syscall_emul.hh revision 13572:14ddf44aaebc
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <poll.h>
82#include <sys/mman.h>
83#include <sys/socket.h>
84#include <sys/stat.h>
85#if (NO_STATFS == 0)
86#include <sys/statfs.h>
87#else
88#include <sys/mount.h>
89#endif
90#include <sys/time.h>
91#include <sys/types.h>
92#include <sys/uio.h>
93#include <unistd.h>
94
95#include <cerrno>
96#include <memory>
97#include <string>
98
99#include "arch/generic/tlb.hh"
100#include "arch/utility.hh"
101#include "base/intmath.hh"
102#include "base/loader/object_file.hh"
103#include "base/logging.hh"
104#include "base/trace.hh"
105#include "base/types.hh"
106#include "config/the_isa.hh"
107#include "cpu/base.hh"
108#include "cpu/thread_context.hh"
109#include "mem/page_table.hh"
110#include "params/Process.hh"
111#include "sim/emul_driver.hh"
112#include "sim/futex_map.hh"
113#include "sim/process.hh"
114#include "sim/syscall_debug_macros.hh"
115#include "sim/syscall_desc.hh"
116#include "sim/syscall_emul_buf.hh"
117#include "sim/syscall_return.hh"
118
119//////////////////////////////////////////////////////////////////////
120//
121// The following emulation functions are generic enough that they
122// don't need to be recompiled for different emulated OS's.  They are
123// defined in sim/syscall_emul.cc.
124//
125//////////////////////////////////////////////////////////////////////
126
127
128/// Handler for unimplemented syscalls that we haven't thought about.
129SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
130                                Process *p, ThreadContext *tc);
131
132/// Handler for unimplemented syscalls that we never intend to
133/// implement (signal handling, etc.) and should not affect the correct
134/// behavior of the program.  Print a warning only if the appropriate
135/// trace flag is enabled.  Return success to the target program.
136SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
137                         Process *p, ThreadContext *tc);
138
139// Target fallocateFunc() handler.
140SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
141                            Process *p, ThreadContext *tc);
142
143/// Target exit() handler: terminate current context.
144SyscallReturn exitFunc(SyscallDesc *desc, int num,
145                       Process *p, ThreadContext *tc);
146
147/// Target exit_group() handler: terminate simulation. (exit all threads)
148SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
149                       Process *p, ThreadContext *tc);
150
151/// Target set_tid_address() handler.
152SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
153                                Process *p, ThreadContext *tc);
154
155/// Target getpagesize() handler.
156SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
157                              Process *p, ThreadContext *tc);
158
159/// Target brk() handler: set brk address.
160SyscallReturn brkFunc(SyscallDesc *desc, int num,
161                      Process *p, ThreadContext *tc);
162
163/// Target close() handler.
164SyscallReturn closeFunc(SyscallDesc *desc, int num,
165                        Process *p, ThreadContext *tc);
166
167/// Target lseek() handler.
168SyscallReturn lseekFunc(SyscallDesc *desc, int num,
169                        Process *p, ThreadContext *tc);
170
171/// Target _llseek() handler.
172SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
173                          Process *p, ThreadContext *tc);
174
175/// Target munmap() handler.
176SyscallReturn munmapFunc(SyscallDesc *desc, int num,
177                         Process *p, ThreadContext *tc);
178
179/// Target shutdown() handler.
180SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
181                           Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185                              Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189                         Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193                           Process *p, ThreadContext *tc,
194                           int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196                           Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200                           Process *p, ThreadContext *tc,
201                           int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203                         Process *p, ThreadContext *tc);
204
205/// Target link() handler
206SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
207                       ThreadContext *tc);
208
209/// Target symlink() handler.
210SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
211                          ThreadContext *tc);
212
213/// Target mkdir() handler.
214SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
215                        Process *p, ThreadContext *tc);
216
217/// Target mknod() handler.
218SyscallReturn mknodFunc(SyscallDesc *desc, int num,
219                        Process *p, ThreadContext *tc);
220
221/// Target chdir() handler.
222SyscallReturn chdirFunc(SyscallDesc *desc, int num,
223                        Process *p, ThreadContext *tc);
224
225// Target rmdir() handler.
226SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
227                        Process *p, ThreadContext *tc);
228
229/// Target rename() handler.
230SyscallReturn renameFunc(SyscallDesc *desc, int num,
231                         Process *p, ThreadContext *tc);
232
233
234/// Target truncate() handler.
235SyscallReturn truncateFunc(SyscallDesc *desc, int num,
236                           Process *p, ThreadContext *tc);
237
238
239/// Target ftruncate() handler.
240SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
241                            Process *p, ThreadContext *tc);
242
243
244/// Target truncate64() handler.
245SyscallReturn truncate64Func(SyscallDesc *desc, int num,
246                             Process *p, ThreadContext *tc);
247
248/// Target ftruncate64() handler.
249SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
250                              Process *p, ThreadContext *tc);
251
252
253/// Target umask() handler.
254SyscallReturn umaskFunc(SyscallDesc *desc, int num,
255                        Process *p, ThreadContext *tc);
256
257/// Target gettid() handler.
258SyscallReturn gettidFunc(SyscallDesc *desc, int num,
259                         Process *p, ThreadContext *tc);
260
261/// Target chown() handler.
262SyscallReturn chownFunc(SyscallDesc *desc, int num,
263                        Process *p, ThreadContext *tc);
264
265/// Target setpgid() handler.
266SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
267                          Process *p, ThreadContext *tc);
268
269/// Target fchown() handler.
270SyscallReturn fchownFunc(SyscallDesc *desc, int num,
271                         Process *p, ThreadContext *tc);
272
273/// Target dup() handler.
274SyscallReturn dupFunc(SyscallDesc *desc, int num,
275                      Process *process, ThreadContext *tc);
276
277/// Target dup2() handler.
278SyscallReturn dup2Func(SyscallDesc *desc, int num,
279                       Process *process, ThreadContext *tc);
280
281/// Target fcntl() handler.
282SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
283                        Process *process, ThreadContext *tc);
284
285/// Target fcntl64() handler.
286SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
287                          Process *process, ThreadContext *tc);
288
289/// Target setuid() handler.
290SyscallReturn setuidFunc(SyscallDesc *desc, int num,
291                         Process *p, ThreadContext *tc);
292
293/// Target pipe() handler.
294SyscallReturn pipeFunc(SyscallDesc *desc, int num,
295                       Process *p, ThreadContext *tc);
296
297/// Internal pipe() handler.
298SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
299                       ThreadContext *tc, bool pseudoPipe);
300
301/// Target getpid() handler.
302SyscallReturn getpidFunc(SyscallDesc *desc, int num,
303                         Process *p, ThreadContext *tc);
304
305// Target getpeername() handler.
306SyscallReturn getpeernameFunc(SyscallDesc *desc, int num,
307                              Process *p, ThreadContext *tc);
308
309// Target bind() handler.
310SyscallReturn bindFunc(SyscallDesc *desc, int num,
311                       Process *p, ThreadContext *tc);
312
313// Target listen() handler.
314SyscallReturn listenFunc(SyscallDesc *desc, int num,
315                         Process *p, ThreadContext *tc);
316
317// Target connect() handler.
318SyscallReturn connectFunc(SyscallDesc *desc, int num,
319                          Process *p, ThreadContext *tc);
320
321#if defined(SYS_getdents)
322// Target getdents() handler.
323SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
324                           Process *p, ThreadContext *tc);
325#endif
326
327#if defined(SYS_getdents64)
328// Target getdents() handler.
329SyscallReturn getdents64Func(SyscallDesc *desc, int num,
330                           Process *p, ThreadContext *tc);
331#endif
332
333// Target sendto() handler.
334SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
335                         Process *p, ThreadContext *tc);
336
337// Target recvfrom() handler.
338SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
339                           Process *p, ThreadContext *tc);
340
341// Target recvmsg() handler.
342SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
343                          Process *p, ThreadContext *tc);
344
345// Target sendmsg() handler.
346SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
347                          Process *p, ThreadContext *tc);
348
349// Target getuid() handler.
350SyscallReturn getuidFunc(SyscallDesc *desc, int num,
351                         Process *p, ThreadContext *tc);
352
353/// Target getgid() handler.
354SyscallReturn getgidFunc(SyscallDesc *desc, int num,
355                         Process *p, ThreadContext *tc);
356
357/// Target getppid() handler.
358SyscallReturn getppidFunc(SyscallDesc *desc, int num,
359                          Process *p, ThreadContext *tc);
360
361/// Target geteuid() handler.
362SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
363                          Process *p, ThreadContext *tc);
364
365/// Target getegid() handler.
366SyscallReturn getegidFunc(SyscallDesc *desc, int num,
367                          Process *p, ThreadContext *tc);
368
369/// Target access() handler
370SyscallReturn accessFunc(SyscallDesc *desc, int num,
371                         Process *p, ThreadContext *tc);
372SyscallReturn accessFunc(SyscallDesc *desc, int num,
373                         Process *p, ThreadContext *tc,
374                         int index);
375
376// Target getsockopt() handler.
377SyscallReturn getsockoptFunc(SyscallDesc *desc, int num,
378                             Process *p, ThreadContext *tc);
379
380// Target setsockopt() handler.
