            }
1152        }
1153    } else {
1154        if (use_provided_address && provided_address != start)
1155            process->pTable->remap(start, new_length, provided_address);
1156        process->pTable->unmap(start + new_length, old_length - new_length);
1157        return use_provided_address ? provided_address : start;
1158    }
1159}
1160
1161/// Target stat() handler.
1162template <class OS>
1163SyscallReturn
1164statFunc(SyscallDesc *desc, int callnum, Process *process,
1165         ThreadContext *tc)
1166{
1167    std::string path;
1168
1169    int index = 0;
1170    if (!tc->getMemProxy().tryReadString(path,
1171                process->getSyscallArg(tc, index))) {
1172        return -EFAULT;
1173    }
1174    Addr bufPtr = process->getSyscallArg(tc, index);
1175
1176    // Adjust path for current working directory
1177    path = process->fullPath(path);
1178
1179    struct stat hostBuf;
1180    int result = stat(path.c_str(), &hostBuf);
1181
1182    if (result < 0)
1183        return -errno;
1184
1185    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1186
1187    return 0;
1188}
1189
1190
1191/// Target stat64() handler.
1192template <class OS>
1193SyscallReturn
1194stat64Func(SyscallDesc *desc, int callnum, Process *process,
1195           ThreadContext *tc)
1196{
1197    std::string path;
1198
1199    int index = 0;
1200    if (!tc->getMemProxy().tryReadString(path,
1201                process->getSyscallArg(tc, index)))
1202        return -EFAULT;
1203    Addr bufPtr = process->getSyscallArg(tc, index);
1204
1205    // Adjust path for current working directory
1206    path = process->fullPath(path);
1207
1208#if NO_STAT64
1209    struct stat  hostBuf;
1210    int result = stat(path.c_str(), &hostBuf);
1211#else
1212    struct stat64 hostBuf;
1213    int result = stat64(path.c_str(), &hostBuf);
1214#endif
1215
1216    if (result < 0)
1217        return -errno;
1218
1219    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1220
1221    return 0;
1222}
1223
1224
1225/// Target fstatat64() handler.
1226template <class OS>
1227SyscallReturn
1228fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1229              ThreadContext *tc)
1230{
1231    int index = 0;
1232    int dirfd = process->getSyscallArg(tc, index);
1233    if (dirfd != OS::TGT_AT_FDCWD)
1234        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1235
1236    std::string path;
1237    if (!tc->getMemProxy().tryReadString(path,
1238                process->getSyscallArg(tc, index)))
1239        return -EFAULT;
1240    Addr bufPtr = process->getSyscallArg(tc, index);
1241
1242    // Adjust path for current working directory
1243    path = process->fullPath(path);
1244
1245#if NO_STAT64
1246    struct stat  hostBuf;
1247    int result = stat(path.c_str(), &hostBuf);
1248#else
1249    struct stat64 hostBuf;
1250    int result = stat64(path.c_str(), &hostBuf);
1251#endif
1252
1253    if (result < 0)
1254        return -errno;
1255
1256    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1257
1258    return 0;
1259}
1260
1261
1262/// Target fstat64() handler.
1263template <class OS>
1264SyscallReturn
1265fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1266{
1267    int index = 0;
1268    int tgt_fd = p->getSyscallArg(tc, index);
1269    Addr bufPtr = p->getSyscallArg(tc, index);
1270
1271    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1272    if (!ffdp)
1273        return -EBADF;
1274    int sim_fd = ffdp->getSimFD();
1275
1276#if NO_STAT64
1277    struct stat  hostBuf;
1278    int result = fstat(sim_fd, &hostBuf);
1279#else
1280    struct stat64  hostBuf;
1281    int result = fstat64(sim_fd, &hostBuf);
1282#endif
1283
1284    if (result < 0)
1285        return -errno;
1286
1287    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1288
1289    return 0;
1290}
1291
1292
1293/// Target lstat() handler.
1294template <class OS>
1295SyscallReturn
1296lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1297          ThreadContext *tc)
1298{
1299    std::string path;
1300
1301    int index = 0;
1302    if (!tc->getMemProxy().tryReadString(path,
1303                process->getSyscallArg(tc, index))) {
1304        return -EFAULT;
1305    }
1306    Addr bufPtr = process->getSyscallArg(tc, index);
1307
1308    // Adjust path for current working directory
1309    path = process->fullPath(path);
1310
1311    struct stat hostBuf;
1312    int result = lstat(path.c_str(), &hostBuf);
1313
1314    if (result < 0)
1315        return -errno;
1316
1317    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1318
1319    return 0;
1320}
1321
1322/// Target lstat64() handler.
1323template <class OS>
1324SyscallReturn
1325lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1326            ThreadContext *tc)
1327{
1328    std::string path;
1329
1330    int index = 0;
1331    if (!tc->getMemProxy().tryReadString(path,
1332                process->getSyscallArg(tc, index))) {
1333        return -EFAULT;
1334    }
1335    Addr bufPtr = process->getSyscallArg(tc, index);
1336
1337    // Adjust path for current working directory
1338    path = process->fullPath(path);
1339
1340#if NO_STAT64
1341    struct stat hostBuf;
1342    int result = lstat(path.c_str(), &hostBuf);
1343#else
1344    struct stat64 hostBuf;
1345    int result = lstat64(path.c_str(), &hostBuf);
1346#endif
1347
1348    if (result < 0)
1349        return -errno;
1350
1351    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1352
1353    return 0;
1354}
1355
1356/// Target fstat() handler.
1357template <class OS>
1358SyscallReturn
1359fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1360{
1361    int index = 0;
1362    int tgt_fd = p->getSyscallArg(tc, index);
1363    Addr bufPtr = p->getSyscallArg(tc, index);
1364
1365    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1366
1367    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1368    if (!ffdp)
1369        return -EBADF;
1370    int sim_fd = ffdp->getSimFD();
1371
1372    struct stat hostBuf;
1373    int result = fstat(sim_fd, &hostBuf);
1374
1375    if (result < 0)
1376        return -errno;
1377
1378    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1379
1380    return 0;
1381}
1382
1383/// Target statfs() handler.
1384template <class OS>
1385SyscallReturn
1386statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1387           ThreadContext *tc)
1388{
1389#if NO_STATFS
1390    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1391#else
1392    std::string path;
1393
1394    int index = 0;
1395    if (!tc->getMemProxy().tryReadString(path,
1396                process->getSyscallArg(tc, index))) {
1397        return -EFAULT;
1398    }
1399    Addr bufPtr = process->getSyscallArg(tc, index);
1400
1401    // Adjust path for current working directory
1402    path = process->fullPath(path);
1403
1404    struct statfs hostBuf;
1405    int result = statfs(path.c_str(), &hostBuf);
1406
1407    if (result < 0)
1408        return -errno;
1409
1410    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1411#endif
1412    return 0;
1413}
1414
1415template <class OS>
1416SyscallReturn
1417cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1418{
1419    int index = 0;
1420
1421    RegVal flags = p->getSyscallArg(tc, index);
1422    RegVal newStack = p->getSyscallArg(tc, index);
1423    Addr ptidPtr = p->getSyscallArg(tc, index);
1424
1425#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1426    /**
1427     * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1428     * The flag defines the list of clone() arguments in the following
1429     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1430     */
1431    Addr tlsPtr = p->getSyscallArg(tc, index);
1432    Addr ctidPtr = p->getSyscallArg(tc, index);
1433#else
1434    Addr ctidPtr = p->getSyscallArg(tc, index);
1435    Addr tlsPtr = p->getSyscallArg(tc, index);
1436#endif
1437
1438    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1439        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1440        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1441        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1442        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1443        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1444        return -EINVAL;
1445
1446    ThreadContext *ctc;
1447    if (!(ctc = p->findFreeContext())) {
1448        DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1449                        "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1450        return -EAGAIN;
1451    }
1452
1453    /**
1454     * Note that ProcessParams is generated by swig and there are no other
1455     * examples of how to create anything but this default constructor. The
1456     * fields are manually initialized instead of passing parameters to the
1457     * constructor.
1458     */
1459    ProcessParams *pp = new ProcessParams();
1460    pp->executable.assign(*(new std::string(p->progName())));
1461    pp->cmd.push_back(*(new std::string(p->progName())));
1462    pp->system = p->system;
1463    pp->cwd.assign(p->getcwd());
1464    pp->input.assign("stdin");
1465    pp->output.assign("stdout");
1466    pp->errout.assign("stderr");
1467    pp->uid = p->uid();
1468    pp->euid = p->euid();
1469    pp->gid = p->gid();
1470    pp->egid = p->egid();
1471
1472    /* Find the first free PID that's less than the maximum */
1473    std::set<int> const& pids = p->system->PIDs;
1474    int temp_pid = *pids.begin();
1475    do {
1476        temp_pid++;
1477    } while (pids.find(temp_pid) != pids.end());
1478    if (temp_pid >= System::maxPID)
1479        fatal("temp_pid is too large: %d", temp_pid);
1480
1481    pp->pid = temp_pid;
1482    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1483    Process *cp = pp->create();
1484    delete pp;
1485
1486    Process *owner = ctc->getProcessPtr();
1487    ctc->setProcessPtr(cp);
1488    cp->assignThreadContext(ctc->contextId());
1489    owner->revokeThreadContext(ctc->contextId());
1490
1491    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1492        BufferArg ptidBuf(ptidPtr, sizeof(long));
1493        long *ptid = (long *)ptidBuf.bufferPtr();
1494        *ptid = cp->pid();
1495        ptidBuf.copyOut(tc->getMemProxy());
1496    }
1497
1498    cp->initState();
1499    p->clone(tc, ctc, cp, flags);
1500
1501    if (flags & OS::TGT_CLONE_THREAD) {
1502        delete cp->sigchld;
1503        cp->sigchld = p->sigchld;
1504    } else if (flags & OS::TGT_SIGCHLD) {
1505        *cp->sigchld = true;
1506    }
1507
1508    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1509        BufferArg ctidBuf(ctidPtr, sizeof(long));
1510        long *ctid = (long *)ctidBuf.bufferPtr();
1511        *ctid = cp->pid();
1512        ctidBuf.copyOut(ctc->getMemProxy());
1513    }
1514
1515    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1516        cp->childClearTID = (uint64_t)ctidPtr;
1517
1518    ctc->clearArchRegs();
1519
1520    OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1521
1522    cp->setSyscallReturn(ctc, 0);
1523
1524#if THE_ISA == ALPHA_ISA
1525    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1526#elif THE_ISA == SPARC_ISA
1527    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1528    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1529#endif
1530
1531    TheISA::PCState cpc = tc->pcState();
1532    cpc.advance();
1533    ctc->pcState(cpc);
1534    ctc->activate();
1535
1536    return cp->pid();
1537}
1538
1539/// Target fstatfs() handler.
1540template <class OS>
1541SyscallReturn
1542fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1543{
1544    int index = 0;
1545    int tgt_fd = p->getSyscallArg(tc, index);
1546    Addr bufPtr = p->getSyscallArg(tc, index);
1547
1548    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1549    if (!ffdp)
1550        return -EBADF;
1551    int sim_fd = ffdp->getSimFD();
1552
1553    struct statfs hostBuf;
1554    int result = fstatfs(sim_fd, &hostBuf);
1555
1556    if (result < 0)
1557        return -errno;
1558
1559    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1560
1561    return 0;
1562}
1563
1564/// Target readv() handler.