381SyscallReturn setsockoptFunc(SyscallDesc *desc, int num,
382                             Process *p, ThreadContext *tc);
383
384// Target getsockname() handler.
385SyscallReturn getsocknameFunc(SyscallDesc *desc, int num,
386                              Process *p, ThreadContext *tc);
387
388/// Futex system call
389/// Implemented by Daniel Sanchez
390/// Used by printf's in multi-threaded apps
391template <class OS>
392SyscallReturn
393futexFunc(SyscallDesc *desc, int callnum, Process *process,
394          ThreadContext *tc)
395{
396    using namespace std;
397
398    int index = 0;
399    Addr uaddr = process->getSyscallArg(tc, index);
400    int op = process->getSyscallArg(tc, index);
401    int val = process->getSyscallArg(tc, index);
402
403    /*
404     * Unsupported option that does not affect the correctness of the
405     * application. This is a performance optimization utilized by Linux.
406     */
407    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
408
409    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
410
411    if (OS::TGT_FUTEX_WAIT == op) {
412        // Ensure futex system call accessed atomically.
413        BufferArg buf(uaddr, sizeof(int));
414        buf.copyIn(tc->getMemProxy());
415        int mem_val = *(int*)buf.bufferPtr();
416
417        /*
418         * The value in memory at uaddr is not equal with the expected val
419         * (a different thread must have changed it before the system call was
420         * invoked). In this case, we need to throw an error.
421         */
422        if (val != mem_val)
423            return -OS::TGT_EWOULDBLOCK;
424
425        futex_map.suspend(uaddr, process->tgid(), tc);
426
427        return 0;
428    } else if (OS::TGT_FUTEX_WAKE == op) {
429        return futex_map.wakeup(uaddr, process->tgid(), val);
430    }
431
432    warn("futex: op %d not implemented; ignoring.", op);
433    return -ENOSYS;
434}
435
436
437/// Pseudo Funcs  - These functions use a different return convension,
438/// returning a second value in a register other than the normal return register
439SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
440                             Process *process, ThreadContext *tc);
441
442/// Target getpidPseudo() handler.
443SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
444                               Process *p, ThreadContext *tc);
445
446/// Target getuidPseudo() handler.
447SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
448                               Process *p, ThreadContext *tc);
449
450/// Target getgidPseudo() handler.
451SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
452                               Process *p, ThreadContext *tc);
453
454
455/// A readable name for 1,000,000, for converting microseconds to seconds.
456const int one_million = 1000000;
457/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
458const int one_billion = 1000000000;
459
460/// Approximate seconds since the epoch (1/1/1970).  About a billion,
461/// by my reckoning.  We want to keep this a constant (not use the
462/// real-world time) to keep simulations repeatable.
463const unsigned seconds_since_epoch = 1000000000;
464
465/// Helper function to convert current elapsed time to seconds and
466/// microseconds.
467template <class T1, class T2>
468void
469getElapsedTimeMicro(T1 &sec, T2 &usec)
470{
471    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
472    sec = elapsed_usecs / one_million;
473    usec = elapsed_usecs % one_million;
474}
475
476/// Helper function to convert current elapsed time to seconds and
477/// nanoseconds.
478template <class T1, class T2>
479void
480getElapsedTimeNano(T1 &sec, T2 &nsec)
481{
482    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
483    sec = elapsed_nsecs / one_billion;
484    nsec = elapsed_nsecs % one_billion;
485}
486
487//////////////////////////////////////////////////////////////////////
488//
489// The following emulation functions are generic, but need to be
490// templated to account for differences in types, constants, etc.
491//
492//////////////////////////////////////////////////////////////////////
493
494    typedef struct statfs hst_statfs;
495#if NO_STAT64
496    typedef struct stat hst_stat;
497    typedef struct stat hst_stat64;
498#else
499    typedef struct stat hst_stat;
500    typedef struct stat64 hst_stat64;
501#endif
502
503//// Helper function to convert a host stat buffer to a target stat
504//// buffer.  Also copies the target buffer out to the simulated
505//// memory space.  Used by stat(), fstat(), and lstat().
506
507template <typename target_stat, typename host_stat>
508void
509convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
510{
511    using namespace TheISA;
512
513    if (fakeTTY)
514        tgt->st_dev = 0xA;
515    else
516        tgt->st_dev = host->st_dev;
517    tgt->st_dev = TheISA::htog(tgt->st_dev);
518    tgt->st_ino = host->st_ino;
519    tgt->st_ino = TheISA::htog(tgt->st_ino);
520    tgt->st_mode = host->st_mode;
521    if (fakeTTY) {
522        // Claim to be a character device
523        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
524        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
525    }
526    tgt->st_mode = TheISA::htog(tgt->st_mode);
527    tgt->st_nlink = host->st_nlink;
528    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
529    tgt->st_uid = host->st_uid;
530    tgt->st_uid = TheISA::htog(tgt->st_uid);
531    tgt->st_gid = host->st_gid;
532    tgt->st_gid = TheISA::htog(tgt->st_gid);
533    if (fakeTTY)
534        tgt->st_rdev = 0x880d;
535    else
536        tgt->st_rdev = host->st_rdev;
537    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
538    tgt->st_size = host->st_size;
539    tgt->st_size = TheISA::htog(tgt->st_size);
540    tgt->st_atimeX = host->st_atime;
541    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
542    tgt->st_mtimeX = host->st_mtime;
543    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
544    tgt->st_ctimeX = host->st_ctime;
545    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
546    // Force the block size to be 8KB. This helps to ensure buffered io works
547    // consistently across different hosts.
548    tgt->st_blksize = 0x2000;
549    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
550    tgt->st_blocks = host->st_blocks;
551    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
552}
553
554// Same for stat64
555
556template <typename target_stat, typename host_stat64>
557void
558convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
559{
560    using namespace TheISA;
561
562    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
563#if defined(STAT_HAVE_NSEC)
564    tgt->st_atime_nsec = host->st_atime_nsec;
565    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
566    tgt->st_mtime_nsec = host->st_mtime_nsec;
567    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
568    tgt->st_ctime_nsec = host->st_ctime_nsec;
569    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
570#else
571    tgt->st_atime_nsec = 0;
572    tgt->st_mtime_nsec = 0;
573    tgt->st_ctime_nsec = 0;
574#endif
575}
576
577// Here are a couple of convenience functions
578template<class OS>
579void
580copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
581               hst_stat *host, bool fakeTTY = false)
582{
583    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
584    tgt_stat_buf tgt(addr);
585    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
586    tgt.copyOut(mem);
587}
588
589template<class OS>
590void
591copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
592                 hst_stat64 *host, bool fakeTTY = false)
593{
594    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
595    tgt_stat_buf tgt(addr);
596    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
597    tgt.copyOut(mem);
598}
599
600template <class OS>
601void
602copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
603                 hst_statfs *host)
604{
605    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
606
607    tgt->f_type = TheISA::htog(host->f_type);
608#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
609    tgt->f_bsize = TheISA::htog(host->f_iosize);
610#else
611    tgt->f_bsize = TheISA::htog(host->f_bsize);
612#endif
613    tgt->f_blocks = TheISA::htog(host->f_blocks);
614    tgt->f_bfree = TheISA::htog(host->f_bfree);
615    tgt->f_bavail = TheISA::htog(host->f_bavail);
616    tgt->f_files = TheISA::htog(host->f_files);
617    tgt->f_ffree = TheISA::htog(host->f_ffree);
618    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
619#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
620    tgt->f_namelen = TheISA::htog(host->f_namemax);
621    tgt->f_frsize = TheISA::htog(host->f_bsize);
622#elif defined(__APPLE__)
623    tgt->f_namelen = 0;
624    tgt->f_frsize = 0;
625#else
626    tgt->f_namelen = TheISA::htog(host->f_namelen);
627    tgt->f_frsize = TheISA::htog(host->f_frsize);
628#endif
629#if defined(__linux__)
630    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
631#else
632    /*
633     * The fields are different sizes per OS. Don't bother with
634     * f_spare or f_reserved on non-Linux for now.
635     */
636    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
637#endif
638
639    tgt.copyOut(mem);
640}
641
642/// Target ioctl() handler.  For the most part, programs call ioctl()
643/// only to find out if their stdout is a tty, to determine whether to
644/// do line or block buffering.  We always claim that output fds are
645/// not TTYs to provide repeatable results.
646template <class OS>
647SyscallReturn
648ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
649{
650    int index = 0;
651    int tgt_fd = p->getSyscallArg(tc, index);
652    unsigned req = p->getSyscallArg(tc, index);
653
654    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
655
656    if (OS::isTtyReq(req))
657        return -ENOTTY;
658
659    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
660    if (!dfdp)
661        return -EBADF;
662
663    /**
664     * If the driver is valid, issue the ioctl through it. Otherwise,
665     * there's an implicit assumption that the device is a TTY type and we
666     * return that we do not have a valid TTY.
667     */
668    EmulatedDriver *emul_driver = dfdp->getDriver();
669    if (emul_driver)
670        return emul_driver->ioctl(p, tc, req);
671
672    /**
673     * For lack of a better return code, return ENOTTY. Ideally, we should
674     * return something better here, but at least we issue the warning.