1565template <class OS>
1566SyscallReturn
1567readvFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1568{
1569    int index = 0;
1570    int tgt_fd = p->getSyscallArg(tc, index);
1571
1572    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1573    if (!ffdp)
1574        return -EBADF;
1575    int sim_fd = ffdp->getSimFD();
1576
1577    SETranslatingPortProxy &prox = tc->getMemProxy();
1578    uint64_t tiov_base = p->getSyscallArg(tc, index);
1579    size_t count = p->getSyscallArg(tc, index);
1580    typename OS::tgt_iovec tiov[count];
1581    struct iovec hiov[count];
1582    for (size_t i = 0; i < count; ++i) {
1583        prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1584                      (uint8_t*)&tiov[i], sizeof(typename OS::tgt_iovec));
1585        hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1586        hiov[i].iov_base = new char [hiov[i].iov_len];
1587    }
1588
1589    int result = readv(sim_fd, hiov, count);
1590    int local_errno = errno;
1591
1592    for (size_t i = 0; i < count; ++i) {
1593        if (result != -1) {
1594            prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1595                           (uint8_t*)hiov[i].iov_base, hiov[i].iov_len);
1596        }
1597        delete [] (char *)hiov[i].iov_base;
1598    }
1599
1600    return (result == -1) ? -local_errno : result;
1601}
1602
1603/// Target writev() handler.
1604template <class OS>
1605SyscallReturn
1606writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1607{
1608    int index = 0;
1609    int tgt_fd = p->getSyscallArg(tc, index);
1610
1611    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1612    if (!hbfdp)
1613        return -EBADF;
1614    int sim_fd = hbfdp->getSimFD();
1615
1616    SETranslatingPortProxy &prox = tc->getMemProxy();
1617    uint64_t tiov_base = p->getSyscallArg(tc, index);
1618    size_t count = p->getSyscallArg(tc, index);
1619    struct iovec hiov[count];
1620    for (size_t i = 0; i < count; ++i) {
1621        typename OS::tgt_iovec tiov;
1622
1623        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1624                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1625        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1626        hiov[i].iov_base = new char [hiov[i].iov_len];
1627        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1628                      hiov[i].iov_len);
1629    }
1630
1631    int result = writev(sim_fd, hiov, count);
1632
1633    for (size_t i = 0; i < count; ++i)
1634        delete [] (char *)hiov[i].iov_base;
1635
1636    return (result == -1) ? -errno : result;
1637}
1638
1639/// Real mmap handler.
1640template <class OS>
1641SyscallReturn
1642mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1643         bool is_mmap2)
1644{
1645    int index = 0;
1646    Addr start = p->getSyscallArg(tc, index);
1647    uint64_t length = p->getSyscallArg(tc, index);
1648    int prot = p->getSyscallArg(tc, index);
1649    int tgt_flags = p->getSyscallArg(tc, index);
1650    int tgt_fd = p->getSyscallArg(tc, index);
1651    int offset = p->getSyscallArg(tc, index);
1652
1653    if (is_mmap2)
1654        offset *= TheISA::PageBytes;
1655
1656    if (start & (TheISA::PageBytes - 1) ||
1657        offset & (TheISA::PageBytes - 1) ||
1658        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1659         tgt_flags & OS::TGT_MAP_SHARED) ||
1660        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1661         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1662        !length) {
1663        return -EINVAL;
1664    }
1665
1666    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1667        // With shared mmaps, there are two cases to consider:
1668        // 1) anonymous: writes should modify the mapping and this should be
1669        // visible to observers who share the mapping. Currently, it's
1670        // difficult to update the shared mapping because there's no
1671        // structure which maintains information about the which virtual
1672        // memory areas are shared. If that structure existed, it would be
1673        // possible to make the translations point to the same frames.
1674        // 2) file-backed: writes should modify the mapping and the file
1675        // which is backed by the mapping. The shared mapping problem is the
1676        // same as what was mentioned about the anonymous mappings. For
1677        // file-backed mappings, the writes to the file are difficult
1678        // because it requires syncing what the mapping holds with the file
1679        // that resides on the host system. So, any write on a real system
1680        // would cause the change to be propagated to the file mapping at
1681        // some point in the future (the inode is tracked along with the
1682        // mapping). This isn't guaranteed to always happen, but it usually
1683        // works well enough. The guarantee is provided by the msync system
1684        // call. We could force the change through with shared mappings with
1685        // a call to msync, but that again would require more information
1686        // than we currently maintain.
1687        warn("mmap: writing to shared mmap region is currently "
1688             "unsupported. The write succeeds on the target, but it "
1689             "will not be propagated to the host or shared mappings");
1690    }
1691
1692    length = roundUp(length, TheISA::PageBytes);
1693
1694    int sim_fd = -1;
1695    uint8_t *pmap = nullptr;
1696    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1697        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1698
1699        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1700        if (dfdp) {
1701            EmulatedDriver *emul_driver = dfdp->getDriver();
1702            return emul_driver->mmap(p, tc, start, length, prot,
1703                                     tgt_flags, tgt_fd, offset);
1704        }
1705
1706        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1707        if (!ffdp)
1708            return -EBADF;
1709        sim_fd = ffdp->getSimFD();
1710
1711        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1712                                    sim_fd, offset);
1713
1714        if (pmap == (decltype(pmap))-1) {
1715            warn("mmap: failed to map file into host address space");
1716            return -errno;
1717        }
1718    }
1719
1720    // Extend global mmap region if necessary. Note that we ignore the
1721    // start address unless MAP_FIXED is specified.
1722    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1723        std::shared_ptr<MemState> mem_state = p->memState;
1724        Addr mmap_end = mem_state->getMmapEnd();
1725
1726        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1727        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1728
1729        mem_state->setMmapEnd(mmap_end);
1730    }
1731
1732    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1733                    start, start + length - 1);
1734
1735    // We only allow mappings to overwrite existing mappings if
1736    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1737    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1738    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1739    if (clobber) {
1740        for (auto tc : p->system->threadContexts) {
1741            // If we might be overwriting old mappings, we need to
1742            // invalidate potentially stale mappings out of the TLBs.
1743            tc->getDTBPtr()->flushAll();
1744            tc->getITBPtr()->flushAll();
1745        }
1746    }
1747
1748    // Allocate physical memory and map it in. If the page table is already
1749    // mapped and clobber is not set, the simulator will issue throw a
1750    // fatal and bail out of the simulation.
1751    p->allocateMem(start, length, clobber);
1752
1753    // Transfer content into target address space.
1754    SETranslatingPortProxy &tp = tc->getMemProxy();
1755    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1756        // In general, we should zero the mapped area for anonymous mappings,
1757        // with something like:
1758        //     tp.memsetBlob(start, 0, length);
1759        // However, given that we don't support sparse mappings, and
1760        // some applications can map a couple of gigabytes of space
1761        // (intending sparse usage), that can get painfully expensive.