675     */
676    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
677         tgt_fd, req, tc->pcState());
678    return -ENOTTY;
679}
680
681template <class OS>
682SyscallReturn
683openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
684         bool isopenat)
685{
686    int index = 0;
687    int tgt_dirfd = -1;
688
689    /**
690     * If using the openat variant, read in the target directory file
691     * descriptor from the simulated process.
692     */
693    if (isopenat)
694        tgt_dirfd = p->getSyscallArg(tc, index);
695
696    /**
697     * Retrieve the simulated process' memory proxy and then read in the path
698     * string from that memory space into the host's working memory space.
699     */
700    std::string path;
701    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
702        return -EFAULT;
703
704#ifdef __CYGWIN32__
705    int host_flags = O_BINARY;
706#else
707    int host_flags = 0;
708#endif
709    /**
710     * Translate target flags into host flags. Flags exist which are not
711     * ported between architectures which can cause check failures.
712     */
713    int tgt_flags = p->getSyscallArg(tc, index);
714    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
715        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
716            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
717            host_flags |= OS::openFlagTable[i].hostFlag;
718        }
719    }
720    if (tgt_flags) {
721        warn("open%s: cannot decode flags 0x%x",
722             isopenat ? "at" : "", tgt_flags);
723    }
724#ifdef __CYGWIN32__
725    host_flags |= O_BINARY;
726#endif
727
728    int mode = p->getSyscallArg(tc, index);
729
730    /**
731     * If the simulated process called open or openat with AT_FDCWD specified,
732     * take the current working directory value which was passed into the
733     * process class as a Python parameter and append the current path to
734     * create a full path.
735     * Otherwise, openat with a valid target directory file descriptor has
736     * been called. If the path option, which was passed in as a parameter,
737     * is not absolute, retrieve the directory file descriptor's path and
738     * prepend it to the path passed in as a parameter.
739     * In every case, we should have a full path (which is relevant to the
740     * host) to work with after this block has been passed.
741     */
742    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
743        path = p->fullPath(path);
744    } else if (!startswith(path, "/")) {
745        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
746        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
747        if (!ffdp)
748            return -EBADF;
749        path.insert(0, ffdp->getFileName() + "/");
750    }
751
752    /**
753     * Since this is an emulated environment, we create pseudo file
754     * descriptors for device requests that have been registered with
755     * the process class through Python; this allows us to create a file
756     * descriptor for subsequent ioctl or mmap calls.
757     */
758    if (startswith(path, "/dev/")) {
759        std::string filename = path.substr(strlen("/dev/"));
760        EmulatedDriver *drv = p->findDriver(filename);
761        if (drv) {
762            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
763                            "driver open with path[%s]\n",
764                            isopenat ? "at" : "", path.c_str());
765            return drv->open(p, tc, mode, host_flags);
766        }
767        /**
768         * Fall through here for pass through to host devices, such
769         * as /dev/zero
770         */
771    }
772
773    /**
774     * Some special paths and files cannot be called on the host and need
775     * to be handled as special cases inside the simulator.
776     * If the full path that was created above does not match any of the
777     * special cases, pass it through to the open call on the host to let
778     * the host open the file on our behalf.
779     * If the host cannot open the file, return the host's error code back
780     * through the system call to the simulated process.
781     */
782    int sim_fd = -1;
783    std::vector<std::string> special_paths =
784            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
785    for (auto entry : special_paths) {
786        if (startswith(path, entry))
787            sim_fd = OS::openSpecialFile(path, p, tc);
788    }
789    if (sim_fd == -1) {
790        sim_fd = open(path.c_str(), host_flags, mode);
791    }
792    if (sim_fd == -1) {
793        int local = -errno;
794        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
795                        isopenat ? "at" : "", path.c_str());
796        return local;
797    }
798
799    /**
800     * The file was opened successfully and needs to be recorded in the
801     * process' file descriptor array so that it can be retrieved later.
802     * The target file descriptor that is chosen will be the lowest unused
803     * file descriptor.
804     * Return the indirect target file descriptor back to the simulated
805     * process to act as a handle for the opened file.
806     */
807    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
808    int tgt_fd = p->fds->allocFD(ffdp);
809    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
810                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
811    return tgt_fd;
812}
813
814/// Target open() handler.
815template <class OS>
816SyscallReturn
817openFunc(SyscallDesc *desc, int callnum, Process *process,
818         ThreadContext *tc)
819{
820    return openImpl<OS>(desc, callnum, process, tc, false);
821}
822
823/// Target openat() handler.
824template <class OS>
825SyscallReturn
826openatFunc(SyscallDesc *desc, int callnum, Process *process,
827           ThreadContext *tc)
828{
829    return openImpl<OS>(desc, callnum, process, tc, true);
830}
831
832/// Target unlinkat() handler.
833template <class OS>
834SyscallReturn
835unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
836             ThreadContext *tc)
837{
838    int index = 0;
839    int dirfd = process->getSyscallArg(tc, index);
840    if (dirfd != OS::TGT_AT_FDCWD)
841        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
842
843    return unlinkHelper(desc, callnum, process, tc, 1);
844}
845
846/// Target facessat() handler
847template <class OS>
848SyscallReturn
849faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
850              ThreadContext *tc)
851{
852    int index = 0;
853    int dirfd = process->getSyscallArg(tc, index);
854    if (dirfd != OS::TGT_AT_FDCWD)
855        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
856    return accessFunc(desc, callnum, process, tc, 1);
857}
858
859/// Target readlinkat() handler
860template <class OS>
861SyscallReturn
862readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
863               ThreadContext *tc)
864{
865    int index = 0;
866    int dirfd = process->getSyscallArg(tc, index);
867    if (dirfd != OS::TGT_AT_FDCWD)
868        warn("openat: first argument not AT_FDCWD; unlikely to work");
869    return readlinkFunc(desc, callnum, process, tc, 1);
870}
871
872/// Target renameat() handler.
873template <class OS>
874SyscallReturn
875renameatFunc(SyscallDesc *desc, int callnum, Process *process,
876             ThreadContext *tc)
877{
878    int index = 0;
879
880    int olddirfd = process->getSyscallArg(tc, index);
881    if (olddirfd != OS::TGT_AT_FDCWD)
882        warn("renameat: first argument not AT_FDCWD; unlikely to work");
883
884    std::string old_name;
885
886    if (!tc->getMemProxy().tryReadString(old_name,
887                                         process->getSyscallArg(tc, index)))
888        return -EFAULT;
889
890    int newdirfd = process->getSyscallArg(tc, index);
891    if (newdirfd != OS::TGT_AT_FDCWD)
892        warn("renameat: third argument not AT_FDCWD; unlikely to work");
893
894    std::string new_name;
895
896    if (!tc->getMemProxy().tryReadString(new_name,
897                                         process->getSyscallArg(tc, index)))
898        return -EFAULT;
899
900    // Adjust path for current working directory
901    old_name = process->fullPath(old_name);
902    new_name = process->fullPath(new_name);
903
904    int result = rename(old_name.c_str(), new_name.c_str());
905    return (result == -1) ? -errno : result;
906}
907
908/// Target sysinfo() handler.
909template <class OS>
910SyscallReturn
911sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
912            ThreadContext *tc)
913{
914
915    int index = 0;
916    TypedBufferArg<typename OS::tgt_sysinfo>
917        sysinfo(process->getSyscallArg(tc, index));
918
919    sysinfo->uptime = seconds_since_epoch;
920    sysinfo->totalram = process->system->memSize();
921    sysinfo->mem_unit = 1;
922
923    sysinfo.copyOut(tc->getMemProxy());
924
925    return 0;
926}
927
928/// Target chmod() handler.
929template <class OS>
930SyscallReturn
931chmodFunc(SyscallDesc *desc, int callnum, Process *process,
932          ThreadContext *tc)
933{
934    std::string path;
935
936    int index = 0;
937    if (!tc->getMemProxy().tryReadString(path,
938                process->getSyscallArg(tc, index))) {
939        return -EFAULT;
940    }
941
942    uint32_t mode = process->getSyscallArg(tc, index);
943    mode_t hostMode = 0;
944
945    // XXX translate mode flags via OS::something???
946    hostMode = mode;
947
948    // Adjust path for current working directory
949    path = process->fullPath(path);
950
951    // do the chmod
952    int result = chmod(path.c_str(), hostMode);
953    if (result < 0)
954        return -errno;
955
956    return 0;
957}
958
959template <class OS>
960SyscallReturn
961pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
962{
963    int index = 0;
964    Addr fdsPtr = p->getSyscallArg(tc, index);
965    int nfds = p->getSyscallArg(tc, index);
966    int tmout = p->getSyscallArg(tc, index);
967
968    BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
969    fdsBuf.copyIn(tc->getMemProxy());
970
971    /**
972     * Record the target file descriptors in a local variable. We need to
973     * replace them with host file descriptors but we need a temporary copy
974     * for later. Afterwards, replace each target file descriptor in the
975     * poll_fd array with its host_fd.
976     */
977    int temp_tgt_fds[nfds];
978    for (index = 0; index < nfds; index++) {
979        temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
980        auto tgt_fd = temp_tgt_fds[index];
981        auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
982        if (!hbfdp)
983            return -EBADF;
984        auto host_fd = hbfdp->getSimFD();
985        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
986    }
987
988    /**
989     * We cannot allow an infinite poll to occur or it will inevitably cause
990     * a deadlock in the gem5 simulator with clone. We must pass in tmout with
991     * a non-negative value, however it also makes no sense to poll on the
992     * underlying host for any other time than tmout a zero timeout.
993     */
994    int status;
995    if (tmout < 0) {
996        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
997        if (status == 0) {
998            /**
999             * If blocking indefinitely, check the signal list to see if a
1000             * signal would break the poll out of the retry cycle and try
1001             * to return the signal interrupt instead.
1002             */
1003            System *sysh = tc->getSystemPtr();
1004            std::list<BasicSignal>::iterator it;
1005            for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1006                if (it->receiver == p)
1007                    return -EINTR;
1008            return SyscallReturn::retry();
1009        }
1010    } else
1011        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1012
1013    if (status == -1)
1014        return -errno;
1015
1016    /**
1017     * Replace each host_fd in the returned poll_fd array with its original
1018     * target file descriptor.
1019     */
1020    for (index = 0; index < nfds; index++) {
1021        auto tgt_fd = temp_tgt_fds[index];
1022        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1023    }
1024
1025    /**
1026     * Copy out the pollfd struct because the host may have updated fields
1027     * in the structure.
1028     */
1029    fdsBuf.copyOut(tc->getMemProxy());
1030
1031    return status;
1032}
1033
1034/// Target fchmod() handler.
1035template <class OS>
1036SyscallReturn
1037fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1038{
1039    int index = 0;
1040    int tgt_fd = p->getSyscallArg(tc, index);
1041    uint32_t mode = p->getSyscallArg(tc, index);
1042
1043    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1044    if (!ffdp)
1045        return -EBADF;
1046    int sim_fd = ffdp->getSimFD();
1047
1048    mode_t hostMode = mode;
1049
1050    int result = fchmod(sim_fd, hostMode);
1051
1052    return (result < 0) ? -errno : 0;
1053}
1054
1055/// Target mremap() handler.
1056template <class OS>
1057SyscallReturn
1058mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1059{
1060    int index = 0;
1061    Addr start = process->getSyscallArg(tc, index);
1062    uint64_t old_length = process->getSyscallArg(tc, index);
1063    uint64_t new_length = process->getSyscallArg(tc, index);
1064    uint64_t flags = process->getSyscallArg(tc, index);
1065    uint64_t provided_address = 0;
1066    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1067
1068    if (use_provided_address)
1069        provided_address = process->getSyscallArg(tc, index);
1070
1071    if ((start % TheISA::PageBytes != 0) ||
1072        (provided_address % TheISA::PageBytes != 0)) {
1073        warn("mremap failing: arguments not page aligned");
1074        return -EINVAL;
1075    }
1076
1077    new_length = roundUp(new_length, TheISA::PageBytes);
1078
1079    if (new_length > old_length) {
1080        std::shared_ptr<MemState> mem_state = process->memState;
1081        Addr mmap_end = mem_state->getMmapEnd();
1082
1083        if ((start + old_length) == mmap_end &&
1084            (!use_provided_address || provided_address == start)) {
1085            // This case cannot occur when growing downward, as
1086            // start is greater than or equal to mmap_end.
1087            uint64_t diff = new_length - old_length;
1088            process->allocateMem(mmap_end, diff);
1089            mem_state->setMmapEnd(mmap_end + diff);
1090            return start;
1091        } else {
1092            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1093                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1094                return -ENOMEM;
1095            } else {
1096                uint64_t new_start = provided_address;
1097                if (!use_provided_address) {
1098                    new_start = process->mmapGrowsDown() ?
1099                                mmap_end - new_length : mmap_end;
1100                    mmap_end = process->mmapGrowsDown() ?
1101                               new_start : mmap_end + new_length;
1102                    mem_state->setMmapEnd(mmap_end);
1103                }
1104
1105                process->pTable->remap(start, old_length, new_start);
1106                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1107                     new_start, new_start + new_length,
1108                     new_length - old_length);
1109                // add on the remaining unallocated pages
1110                process->allocateMem(new_start + old_length,
1111                                     new_length - old_length,
1112                                     use_provided_address /* clobber */);
1113                if (use_provided_address &&
1114                    ((new_start + new_length > mem_state->getMmapEnd() &&
1115                      !process->mmapGrowsDown()) ||
1116                    (new_start < mem_state->getMmapEnd() &&
1117                      process->mmapGrowsDown()))) {
1118                    // something fishy going on here, at least notify the user
1119                    // @todo: increase mmap_end?
1120                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
1121                }
1122                warn("returning %08p as start\n", new_start);
1123                return new_start;
1124            }
1125        }
1126    } else {
1127        if (use_provided_address && provided_address != start)
1128            process->pTable->remap(start, new_length, provided_address);
1129        process->pTable->unmap(start + new_length, old_length - new_length);
1130        return use_provided_address ? provided_address : start;
1131    }
1132}
1133
1134/// Target stat() handler.
1135template <class OS>
1136SyscallReturn
1137statFunc(SyscallDesc *desc, int callnum, Process *process,
1138         ThreadContext *tc)
1139{
1140    std::string path;
1141
1142    int index = 0;
1143    if (!tc->getMemProxy().tryReadString(path,
1144                process->getSyscallArg(tc, index))) {
1145        return -EFAULT;
1146    }
1147    Addr bufPtr = process->getSyscallArg(tc, index);
1148
1149    // Adjust path for current working directory
1150    path = process->fullPath(path);
1151
1152    struct stat hostBuf;
1153    int result = stat(path.c_str(), &hostBuf);
1154
1155    if (result < 0)
1156        return -errno;
1157
1158    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1159
1160    return 0;
1161}
1162
1163
1164/// Target stat64() handler.
1165template <class OS>
1166SyscallReturn
1167stat64Func(SyscallDesc *desc, int callnum, Process *process,
1168           ThreadContext *tc)
1169{
1170    std::string path;
1171
1172    int index = 0;
1173    if (!tc->getMemProxy().tryReadString(path,
1174                process->getSyscallArg(tc, index)))
1175        return -EFAULT;
1176    Addr bufPtr = process->getSyscallArg(tc, index);
1177
1178    // Adjust path for current working directory
1179    path = process->fullPath(path);
1180
1181#if NO_STAT64
1182    struct stat  hostBuf;
1183    int result = stat(path.c_str(), &hostBuf);
1184#else
1185    struct stat64 hostBuf;
1186    int result = stat64(path.c_str(), &hostBuf);
1187#endif
1188
1189    if (result < 0)
1190        return -errno;
1191
1192    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1193
1194    return 0;
1195}
1196
1197
1198/// Target fstatat64() handler.
1199template <class OS>
1200SyscallReturn
1201fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1202              ThreadContext *tc)
1203{
1204    int index = 0;
1205    int dirfd = process->getSyscallArg(tc, index);
1206    if (dirfd != OS::TGT_AT_FDCWD)
1207        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1208
1209    std::string path;
1210    if (!tc->getMemProxy().tryReadString(path,
1211                process->getSyscallArg(tc, index)))
1212        return -EFAULT;
1213    Addr bufPtr = process->getSyscallArg(tc, index);
1214
1215    // Adjust path for current working directory
1216    path = process->fullPath(path);
1217
1218#if NO_STAT64
1219    struct stat  hostBuf;
1220    int result = stat(path.c_str(), &hostBuf);
1221#else
1222    struct stat64 hostBuf;
1223    int result = stat64(path.c_str(), &hostBuf);
1224#endif
1225
1226    if (result < 0)
1227        return -errno;
1228
1229    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1230
1231    return 0;
1232}
1233
1234
1235/// Target fstat64() handler.
1236template <class OS>
1237SyscallReturn
1238fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1239{
1240    int index = 0;
1241    int tgt_fd = p->getSyscallArg(tc, index);
1242    Addr bufPtr = p->getSyscallArg(tc, index);
1243
1244    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1245    if (!ffdp)
1246        return -EBADF;
1247    int sim_fd = ffdp->getSimFD();
1248
1249#if NO_STAT64
1250    struct stat  hostBuf;
1251    int result = fstat(sim_fd, &hostBuf);
1252#else
1253    struct stat64  hostBuf;
1254    int result = fstat64(sim_fd, &hostBuf);
1255#endif
1256
1257    if (result < 0)
1258        return -errno;
1259
1260    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1261
1262    return 0;
1263}
1264
1265
1266/// Target lstat() handler.
1267template <class OS>
1268SyscallReturn
1269lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1270          ThreadContext *tc)
1271{
1272    std::string path;
1273
1274    int index = 0;
1275    if (!tc->getMemProxy().tryReadString(path,
1276                process->getSyscallArg(tc, index))) {
1277        return -EFAULT;
1278    }
1279    Addr bufPtr = process->getSyscallArg(tc, index);
1280
1281    // Adjust path for current working directory
1282    path = process->fullPath(path);
1283
1284    struct stat hostBuf;
1285    int result = lstat(path.c_str(), &hostBuf);
1286
1287    if (result < 0)
1288        return -errno;
1289
1290    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1291
1292    return 0;
1293}
1294
1295/// Target lstat64() handler.