1762        // Fortunately, since we don't properly implement munmap either,
1763        // there's no danger of remapping used memory, so for now all
1764        // newly mapped memory should already be zeroed so we can skip it.
1765    } else {
1766        // It is possible to mmap an area larger than a file, however
1767        // accessing unmapped portions the system triggers a "Bus error"
1768        // on the host. We must know when to stop copying the file from
1769        // the host into the target address space.
1770        struct stat file_stat;
1771        if (fstat(sim_fd, &file_stat) > 0)
1772            fatal("mmap: cannot stat file");
1773
1774        // Copy the portion of the file that is resident. This requires
1775        // checking both the mmap size and the filesize that we are
1776        // trying to mmap into this space; the mmap size also depends
1777        // on the specified offset into the file.
1778        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1779                                 length);
1780        tp.writeBlob(start, pmap, size);
1781
1782        // Cleanup the mmap region before exiting this function.
1783        munmap(pmap, length);
1784
1785        // Maintain the symbol table for dynamic executables.
1786        // The loader will call mmap to map the images into its address
1787        // space and we intercept that here. We can verify that we are
1788        // executing inside the loader by checking the program counter value.
1789        // XXX: with multiprogrammed workloads or multi-node configurations,
1790        // this will not work since there is a single global symbol table.
1791        ObjectFile *interpreter = p->getInterpreter();
1792        if (interpreter) {
1793            Addr text_start = interpreter->textBase();
1794            Addr text_end = text_start + interpreter->textSize();
1795
1796            Addr pc = tc->pcState().pc();
1797
1798            if (pc >= text_start && pc < text_end) {
1799                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1800                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1801                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1802
1803                if (lib) {
1804                    lib->loadAllSymbols(debugSymbolTable,
1805                                        lib->textBase(), start);
1806                }
1807            }
1808        }
1809
1810        // Note that we do not zero out the remainder of the mapping. This
1811        // is done by a real system, but it probably will not affect
1812        // execution (hopefully).
1813    }
1814
1815    return start;
1816}
1817
1818template <class OS>
1819SyscallReturn
1820pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1821{
1822    int index = 0;
1823    int tgt_fd = p->getSyscallArg(tc, index);
1824    Addr bufPtr = p->getSyscallArg(tc, index);
1825    int nbytes = p->getSyscallArg(tc, index);
1826    int offset = p->getSyscallArg(tc, index);
1827
1828    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1829    if (!ffdp)
1830        return -EBADF;
1831    int sim_fd = ffdp->getSimFD();
1832
1833    BufferArg bufArg(bufPtr, nbytes);
1834    bufArg.copyIn(tc->getMemProxy());
1835
1836    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1837
1838    return (bytes_written == -1) ? -errno : bytes_written;
1839}
1840
1841/// Target mmap() handler.
1842template <class OS>
1843SyscallReturn
1844mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1845{
1846    return mmapImpl<OS>(desc, num, p, tc, false);
1847}
1848
1849/// Target mmap2() handler.
1850template <class OS>
1851SyscallReturn
1852mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1853{
1854    return mmapImpl<OS>(desc, num, p, tc, true);
1855}
1856
1857/// Target getrlimit() handler.
1858template <class OS>
1859SyscallReturn
1860getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1861              ThreadContext *tc)
1862{
1863    int index = 0;
1864    unsigned resource = process->getSyscallArg(tc, index);
1865    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1866
1867    switch (resource) {
1868      case OS::TGT_RLIMIT_STACK:
1869        // max stack size in bytes: make up a number (8MB for now)
1870        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1871        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1872        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1873        break;
1874
1875      case OS::TGT_RLIMIT_DATA:
1876        // max data segment size in bytes: make up a number
1877        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1878        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1879        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1880        break;
1881
1882      default:
1883        warn("getrlimit: unimplemented resource %d", resource);
1884        return -EINVAL;
1885        break;
1886    }
1887
1888    rlp.copyOut(tc->getMemProxy());
1889    return 0;
1890}
1891
1892template <class OS>
1893SyscallReturn
1894prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1895            ThreadContext *tc)
1896{
1897    int index = 0;
1898    if (process->getSyscallArg(tc, index) != 0)
1899    {
1900        warn("prlimit: ignoring rlimits for nonzero pid");
1901        return -EPERM;
1902    }
1903    int resource = process->getSyscallArg(tc, index);
1904    Addr n = process->getSyscallArg(tc, index);
1905    if (n != 0)
1906        warn("prlimit: ignoring new rlimit");
1907    Addr o = process->getSyscallArg(tc, index);
1908    if (o != 0)
1909    {
1910        TypedBufferArg<typename OS::rlimit> rlp(o);
1911        switch (resource) {
1912          case OS::TGT_RLIMIT_STACK:
1913            // max stack size in bytes: make up a number (8MB for now)
1914            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1915            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1916            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1917            break;
1918          case OS::TGT_RLIMIT_DATA:
1919            // max data segment size in bytes: make up a number
1920            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1921            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1922            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1923            break;
1924          default:
1925            warn("prlimit: unimplemented resource %d", resource);
1926            return -EINVAL;
1927            break;
1928        }
1929        rlp.copyOut(tc->getMemProxy());
1930    }
1931    return 0;
1932}
1933
1934/// Target clock_gettime() function.
1935template <class OS>
1936SyscallReturn
1937clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1938{
1939    int index = 1;
1940    //int clk_id = p->getSyscallArg(tc, index);
1941    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1942
1943    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1944    tp->tv_sec += seconds_since_epoch;
1945    tp->tv_sec = TheISA::htog(tp->tv_sec);
1946    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1947
1948    tp.copyOut(tc->getMemProxy());
1949
1950    return 0;
1951}
1952
1953/// Target clock_getres() function.