1296template <class OS>
1297SyscallReturn
1298lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1299            ThreadContext *tc)
1300{
1301    std::string path;
1302
1303    int index = 0;
1304    if (!tc->getMemProxy().tryReadString(path,
1305                process->getSyscallArg(tc, index))) {
1306        return -EFAULT;
1307    }
1308    Addr bufPtr = process->getSyscallArg(tc, index);
1309
1310    // Adjust path for current working directory
1311    path = process->fullPath(path);
1312
1313#if NO_STAT64
1314    struct stat hostBuf;
1315    int result = lstat(path.c_str(), &hostBuf);
1316#else
1317    struct stat64 hostBuf;
1318    int result = lstat64(path.c_str(), &hostBuf);
1319#endif
1320
1321    if (result < 0)
1322        return -errno;
1323
1324    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1325
1326    return 0;
1327}
1328
1329/// Target fstat() handler.
1330template <class OS>
1331SyscallReturn
1332fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1333{
1334    int index = 0;
1335    int tgt_fd = p->getSyscallArg(tc, index);
1336    Addr bufPtr = p->getSyscallArg(tc, index);
1337
1338    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1339
1340    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1341    if (!ffdp)
1342        return -EBADF;
1343    int sim_fd = ffdp->getSimFD();
1344
1345    struct stat hostBuf;
1346    int result = fstat(sim_fd, &hostBuf);
1347
1348    if (result < 0)
1349        return -errno;
1350
1351    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1352
1353    return 0;
1354}
1355
1356/// Target statfs() handler.
1357template <class OS>
1358SyscallReturn
1359statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1360           ThreadContext *tc)
1361{
1362#if NO_STATFS
1363    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1364#else
1365    std::string path;
1366
1367    int index = 0;
1368    if (!tc->getMemProxy().tryReadString(path,
1369                process->getSyscallArg(tc, index))) {
1370        return -EFAULT;
1371    }
1372    Addr bufPtr = process->getSyscallArg(tc, index);
1373
1374    // Adjust path for current working directory
1375    path = process->fullPath(path);
1376
1377    struct statfs hostBuf;
1378    int result = statfs(path.c_str(), &hostBuf);
1379
1380    if (result < 0)
1381        return -errno;
1382
1383    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1384#endif
1385    return 0;
1386}
1387
1388template <class OS>
1389SyscallReturn
1390cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1391{
1392    int index = 0;
1393
1394    RegVal flags = p->getSyscallArg(tc, index);
1395    RegVal newStack = p->getSyscallArg(tc, index);
1396    Addr ptidPtr = p->getSyscallArg(tc, index);
1397
1398#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1399    /**
1400     * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1401     * The flag defines the list of clone() arguments in the following
1402     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1403     */
1404    Addr tlsPtr = p->getSyscallArg(tc, index);
1405    Addr ctidPtr = p->getSyscallArg(tc, index);
1406#else
1407    Addr ctidPtr = p->getSyscallArg(tc, index);
1408    Addr tlsPtr = p->getSyscallArg(tc, index);
1409#endif
1410
1411    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1412        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1413        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1414        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1415        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1416        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1417        return -EINVAL;
1418
1419    ThreadContext *ctc;
1420    if (!(ctc = p->findFreeContext()))
1421        fatal("clone: no spare thread context in system");
1422
1423    /**
1424     * Note that ProcessParams is generated by swig and there are no other
1425     * examples of how to create anything but this default constructor. The
1426     * fields are manually initialized instead of passing parameters to the
1427     * constructor.
1428     */
1429    ProcessParams *pp = new ProcessParams();
1430    pp->executable.assign(*(new std::string(p->progName())));
1431    pp->cmd.push_back(*(new std::string(p->progName())));
1432    pp->system = p->system;
1433    pp->cwd.assign(p->getcwd());
1434    pp->input.assign("stdin");
1435    pp->output.assign("stdout");
1436    pp->errout.assign("stderr");
1437    pp->uid = p->uid();
1438    pp->euid = p->euid();
1439    pp->gid = p->gid();
1440    pp->egid = p->egid();
1441
1442    /* Find the first free PID that's less than the maximum */
1443    std::set<int> const& pids = p->system->PIDs;
1444    int temp_pid = *pids.begin();
1445    do {
1446        temp_pid++;
1447    } while (pids.find(temp_pid) != pids.end());
1448    if (temp_pid >= System::maxPID)
1449        fatal("temp_pid is too large: %d", temp_pid);
1450
1451    pp->pid = temp_pid;
1452    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1453    Process *cp = pp->create();
1454    delete pp;
1455
1456    Process *owner = ctc->getProcessPtr();
1457    ctc->setProcessPtr(cp);
1458    cp->assignThreadContext(ctc->contextId());
1459    owner->revokeThreadContext(ctc->contextId());
1460
1461    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1462        BufferArg ptidBuf(ptidPtr, sizeof(long));
1463        long *ptid = (long *)ptidBuf.bufferPtr();
1464        *ptid = cp->pid();
1465        ptidBuf.copyOut(tc->getMemProxy());
1466    }
1467
1468    cp->initState();
1469    p->clone(tc, ctc, cp, flags);
1470
1471    if (flags & OS::TGT_CLONE_THREAD) {
1472        delete cp->sigchld;
1473        cp->sigchld = p->sigchld;
1474    } else if (flags & OS::TGT_SIGCHLD) {
1475        *cp->sigchld = true;
1476    }
1477
1478    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1479        BufferArg ctidBuf(ctidPtr, sizeof(long));
1480        long *ctid = (long *)ctidBuf.bufferPtr();
1481        *ctid = cp->pid();
1482        ctidBuf.copyOut(ctc->getMemProxy());
1483    }
1484
1485    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1486        cp->childClearTID = (uint64_t)ctidPtr;
1487
1488    ctc->clearArchRegs();
1489
1490    OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1491
1492    cp->setSyscallReturn(ctc, 0);
1493
1494#if THE_ISA == ALPHA_ISA
1495    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1496#elif THE_ISA == SPARC_ISA
1497    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1498    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1499#endif
1500
1501    TheISA::PCState cpc = tc->pcState();
1502    cpc.advance();
1503    ctc->pcState(cpc);
1504    ctc->activate();
1505
1506    return cp->pid();
1507}
1508
1509/// Target fstatfs() handler.
1510template <class OS>
1511SyscallReturn
1512fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1513{
1514    int index = 0;
1515    int tgt_fd = p->getSyscallArg(tc, index);
1516    Addr bufPtr = p->getSyscallArg(tc, index);
1517
1518    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1519    if (!ffdp)
1520        return -EBADF;
1521    int sim_fd = ffdp->getSimFD();
1522
1523    struct statfs hostBuf;
1524    int result = fstatfs(sim_fd, &hostBuf);
1525
1526    if (result < 0)
1527        return -errno;
1528
1529    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1530
1531    return 0;
1532}
1533
1534/// Target readv() handler.
1535template <class OS>
1536SyscallReturn
1537readvFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1538{
1539    int index = 0;
1540    int tgt_fd = p->getSyscallArg(tc, index);
1541
1542    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1543    if (!ffdp)
1544        return -EBADF;
1545    int sim_fd = ffdp->getSimFD();
1546
1547    SETranslatingPortProxy &prox = tc->getMemProxy();
1548    uint64_t tiov_base = p->getSyscallArg(tc, index);
1549    size_t count = p->getSyscallArg(tc, index);
1550    typename OS::tgt_iovec tiov[count];
1551    struct iovec hiov[count];
1552    for (size_t i = 0; i < count; ++i) {
1553        prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1554                      (uint8_t*)&tiov[i], sizeof(typename OS::tgt_iovec));
1555        hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1556        hiov[i].iov_base = new char [hiov[i].iov_len];
1557    }
1558
1559    int result = readv(sim_fd, hiov, count);
1560    int local_errno = errno;
1561
1562    for (size_t i = 0; i < count; ++i) {
1563        if (result != -1) {
1564            prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1565                           (uint8_t*)hiov[i].iov_base, hiov[i].iov_len);
1566        }
1567        delete [] (char *)hiov[i].iov_base;
1568    }
1569
1570    return (result == -1) ? -local_errno : result;
1571}
1572
1573/// Target writev() handler.
1574template <class OS>
1575SyscallReturn
1576writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1577{
1578    int index = 0;
1579    int tgt_fd = p->getSyscallArg(tc, index);
1580
1581    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1582    if (!hbfdp)
1583        return -EBADF;
1584    int sim_fd = hbfdp->getSimFD();
1585
1586    SETranslatingPortProxy &prox = tc->getMemProxy();
1587    uint64_t tiov_base = p->getSyscallArg(tc, index);
1588    size_t count = p->getSyscallArg(tc, index);
1589    struct iovec hiov[count];
1590    for (size_t i = 0; i < count; ++i) {
1591        typename OS::tgt_iovec tiov;
1592
1593        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1594                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1595        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1596        hiov[i].iov_base = new char [hiov[i].iov_len];
1597        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1598                      hiov[i].iov_len);
1599    }
1600
1601    int result = writev(sim_fd, hiov, count);
1602
1603    for (size_t i = 0; i < count; ++i)
1604        delete [] (char *)hiov[i].iov_base;
1605
1606    return (result == -1) ? -errno : result;
1607}
1608
1609/// Real mmap handler.
1610template <class OS>
1611SyscallReturn
1612mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1613         bool is_mmap2)
1614{
1615    int index = 0;
1616    Addr start = p->getSyscallArg(tc, index);
1617    uint64_t length = p->getSyscallArg(tc, index);
1618    int prot = p->getSyscallArg(tc, index);
1619    int tgt_flags = p->getSyscallArg(tc, index);
1620    int tgt_fd = p->getSyscallArg(tc, index);
1621    int offset = p->getSyscallArg(tc, index);
1622
1623    if (is_mmap2)
1624        offset *= TheISA::PageBytes;
1625
1626    if (start & (TheISA::PageBytes - 1) ||
1627        offset & (TheISA::PageBytes - 1) ||
1628        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1629         tgt_flags & OS::TGT_MAP_SHARED) ||
1630        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1631         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1632        !length) {
1633        return -EINVAL;
1634    }
1635
1636    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1637        // With shared mmaps, there are two cases to consider:
1638        // 1) anonymous: writes should modify the mapping and this should be
1639        // visible to observers who share the mapping. Currently, it's
1640        // difficult to update the shared mapping because there's no
1641        // structure which maintains information about the which virtual
1642        // memory areas are shared. If that structure existed, it would be
1643        // possible to make the translations point to the same frames.
1644        // 2) file-backed: writes should modify the mapping and the file
1645        // which is backed by the mapping. The shared mapping problem is the
1646        // same as what was mentioned about the anonymous mappings. For
1647        // file-backed mappings, the writes to the file are difficult
1648        // because it requires syncing what the mapping holds with the file
1649        // that resides on the host system. So, any write on a real system
1650        // would cause the change to be propagated to the file mapping at
1651        // some point in the future (the inode is tracked along with the
1652        // mapping). This isn't guaranteed to always happen, but it usually
1653        // works well enough. The guarantee is provided by the msync system
1654        // call. We could force the change through with shared mappings with
1655        // a call to msync, but that again would require more information
1656        // than we currently maintain.
1657        warn("mmap: writing to shared mmap region is currently "
1658             "unsupported. The write succeeds on the target, but it "
1659             "will not be propagated to the host or shared mappings");
1660    }
1661
1662    length = roundUp(length, TheISA::PageBytes);
1663
1664    int sim_fd = -1;
1665    uint8_t *pmap = nullptr;
1666    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1667        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1668
1669        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1670        if (dfdp) {
1671            EmulatedDriver *emul_driver = dfdp->getDriver();
1672            return emul_driver->mmap(p, tc, start, length, prot,
1673                                     tgt_flags, tgt_fd, offset);
1674        }
1675
1676        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1677        if (!ffdp)
1678            return -EBADF;
1679        sim_fd = ffdp->getSimFD();
1680
1681        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1682                                    sim_fd, offset);
1683
1684        if (pmap == (decltype(pmap))-1) {
1685            warn("mmap: failed to map file into host address space");
1686            return -errno;
1687        }
1688    }
1689
1690    // Extend global mmap region if necessary. Note that we ignore the
1691    // start address unless MAP_FIXED is specified.
1692    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1693        std::shared_ptr<MemState> mem_state = p->memState;
1694        Addr mmap_end = mem_state->getMmapEnd();
1695
1696        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1697        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1698
1699        mem_state->setMmapEnd(mmap_end);
1700    }
1701
1702    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1703                    start, start + length - 1);
1704
1705    // We only allow mappings to overwrite existing mappings if
1706    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1707    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1708    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1709    if (clobber) {
1710        for (auto tc : p->system->threadContexts) {
1711            // If we might be overwriting old mappings, we need to
1712            // invalidate potentially stale mappings out of the TLBs.
1713            tc->getDTBPtr()->flushAll();
1714            tc->getITBPtr()->flushAll();
1715        }
1716    }
1717
1718    // Allocate physical memory and map it in. If the page table is already
1719    // mapped and clobber is not set, the simulator will issue throw a
1720    // fatal and bail out of the simulation.
1721    p->allocateMem(start, length, clobber);
1722
1723    // Transfer content into target address space.
1724    SETranslatingPortProxy &tp = tc->getMemProxy();
1725    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1726        // In general, we should zero the mapped area for anonymous mappings,
1727        // with something like:
1728        //     tp.memsetBlob(start, 0, length);
1729        // However, given that we don't support sparse mappings, and
1730        // some applications can map a couple of gigabytes of space
1731        // (intending sparse usage), that can get painfully expensive.
1732        // Fortunately, since we don't properly implement munmap either,
1733        // there's no danger of remapping used memory, so for now all
1734        // newly mapped memory should already be zeroed so we can skip it.
1735    } else {
1736        // It is possible to mmap an area larger than a file, however
1737        // accessing unmapped portions the system triggers a "Bus error"
1738        // on the host. We must know when to stop copying the file from
1739        // the host into the target address space.
1740        struct stat file_stat;
1741        if (fstat(sim_fd, &file_stat) > 0)
1742            fatal("mmap: cannot stat file");
1743
1744        // Copy the portion of the file that is resident. This requires
1745        // checking both the mmap size and the filesize that we are
1746        // trying to mmap into this space; the mmap size also depends
1747        // on the specified offset into the file.
1748        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1749                                 length);
1750        tp.writeBlob(start, pmap, size);
1751
1752        // Cleanup the mmap region before exiting this function.
1753        munmap(pmap, length);
1754
1755        // Maintain the symbol table for dynamic executables.
1756        // The loader will call mmap to map the images into its address
1757        // space and we intercept that here. We can verify that we are
1758        // executing inside the loader by checking the program counter value.
1759        // XXX: with multiprogrammed workloads or multi-node configurations,
1760        // this will not work since there is a single global symbol table.
1761        ObjectFile *interpreter = p->getInterpreter();
1762        if (interpreter) {
1763            Addr text_start = interpreter->textBase();
1764            Addr text_end = text_start + interpreter->textSize();
1765
1766            Addr pc = tc->pcState().pc();
1767
1768            if (pc >= text_start && pc < text_end) {
1769                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1770                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1771                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1772
1773                if (lib) {
1774                    lib->loadAllSymbols(debugSymbolTable,
1775                                        lib->textBase(), start);
1776                }
1777            }
1778        }
1779
1780        // Note that we do not zero out the remainder of the mapping. This
1781        // is done by a real system, but it probably will not affect
1782        // execution (hopefully).
1783    }
1784
1785    return start;
1786}
1787
1788template <class OS>
1789SyscallReturn
1790pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1791{
1792    int index = 0;
1793    int tgt_fd = p->getSyscallArg(tc, index);
1794    Addr bufPtr = p->getSyscallArg(tc, index);
1795    int nbytes = p->getSyscallArg(tc, index);
1796    int offset = p->getSyscallArg(tc, index);
1797
1798    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1799    if (!ffdp)
1800        return -EBADF;
1801    int sim_fd = ffdp->getSimFD();
1802
1803    BufferArg bufArg(bufPtr, nbytes);
1804    bufArg.copyIn(tc->getMemProxy());
1805
1806    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1807
1808    return (bytes_written == -1) ? -errno : bytes_written;
1809}
1810
1811/// Target mmap() handler.
1812template <class OS>
1813SyscallReturn
1814mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1815{
1816    return mmapImpl<OS>(desc, num, p, tc, false);
1817}
1818
1819/// Target mmap2() handler.
1820template <class OS>
1821SyscallReturn
1822mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1823{
1824    return mmapImpl<OS>(desc, num, p, tc, true);
1825}
1826
1827/// Target getrlimit() handler.
1828template <class OS>
1829SyscallReturn
1830getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1831              ThreadContext *tc)
1832{
1833    int index = 0;
1834    unsigned resource = process->getSyscallArg(tc, index);
1835    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1836
1837    switch (resource) {
1838      case OS::TGT_RLIMIT_STACK:
1839        // max stack size in bytes: make up a number (8MB for now)
1840        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1841        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1842        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1843        break;
1844
1845      case OS::TGT_RLIMIT_DATA:
1846        // max data segment size in bytes: make up a number
1847        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1848        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1849        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1850        break;
1851
1852      default:
1853        warn("getrlimit: unimplemented resource %d", resource);
1854        return -EINVAL;
1855        break;
1856    }
1857
1858    rlp.copyOut(tc->getMemProxy());
1859    return 0;
1860}
1861
1862template <class OS>
1863SyscallReturn
1864prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1865            ThreadContext *tc)
1866{
1867    int index = 0;
1868    if (process->getSyscallArg(tc, index) != 0)
1869    {
1870        warn("prlimit: ignoring rlimits for nonzero pid");
1871        return -EPERM;
1872    }
1873    int resource = process->getSyscallArg(tc, index);
1874    Addr n = process->getSyscallArg(tc, index);
1875    if (n != 0)
1876        warn("prlimit: ignoring new rlimit");
1877    Addr o = process->getSyscallArg(tc, index);
1878    if (o != 0)
1879    {
1880        TypedBufferArg<typename OS::rlimit> rlp(o);
1881        switch (resource) {
1882          case OS::TGT_RLIMIT_STACK:
1883            // max stack size in bytes: make up a number (8MB for now)
1884            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1885            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1886            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1887            break;
1888          case OS::TGT_RLIMIT_DATA:
1889            // max data segment size in bytes: make up a number
1890            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1891            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1892            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1893            break;
1894          default:
1895            warn("prlimit: unimplemented resource %d", resource);
1896            return -EINVAL;
1897            break;
1898        }
1899        rlp.copyOut(tc->getMemProxy());
1900    }
1901    return 0;
1902}
1903
1904/// Target clock_gettime() function.