1954template <class OS>
1955SyscallReturn
1956clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1957{
1958    int index = 1;
1959    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1960
1961    // Set resolution at ns, which is what clock_gettime() returns
1962    tp->tv_sec = 0;
1963    tp->tv_nsec = 1;
1964
1965    tp.copyOut(tc->getMemProxy());
1966
1967    return 0;
1968}
1969
1970/// Target gettimeofday() handler.
1971template <class OS>
1972SyscallReturn
1973gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1974                 ThreadContext *tc)
1975{
1976    int index = 0;
1977    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1978
1979    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1980    tp->tv_sec += seconds_since_epoch;
1981    tp->tv_sec = TheISA::htog(tp->tv_sec);
1982    tp->tv_usec = TheISA::htog(tp->tv_usec);
1983
1984    tp.copyOut(tc->getMemProxy());
1985
1986    return 0;
1987}
1988
1989
1990/// Target utimes() handler.
1991template <class OS>
1992SyscallReturn
1993utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1994           ThreadContext *tc)
1995{
1996    std::string path;
1997
1998    int index = 0;
1999    if (!tc->getMemProxy().tryReadString(path,
2000                process->getSyscallArg(tc, index))) {
2001        return -EFAULT;
2002    }
2003
2004    TypedBufferArg<typename OS::timeval [2]>
2005        tp(process->getSyscallArg(tc, index));
2006    tp.copyIn(tc->getMemProxy());
2007
2008    struct timeval hostTimeval[2];
2009    for (int i = 0; i < 2; ++i) {
2010        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2011        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2012    }
2013
2014    // Adjust path for current working directory
2015    path = process->fullPath(path);
2016
2017    int result = utimes(path.c_str(), hostTimeval);
2018
2019    if (result < 0)
2020        return -errno;
2021
2022    return 0;
2023}
2024
2025template <class OS>
2026SyscallReturn
2027execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2028{
2029    desc->setFlags(0);
2030
2031    int index = 0;
2032    std::string path;
2033    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
2034    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2035        return -EFAULT;
2036
2037    if (access(path.c_str(), F_OK) == -1)
2038        return -EACCES;
2039
2040    auto read_in = [](std::vector<std::string> & vect,
2041                      SETranslatingPortProxy & mem_proxy,
2042                      Addr mem_loc)
2043    {
2044        for (int inc = 0; ; inc++) {
2045            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2046            b.copyIn(mem_proxy);
2047
2048            if (!*(Addr*)b.bufferPtr())
2049                break;
2050
2051            vect.push_back(std::string());
2052            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2053        }
2054    };
2055
2056    /**
2057     * Note that ProcessParams is generated by swig and there are no other
2058     * examples of how to create anything but this default constructor. The
2059     * fields are manually initialized instead of passing parameters to the
2060     * constructor.
2061     */
2062    ProcessParams *pp = new ProcessParams();
2063    pp->executable = path;
2064    Addr argv_mem_loc = p->getSyscallArg(tc, index);
2065    read_in(pp->cmd, mem_proxy, argv_mem_loc);
2066    Addr envp_mem_loc = p->getSyscallArg(tc, index);
2067    read_in(pp->env, mem_proxy, envp_mem_loc);
2068    pp->uid = p->uid();
2069    pp->egid = p->egid();
2070    pp->euid = p->euid();
2071    pp->gid = p->gid();
2072    pp->ppid = p->ppid();
2073    pp->pid = p->pid();
2074    pp->input.assign("cin");
2075    pp->output.assign("cout");
2076    pp->errout.assign("cerr");
2077    pp->cwd.assign(p->getcwd());
2078    pp->system = p->system;
2079    /**
2080     * Prevent process object creation with identical PIDs (which will trip
2081     * a fatal check in Process constructor). The execve call is supposed to
2082     * take over the currently executing process' identity but replace
2083     * whatever it is doing with a new process image. Instead of hijacking
2084     * the process object in the simulator, we create a new process object
2085     * and bind to the previous process' thread below (hijacking the thread).
2086     */
2087    p->system->PIDs.erase(p->pid());
2088    Process *new_p = pp->create();
2089    delete pp;
2090
2091    /**
2092     * Work through the file descriptor array and close any files marked
2093     * close-on-exec.
2094     */
2095    new_p->fds = p->fds;
2096    for (int i = 0; i < new_p->fds->getSize(); i++) {
2097        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2098        if (fdep && fdep->getCOE())
2099            new_p->fds->closeFDEntry(i);
2100    }
2101
2102    *new_p->sigchld = true;
2103
2104    delete p;
2105    tc->clearArchRegs();
2106    tc->setProcessPtr(new_p);
2107    new_p->assignThreadContext(tc->contextId());
2108    new_p->initState();
2109    tc->activate();
2110    TheISA::PCState pcState = tc->pcState();
2111    tc->setNPC(pcState.instAddr());
2112
2113    desc->setFlags(SyscallDesc::SuppressReturnValue);
2114    return 0;
2115}
2116
2117/// Target getrusage() function.
2118template <class OS>
2119SyscallReturn
2120getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2121              ThreadContext *tc)
2122{
2123    int index = 0;
2124    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2125    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2126
2127    rup->ru_utime.tv_sec = 0;
2128    rup->ru_utime.tv_usec = 0;
2129    rup->ru_stime.tv_sec = 0;
2130    rup->ru_stime.tv_usec = 0;
2131    rup->ru_maxrss = 0;
2132    rup->ru_ixrss = 0;
2133    rup->ru_idrss = 0;
2134    rup->ru_isrss = 0;
2135    rup->ru_minflt = 0;
2136    rup->ru_majflt = 0;
2137    rup->ru_nswap = 0;
2138    rup->ru_inblock = 0;
2139    rup->ru_oublock = 0;
2140    rup->ru_msgsnd = 0;
2141    rup->ru_msgrcv = 0;
2142    rup->ru_nsignals = 0;
2143    rup->ru_nvcsw = 0;
2144    rup->ru_nivcsw = 0;
2145
2146    switch (who) {
2147      case OS::TGT_RUSAGE_SELF:
2148        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2149        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2150        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2151        break;
2152
2153      case OS::TGT_RUSAGE_CHILDREN:
2154        // do nothing.  We have no child processes, so they take no time.
2155        break;
2156
2157      default:
2158        // don't really handle THREAD or CHILDREN, but just warn and
2159        // plow ahead
2160        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
2161             who);
2162    }
2163
2164    rup.copyOut(tc->getMemProxy());
2165
2166    return 0;
2167}
2168
2169/// Target times() function.
2170template <class OS>
2171SyscallReturn
2172timesFunc(SyscallDesc *desc, int callnum, Process *process,
2173          ThreadContext *tc)
2174{
2175    int index = 0;
2176    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2177
2178    // Fill in the time structure (in clocks)
2179    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2180    bufp->tms_utime = clocks;
2181    bufp->tms_stime = 0;
2182    bufp->tms_cutime = 0;
2183    bufp->tms_cstime = 0;
2184
2185    // Convert to host endianness
2186    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2187
2188    // Write back
2189    bufp.copyOut(tc->getMemProxy());
2190
2191    // Return clock ticks since system boot
2192    return clocks;
2193}
2194
2195/// Target time() function.
2196template <class OS>
2197SyscallReturn
2198timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2199{
2200    typename OS::time_t sec, usec;
2201    getElapsedTimeMicro(sec, usec);
2202    sec += seconds_since_epoch;
2203
2204    int index = 0;
2205    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2206    if (taddr != 0) {
2207        typename OS::time_t t = sec;
2208        t = TheISA::htog(t);
2209        SETranslatingPortProxy &p = tc->getMemProxy();
2210        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2211    }
2212    return sec;
2213}
2214
2215template <class OS>
2216SyscallReturn
2217tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2218{
2219    int index = 0;
2220    int tgid = process->getSyscallArg(tc, index);
2221    int tid = process->getSyscallArg(tc, index);
2222    int sig = process->getSyscallArg(tc, index);
2223
2224    /**
2225     * This system call is intended to allow killing a specific thread
2226     * within an arbitrary thread group if sanctioned with permission checks.
2227     * It's usually true that threads share the termination signal as pointed
2228     * out by the pthread_kill man page and this seems to be the intended
2229     * usage. Due to this being an emulated environment, assume the following:
2230     * Threads are allowed to call tgkill because the EUID for all threads
2231     * should be the same. There is no signal handling mechanism for kernel
2232     * registration of signal handlers since signals are poorly supported in
2233     * emulation mode. Since signal handlers cannot be registered, all
2234     * threads within in a thread group must share the termination signal.
2235     * We never exhaust PIDs so there's no chance of finding the wrong one
2236     * due to PID rollover.
2237     */
2238
2239    System *sys = tc->getSystemPtr();
2240    Process *tgt_proc = nullptr;
2241    for (int i = 0; i < sys->numContexts(); i++) {
2242        Process *temp = sys->threadContexts[i]->getProcessPtr();
2243        if (temp->pid() == tid) {
2244            tgt_proc = temp;
2245            break;
2246        }
2247    }
2248
2249    if (sig != 0 || sig != OS::TGT_SIGABRT)
2250        return -EINVAL;
2251
2252    if (tgt_proc == nullptr)
2253        return -ESRCH;
2254
2255    if (tgid != -1 && tgt_proc->tgid() != tgid)
2256        return -ESRCH;
2257
2258    if (sig == OS::TGT_SIGABRT)
2259        exitGroupFunc(desc, 252, process, tc);
2260
2261    return 0;
2262}
2263
2264template <class OS>
2265SyscallReturn
2266socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2267{
2268    int index = 0;
2269    int domain = p->getSyscallArg(tc, index);
2270    int type = p->getSyscallArg(tc, index);
2271    int prot = p->getSyscallArg(tc, index);
2272
2273    int sim_fd = socket(domain, type, prot);
2274    if (sim_fd == -1)
2275        return -errno;
2276
2277    auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2278    int tgt_fd = p->fds->allocFD(sfdp);
2279
2280    return tgt_fd;
2281}
2282
2283template <class OS>
2284SyscallReturn
2285socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2286{
2287    int index = 0;
2288    int domain = p->getSyscallArg(tc, index);
2289    int type = p->getSyscallArg(tc, index);
2290    int prot = p->getSyscallArg(tc, index);
2291    Addr svPtr = p->getSyscallArg(tc, index);
2292
2293    BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2294    int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2295    if (status == -1)
2296        return -errno;
2297
2298    int *fds = (int *)svBuf.bufferPtr();
2299
2300    auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2301    fds[0] = p->fds->allocFD(sfdp1);
2302    auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2303    fds[1] = p->fds->allocFD(sfdp2);
2304    svBuf.copyOut(tc->getMemProxy());
2305
2306    return status;
2307}
2308
2309template <class OS>
2310SyscallReturn
2311selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2312{
2313    int retval;
2314
2315    int index = 0;
2316    int nfds_t = p->getSyscallArg(tc, index);
2317    Addr fds_read_ptr = p->getSyscallArg(tc, index);
2318    Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2319    Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2320    Addr time_val_ptr = p->getSyscallArg(tc, index);
2321
2322    TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2323    TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2324    TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2325    TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2326
2327    /**
2328     * Host fields. Notice that these use the definitions from the system
2329     * headers instead of the gem5 headers and libraries. If the host and
2330     * target have different header file definitions, this will not work.
2331     */
2332    fd_set rd_h;
2333    FD_ZERO(&rd_h);
2334    fd_set wr_h;
2335    FD_ZERO(&wr_h);
2336    fd_set ex_h;
2337    FD_ZERO(&ex_h);
2338
2339    /**
2340     * Copy in the fd_set from the target.
2341     */
2342    if (fds_read_ptr)
2343        rd_t.copyIn(tc->getMemProxy());
2344    if (fds_writ_ptr)
2345        wr_t.copyIn(tc->getMemProxy());
2346    if (fds_excp_ptr)
2347        ex_t.copyIn(tc->getMemProxy());
2348
2349    /**
2350     * We need to translate the target file descriptor set into a host file
2351     * descriptor set. This involves both our internal process fd array
2352     * and the fd_set defined in Linux header files. The nfds field also
2353     * needs to be updated as it will be only target specific after
2354     * retrieving it from the target; the nfds value is expected to be the
2355     * highest file descriptor that needs to be checked, so we need to extend
2356     * it out for nfds_h when we do the update.