1905template <class OS>
1906SyscallReturn
1907clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1908{
1909    int index = 1;
1910    //int clk_id = p->getSyscallArg(tc, index);
1911    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1912
1913    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1914    tp->tv_sec += seconds_since_epoch;
1915    tp->tv_sec = TheISA::htog(tp->tv_sec);
1916    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1917
1918    tp.copyOut(tc->getMemProxy());
1919
1920    return 0;
1921}
1922
1923/// Target clock_getres() function.
1924template <class OS>
1925SyscallReturn
1926clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1927{
1928    int index = 1;
1929    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1930
1931    // Set resolution at ns, which is what clock_gettime() returns
1932    tp->tv_sec = 0;
1933    tp->tv_nsec = 1;
1934
1935    tp.copyOut(tc->getMemProxy());
1936
1937    return 0;
1938}
1939
1940/// Target gettimeofday() handler.
1941template <class OS>
1942SyscallReturn
1943gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1944                 ThreadContext *tc)
1945{
1946    int index = 0;
1947    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1948
1949    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1950    tp->tv_sec += seconds_since_epoch;
1951    tp->tv_sec = TheISA::htog(tp->tv_sec);
1952    tp->tv_usec = TheISA::htog(tp->tv_usec);
1953
1954    tp.copyOut(tc->getMemProxy());
1955
1956    return 0;
1957}
1958
1959
1960/// Target utimes() handler.
1961template <class OS>
1962SyscallReturn
1963utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1964           ThreadContext *tc)
1965{
1966    std::string path;
1967
1968    int index = 0;
1969    if (!tc->getMemProxy().tryReadString(path,
1970                process->getSyscallArg(tc, index))) {
1971        return -EFAULT;
1972    }
1973
1974    TypedBufferArg<typename OS::timeval [2]>
1975        tp(process->getSyscallArg(tc, index));
1976    tp.copyIn(tc->getMemProxy());
1977
1978    struct timeval hostTimeval[2];
1979    for (int i = 0; i < 2; ++i) {
1980        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1981        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1982    }
1983
1984    // Adjust path for current working directory
1985    path = process->fullPath(path);
1986
1987    int result = utimes(path.c_str(), hostTimeval);
1988
1989    if (result < 0)
1990        return -errno;
1991
1992    return 0;
1993}
1994
1995template <class OS>
1996SyscallReturn
1997execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1998{
1999    desc->setFlags(0);
2000
2001    int index = 0;
2002    std::string path;
2003    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
2004    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2005        return -EFAULT;
2006
2007    if (access(path.c_str(), F_OK) == -1)
2008        return -EACCES;
2009
2010    auto read_in = [](std::vector<std::string> & vect,
2011                      SETranslatingPortProxy & mem_proxy,
2012                      Addr mem_loc)
2013    {
2014        for (int inc = 0; ; inc++) {
2015            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2016            b.copyIn(mem_proxy);
2017
2018            if (!*(Addr*)b.bufferPtr())
2019                break;
2020
2021            vect.push_back(std::string());
2022            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2023        }
2024    };
2025
2026    /**
2027     * Note that ProcessParams is generated by swig and there are no other
2028     * examples of how to create anything but this default constructor. The
2029     * fields are manually initialized instead of passing parameters to the
2030     * constructor.
2031     */
2032    ProcessParams *pp = new ProcessParams();
2033    pp->executable = path;
2034    Addr argv_mem_loc = p->getSyscallArg(tc, index);
2035    read_in(pp->cmd, mem_proxy, argv_mem_loc);
2036    Addr envp_mem_loc = p->getSyscallArg(tc, index);
2037    read_in(pp->env, mem_proxy, envp_mem_loc);
2038    pp->uid = p->uid();
2039    pp->egid = p->egid();
2040    pp->euid = p->euid();
2041    pp->gid = p->gid();
2042    pp->ppid = p->ppid();
2043    pp->pid = p->pid();
2044    pp->input.assign("cin");
2045    pp->output.assign("cout");
2046    pp->errout.assign("cerr");
2047    pp->cwd.assign(p->getcwd());
2048    pp->system = p->system;
2049    /**
2050     * Prevent process object creation with identical PIDs (which will trip
2051     * a fatal check in Process constructor). The execve call is supposed to
2052     * take over the currently executing process' identity but replace
2053     * whatever it is doing with a new process image. Instead of hijacking
2054     * the process object in the simulator, we create a new process object
2055     * and bind to the previous process' thread below (hijacking the thread).
2056     */
2057    p->system->PIDs.erase(p->pid());
2058    Process *new_p = pp->create();
2059    delete pp;
2060
2061    /**
2062     * Work through the file descriptor array and close any files marked
2063     * close-on-exec.
2064     */
2065    new_p->fds = p->fds;
2066    for (int i = 0; i < new_p->fds->getSize(); i++) {
2067        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2068        if (fdep && fdep->getCOE())
2069            new_p->fds->closeFDEntry(i);
2070    }
2071
2072    *new_p->sigchld = true;
2073
2074    delete p;
2075    tc->clearArchRegs();
2076    tc->setProcessPtr(new_p);
2077    new_p->assignThreadContext(tc->contextId());
2078    new_p->initState();
2079    tc->activate();
2080    TheISA::PCState pcState = tc->pcState();
2081    tc->setNPC(pcState.instAddr());
2082
2083    desc->setFlags(SyscallDesc::SuppressReturnValue);
2084    return 0;
2085}
2086
2087/// Target getrusage() function.
2088template <class OS>
2089SyscallReturn
2090getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2091              ThreadContext *tc)
2092{
2093    int index = 0;
2094    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2095    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2096
2097    rup->ru_utime.tv_sec = 0;
2098    rup->ru_utime.tv_usec = 0;
2099    rup->ru_stime.tv_sec = 0;
2100    rup->ru_stime.tv_usec = 0;
2101    rup->ru_maxrss = 0;
2102    rup->ru_ixrss = 0;
2103    rup->ru_idrss = 0;
2104    rup->ru_isrss = 0;
2105    rup->ru_minflt = 0;
2106    rup->ru_majflt = 0;
2107    rup->ru_nswap = 0;
2108    rup->ru_inblock = 0;
2109    rup->ru_oublock = 0;
2110    rup->ru_msgsnd = 0;
2111    rup->ru_msgrcv = 0;
2112    rup->ru_nsignals = 0;
2113    rup->ru_nvcsw = 0;
2114    rup->ru_nivcsw = 0;
2115
2116    switch (who) {
2117      case OS::TGT_RUSAGE_SELF:
2118        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2119        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2120        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2121        break;
2122
2123      case OS::TGT_RUSAGE_CHILDREN:
2124        // do nothing.  We have no child processes, so they take no time.
2125        break;
2126
2127      default:
2128        // don't really handle THREAD or CHILDREN, but just warn and
2129        // plow ahead
2130        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
2131             who);
2132    }
2133
2134    rup.copyOut(tc->getMemProxy());
2135
2136    return 0;
2137}
2138
2139/// Target times() function.
2140template <class OS>
2141SyscallReturn
2142timesFunc(SyscallDesc *desc, int callnum, Process *process,
2143          ThreadContext *tc)
2144{
2145    int index = 0;
2146    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2147
2148    // Fill in the time structure (in clocks)
2149    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2150    bufp->tms_utime = clocks;
2151    bufp->tms_stime = 0;
2152    bufp->tms_cutime = 0;
2153    bufp->tms_cstime = 0;
2154
2155    // Convert to host endianness
2156    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2157
2158    // Write back
2159    bufp.copyOut(tc->getMemProxy());
2160
2161    // Return clock ticks since system boot
2162    return clocks;
2163}
2164
2165/// Target time() function.
2166template <class OS>
2167SyscallReturn
2168timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2169{
2170    typename OS::time_t sec, usec;
2171    getElapsedTimeMicro(sec, usec);
2172    sec += seconds_since_epoch;
2173
2174    int index = 0;
2175    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2176    if (taddr != 0) {
2177        typename OS::time_t t = sec;
2178        t = TheISA::htog(t);
2179        SETranslatingPortProxy &p = tc->getMemProxy();
2180        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2181    }
2182    return sec;
2183}
2184
2185template <class OS>
2186SyscallReturn
2187tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2188{
2189    int index = 0;
2190    int tgid = process->getSyscallArg(tc, index);
2191    int tid = process->getSyscallArg(tc, index);
2192    int sig = process->getSyscallArg(tc, index);
2193
2194    /**
2195     * This system call is intended to allow killing a specific thread
2196     * within an arbitrary thread group if sanctioned with permission checks.
2197     * It's usually true that threads share the termination signal as pointed
2198     * out by the pthread_kill man page and this seems to be the intended
2199     * usage. Due to this being an emulated environment, assume the following:
2200     * Threads are allowed to call tgkill because the EUID for all threads
2201     * should be the same. There is no signal handling mechanism for kernel
2202     * registration of signal handlers since signals are poorly supported in
2203     * emulation mode. Since signal handlers cannot be registered, all
2204     * threads within in a thread group must share the termination signal.
2205     * We never exhaust PIDs so there's no chance of finding the wrong one
2206     * due to PID rollover.