2357     */
2358    int nfds_h = 0;
2359    std::map<int, int> trans_map;
2360    auto try_add_host_set = [&](fd_set *tgt_set_entry,
2361                                fd_set *hst_set_entry,
2362                                int iter) -> bool
2363    {
2364        /**
2365         * By this point, we know that we are looking at a valid file
2366         * descriptor set on the target. We need to check if the target file
2367         * descriptor value passed in as iter is part of the set.
2368         */
2369        if (FD_ISSET(iter, tgt_set_entry)) {
2370            /**
2371             * We know that the target file descriptor belongs to the set,
2372             * but we do not yet know if the file descriptor is valid or
2373             * that we have a host mapping. Check that now.
2374             */
2375            auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2376            if (!hbfdp)
2377                return true;
2378            auto sim_fd = hbfdp->getSimFD();
2379
2380            /**
2381             * Add the sim_fd to tgt_fd translation into trans_map for use
2382             * later when we need to zero the target fd_set structures and
2383             * then update them with hits returned from the host select call.
2384             */
2385            trans_map[sim_fd] = iter;
2386
2387            /**
2388             * We know that the host file descriptor exists so now we check
2389             * if we need to update the max count for nfds_h before passing
2390             * the duplicated structure into the host.
2391             */
2392            nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2393
2394            /**
2395             * Add the host file descriptor to the set that we are going to
2396             * pass into the host.
2397             */
2398            FD_SET(sim_fd, hst_set_entry);
2399        }
2400        return false;
2401    };
2402
2403    for (int i = 0; i < nfds_t; i++) {
2404        if (fds_read_ptr) {
2405            bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2406            if (ebadf) return -EBADF;
2407        }
2408        if (fds_writ_ptr) {
2409            bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2410            if (ebadf) return -EBADF;
2411        }
2412        if (fds_excp_ptr) {
2413            bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2414            if (ebadf) return -EBADF;
2415        }
2416    }
2417
2418    if (time_val_ptr) {
2419        /**
2420         * It might be possible to decrement the timeval based on some
2421         * derivation of wall clock determined from elapsed simulator ticks
2422         * but that seems like overkill. Rather, we just set the timeval with
2423         * zero timeout. (There is no reason to block during the simulation
2424         * as it only decreases simulator performance.)
2425         */
2426        tp->tv_sec = 0;
2427        tp->tv_usec = 0;
2428
2429        retval = select(nfds_h,
2430                        fds_read_ptr ? &rd_h : nullptr,
2431                        fds_writ_ptr ? &wr_h : nullptr,
2432                        fds_excp_ptr ? &ex_h : nullptr,
2433                        (timeval*)&*tp);
2434    } else {
2435        /**
2436         * If the timeval pointer is null, setup a new timeval structure to
2437         * pass into the host select call. Unfortunately, we will need to
2438         * manually check the return value and throw a retry fault if the
2439         * return value is zero. Allowing the system call to block will
2440         * likely deadlock the event queue.
2441         */
2442        struct timeval tv = { 0, 0 };
2443
2444        retval = select(nfds_h,
2445                        fds_read_ptr ? &rd_h : nullptr,
2446                        fds_writ_ptr ? &wr_h : nullptr,
2447                        fds_excp_ptr ? &ex_h : nullptr,
2448                        &tv);
2449
2450        if (retval == 0) {
2451            /**
2452             * If blocking indefinitely, check the signal list to see if a
2453             * signal would break the poll out of the retry cycle and try to
2454             * return the signal interrupt instead.
2455             */
2456            for (auto sig : tc->getSystemPtr()->signalList)
2457                if (sig.receiver == p)
2458                    return -EINTR;
2459            return SyscallReturn::retry();
2460        }
2461    }
2462
2463    if (retval == -1)
2464        return -errno;
2465
2466    FD_ZERO((fd_set*)&*rd_t);
2467    FD_ZERO((fd_set*)&*wr_t);
2468    FD_ZERO((fd_set*)&*ex_t);
2469
2470    /**
2471     * We need to translate the host file descriptor set into a target file
2472     * descriptor set. This involves both our internal process fd array
2473     * and the fd_set defined in header files.
2474     */
2475    for (int i = 0; i < nfds_h; i++) {
2476        if (fds_read_ptr) {
2477            if (FD_ISSET(i, &rd_h))
2478                FD_SET(trans_map[i], (fd_set*)&*rd_t);
2479        }
2480
2481        if (fds_writ_ptr) {
2482            if (FD_ISSET(i, &wr_h))
2483                FD_SET(trans_map[i], (fd_set*)&*wr_t);
2484        }
2485
2486        if (fds_excp_ptr) {
2487            if (FD_ISSET(i, &ex_h))
2488                FD_SET(trans_map[i], (fd_set*)&*ex_t);
2489        }
2490    }
2491
2492    if (fds_read_ptr)
2493        rd_t.copyOut(tc->getMemProxy());
2494    if (fds_writ_ptr)
2495        wr_t.copyOut(tc->getMemProxy());
2496    if (fds_excp_ptr)
2497        ex_t.copyOut(tc->getMemProxy());
2498    if (time_val_ptr)
2499        tp.copyOut(tc->getMemProxy());
2500
2501    return retval;
2502}
2503
2504template <class OS>
2505SyscallReturn
2506readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2507{
2508    int index = 0;
2509    int tgt_fd = p->getSyscallArg(tc, index);
2510    Addr buf_ptr = p->getSyscallArg(tc, index);
2511    int nbytes = p->getSyscallArg(tc, index);
2512
2513    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2514    if (!hbfdp)
2515        return -EBADF;
2516    int sim_fd = hbfdp->getSimFD();
2517
2518    struct pollfd pfd;
2519    pfd.fd = sim_fd;
2520    pfd.events = POLLIN | POLLPRI;
2521    if ((poll(&pfd, 1, 0) == 0)
2522        && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2523        return SyscallReturn::retry();
2524
2525    BufferArg buf_arg(buf_ptr, nbytes);
2526    int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2527
2528    if (bytes_read > 0)
2529        buf_arg.copyOut(tc->getMemProxy());
2530
2531    return (bytes_read == -1) ? -errno : bytes_read;
2532}
2533
2534template <class OS>
2535SyscallReturn
2536writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2537{
2538    int index = 0;
2539    int tgt_fd = p->getSyscallArg(tc, index);
2540    Addr buf_ptr = p->getSyscallArg(tc, index);
2541    int nbytes = p->getSyscallArg(tc, index);
2542
2543    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2544    if (!hbfdp)
2545        return -EBADF;
2546    int sim_fd = hbfdp->getSimFD();
2547
2548    BufferArg buf_arg(buf_ptr, nbytes);
2549    buf_arg.copyIn(tc->getMemProxy());
2550
2551    struct pollfd pfd;
2552    pfd.fd = sim_fd;
2553    pfd.events = POLLOUT;
2554
2555    /**
2556     * We don't want to poll on /dev/random. The kernel will not enable the
2557     * file descriptor for writing unless the entropy in the system falls
2558     * below write_wakeup_threshold. This is not guaranteed to happen
2559     * depending on host settings.
2560     */
2561    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2562    if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2563        if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2564            return SyscallReturn::retry();
2565    }
2566
2567    int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2568
2569    if (bytes_written != -1)
2570        fsync(sim_fd);
2571
2572    return (bytes_written == -1) ? -errno : bytes_written;
2573}
2574
2575template <class OS>
2576SyscallReturn
2577wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2578{
2579    int index = 0;
2580    pid_t pid = p->getSyscallArg(tc, index);
2581    Addr statPtr = p->getSyscallArg(tc, index);
2582    int options = p->getSyscallArg(tc, index);
2583    Addr rusagePtr = p->getSyscallArg(tc, index);
2584
2585    if (rusagePtr)
2586        DPRINTFR(SyscallVerbose,
2587                 "%d: %s: syscall wait4: rusage pointer provided however "
2588                 "functionality not supported. Ignoring rusage pointer.\n",
2589                 curTick(), tc->getCpuPtr()->name());
2590
2591    /**
2592     * Currently, wait4 is only implemented so that it will wait for children
2593     * exit conditions which are denoted by a SIGCHLD signals posted into the
2594     * system signal list. We return no additional information via any of the
2595     * parameters supplied to wait4. If nothing is found in the system signal
2596     * list, we will wait indefinitely for SIGCHLD to post by retrying the
2597     * call.
2598     */
2599    System *sysh = tc->getSystemPtr();
2600    std::list<BasicSignal>::iterator iter;
2601    for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2602        if (iter->receiver == p) {
2603            if (pid < -1) {
2604                if ((iter->sender->pgid() == -pid)
2605                    && (iter->signalValue == OS::TGT_SIGCHLD))
2606                    goto success;
2607            } else if (pid == -1) {
2608                if (iter->signalValue == OS::TGT_SIGCHLD)
2609                    goto success;
2610            } else if (pid == 0) {
2611                if ((iter->sender->pgid() == p->pgid())
2612                    && (iter->signalValue == OS::TGT_SIGCHLD))
2613                    goto success;
2614            } else {
2615                if ((iter->sender->pid() == pid)
2616                    && (iter->signalValue == OS::TGT_SIGCHLD))
2617                    goto success;
2618            }
2619        }
2620    }
2621
2622    return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2623
2624success:
2625    // Set status to EXITED for WIFEXITED evaluations.
2626    const int EXITED = 0;
2627    BufferArg statusBuf(statPtr, sizeof(int));
2628    *(int *)statusBuf.bufferPtr() = EXITED;
2629    statusBuf.copyOut(tc->getMemProxy());
2630
2631    // Return the child PID.
2632    pid_t retval = iter->sender->pid();
2633    sysh->signalList.erase(iter);
2634    return retval;
2635}
2636
2637template <class OS>
2638SyscallReturn
2639acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2640{
2641    struct sockaddr sa;
2642    socklen_t addrLen;
2643    int host_fd;
2644    int index = 0;
2645    int tgt_fd = p->getSyscallArg(tc, index);
2646    Addr addrPtr = p->getSyscallArg(tc, index);
2647    Addr lenPtr = p->getSyscallArg(tc, index);
2648
2649    BufferArg *lenBufPtr = nullptr;
2650    BufferArg *addrBufPtr = nullptr;
2651
2652    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2653    if (!sfdp)
2654        return -EBADF;
2655    int sim_fd = sfdp->getSimFD();
2656
2657    /**
2658     * We poll the socket file descriptor first to guarantee that we do not
2659     * block on our accept call. The socket can be opened without the
2660     * non-blocking flag (it blocks). This will cause deadlocks between
2661     * communicating processes.
2662     */
2663    struct pollfd pfd;
2664    pfd.fd = sim_fd;
2665    pfd.events = POLLIN | POLLPRI;
2666    if ((poll(&pfd, 1, 0) == 0)
2667        && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2668        return SyscallReturn::retry();
2669
2670    if (lenPtr) {
2671        lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2672        lenBufPtr->copyIn(tc->getMemProxy());
2673        memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2674               sizeof(socklen_t));
2675    }
2676
2677    if (addrPtr) {
2678        addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2679        addrBufPtr->copyIn(tc->getMemProxy());
2680        memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2681               sizeof(struct sockaddr));
2682    }
2683
2684    host_fd = accept(sim_fd, &sa, &addrLen);
2685
2686    if (host_fd == -1)
2687        return -errno;
2688
2689    if (addrPtr) {
2690        memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2691        addrBufPtr->copyOut(tc->getMemProxy());
2692        delete(addrBufPtr);
2693    }
2694
2695    if (lenPtr) {
2696        *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2697        lenBufPtr->copyOut(tc->getMemProxy());
2698        delete(lenBufPtr);
2699    }
2700
2701    auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2702                                                sfdp->_type, sfdp->_protocol);
2703    return p->fds->allocFD(afdp);
2704}
2705
2706#endif // __SIM_SYSCALL_EMUL_HH__
2707