2207     */
2208
2209    System *sys = tc->getSystemPtr();
2210    Process *tgt_proc = nullptr;
2211    for (int i = 0; i < sys->numContexts(); i++) {
2212        Process *temp = sys->threadContexts[i]->getProcessPtr();
2213        if (temp->pid() == tid) {
2214            tgt_proc = temp;
2215            break;
2216        }
2217    }
2218
2219    if (sig != 0 || sig != OS::TGT_SIGABRT)
2220        return -EINVAL;
2221
2222    if (tgt_proc == nullptr)
2223        return -ESRCH;
2224
2225    if (tgid != -1 && tgt_proc->tgid() != tgid)
2226        return -ESRCH;
2227
2228    if (sig == OS::TGT_SIGABRT)
2229        exitGroupFunc(desc, 252, process, tc);
2230
2231    return 0;
2232}
2233
2234template <class OS>
2235SyscallReturn
2236socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2237{
2238    int index = 0;
2239    int domain = p->getSyscallArg(tc, index);
2240    int type = p->getSyscallArg(tc, index);
2241    int prot = p->getSyscallArg(tc, index);
2242
2243    int sim_fd = socket(domain, type, prot);
2244    if (sim_fd == -1)
2245        return -errno;
2246
2247    auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2248    int tgt_fd = p->fds->allocFD(sfdp);
2249
2250    return tgt_fd;
2251}
2252
2253template <class OS>
2254SyscallReturn
2255socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2256{
2257    int index = 0;
2258    int domain = p->getSyscallArg(tc, index);
2259    int type = p->getSyscallArg(tc, index);
2260    int prot = p->getSyscallArg(tc, index);
2261    Addr svPtr = p->getSyscallArg(tc, index);
2262
2263    BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2264    int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2265    if (status == -1)
2266        return -errno;
2267
2268    int *fds = (int *)svBuf.bufferPtr();
2269
2270    auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2271    fds[0] = p->fds->allocFD(sfdp1);
2272    auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2273    fds[1] = p->fds->allocFD(sfdp2);
2274    svBuf.copyOut(tc->getMemProxy());
2275
2276    return status;
2277}
2278
2279template <class OS>
2280SyscallReturn
2281selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2282{
2283    int retval;
2284
2285    int index = 0;
2286    int nfds_t = p->getSyscallArg(tc, index);
2287    Addr fds_read_ptr = p->getSyscallArg(tc, index);
2288    Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2289    Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2290    Addr time_val_ptr = p->getSyscallArg(tc, index);
2291
2292    TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2293    TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2294    TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2295    TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2296
2297    /**
2298     * Host fields. Notice that these use the definitions from the system
2299     * headers instead of the gem5 headers and libraries. If the host and
2300     * target have different header file definitions, this will not work.
2301     */
2302    fd_set rd_h;
2303    FD_ZERO(&rd_h);
2304    fd_set wr_h;
2305    FD_ZERO(&wr_h);
2306    fd_set ex_h;
2307    FD_ZERO(&ex_h);
2308
2309    /**
2310     * Copy in the fd_set from the target.
2311     */
2312    if (fds_read_ptr)
2313        rd_t.copyIn(tc->getMemProxy());
2314    if (fds_writ_ptr)
2315        wr_t.copyIn(tc->getMemProxy());
2316    if (fds_excp_ptr)
2317        ex_t.copyIn(tc->getMemProxy());
2318
2319    /**
2320     * We need to translate the target file descriptor set into a host file
2321     * descriptor set. This involves both our internal process fd array
2322     * and the fd_set defined in Linux header files. The nfds field also
2323     * needs to be updated as it will be only target specific after
2324     * retrieving it from the target; the nfds value is expected to be the
2325     * highest file descriptor that needs to be checked, so we need to extend
2326     * it out for nfds_h when we do the update.
2327     */
2328    int nfds_h = 0;
2329    std::map<int, int> trans_map;
2330    auto try_add_host_set = [&](fd_set *tgt_set_entry,
2331                                fd_set *hst_set_entry,
2332                                int iter) -> bool
2333    {
2334        /**
2335         * By this point, we know that we are looking at a valid file
2336         * descriptor set on the target. We need to check if the target file
2337         * descriptor value passed in as iter is part of the set.
2338         */
2339        if (FD_ISSET(iter, tgt_set_entry)) {
2340            /**
2341             * We know that the target file descriptor belongs to the set,
2342             * but we do not yet know if the file descriptor is valid or
2343             * that we have a host mapping. Check that now.
2344             */
2345            auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2346            if (!hbfdp)
2347                return true;
2348            auto sim_fd = hbfdp->getSimFD();
2349
2350            /**
2351             * Add the sim_fd to tgt_fd translation into trans_map for use
2352             * later when we need to zero the target fd_set structures and
2353             * then update them with hits returned from the host select call.
2354             */
2355            trans_map[sim_fd] = iter;
2356
2357            /**
2358             * We know that the host file descriptor exists so now we check
2359             * if we need to update the max count for nfds_h before passing
2360             * the duplicated structure into the host.
2361             */
2362            nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2363
2364            /**
2365             * Add the host file descriptor to the set that we are going to
2366             * pass into the host.
2367             */
2368            FD_SET(sim_fd, hst_set_entry);
2369        }
2370        return false;
2371    };
2372
2373    for (int i = 0; i < nfds_t; i++) {
2374        if (fds_read_ptr) {
2375            bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2376            if (ebadf) return -EBADF;
2377        }
2378        if (fds_writ_ptr) {
2379            bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2380            if (ebadf) return -EBADF;
2381        }
2382        if (fds_excp_ptr) {
2383            bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2384            if (ebadf) return -EBADF;
2385        }
2386    }
2387
2388    if (time_val_ptr) {
2389        /**
2390         * It might be possible to decrement the timeval based on some
2391         * derivation of wall clock determined from elapsed simulator ticks
2392         * but that seems like overkill. Rather, we just set the timeval with
2393         * zero timeout. (There is no reason to block during the simulation
2394         * as it only decreases simulator performance.)
2395         */
2396        tp->tv_sec = 0;
2397        tp->tv_usec = 0;
2398
2399        retval = select(nfds_h,
2400                        fds_read_ptr ? &rd_h : nullptr,
2401                        fds_writ_ptr ? &wr_h : nullptr,
2402                        fds_excp_ptr ? &ex_h : nullptr,
2403                        (timeval*)&*tp);
2404    } else {
2405        /**
2406         * If the timeval pointer is null, setup a new timeval structure to
2407         * pass into the host select call. Unfortunately, we will need to
2408         * manually check the return value and throw a retry fault if the
2409         * return value is zero. Allowing the system call to block will
2410         * likely deadlock the event queue.
2411         */
2412        struct timeval tv = { 0, 0 };
2413
2414        retval = select(nfds_h,
2415                        fds_read_ptr ? &rd_h : nullptr,
2416                        fds_writ_ptr ? &wr_h : nullptr,
2417                        fds_excp_ptr ? &ex_h : nullptr,
2418                        &tv);
2419
2420        if (retval == 0) {
2421            /**
2422             * If blocking indefinitely, check the signal list to see if a
2423             * signal would break the poll out of the retry cycle and try to
2424             * return the signal interrupt instead.
2425             */
2426            for (auto sig : tc->getSystemPtr()->signalList)
2427                if (sig.receiver == p)
2428                    return -EINTR;
2429            return SyscallReturn::retry();
2430        }
2431    }
2432
2433    if (retval == -1)
2434        return -errno;
2435
2436    FD_ZERO((fd_set*)&*rd_t);
2437    FD_ZERO((fd_set*)&*wr_t);
2438    FD_ZERO((fd_set*)&*ex_t);
2439
2440    /**
2441     * We need to translate the host file descriptor set into a target file
2442     * descriptor set. This involves both our internal process fd array
2443     * and the fd_set defined in header files.
2444     */
2445    for (int i = 0; i < nfds_h; i++) {
2446        if (fds_read_ptr) {
2447            if (FD_ISSET(i, &rd_h))
2448                FD_SET(trans_map[i], (fd_set*)&*rd_t);
2449        }
2450
2451        if (fds_writ_ptr) {
2452            if (FD_ISSET(i, &wr_h))
2453                FD_SET(trans_map[i], (fd_set*)&*wr_t);
2454        }
2455
2456        if (fds_excp_ptr) {
2457            if (FD_ISSET(i, &ex_h))
2458                FD_SET(trans_map[i], (fd_set*)&*ex_t);
2459        }
2460    }
2461
2462    if (fds_read_ptr)
2463        rd_t.copyOut(tc->getMemProxy());
2464    if (fds_writ_ptr)
2465        wr_t.copyOut(tc->getMemProxy());
2466    if (fds_excp_ptr)
2467        ex_t.copyOut(tc->getMemProxy());
2468    if (time_val_ptr)
2469        tp.copyOut(tc->getMemProxy());
2470
2471    return retval;
2472}
2473
2474template <class OS>
2475SyscallReturn
2476readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2477{
2478    int index = 0;
2479    int tgt_fd = p->getSyscallArg(tc, index);
2480    Addr buf_ptr = p->getSyscallArg(tc, index);
2481    int nbytes = p->getSyscallArg(tc, index);
2482
2483    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2484    if (!hbfdp)
2485        return -EBADF;
2486    int sim_fd = hbfdp->getSimFD();
2487
2488    struct pollfd pfd;
2489    pfd.fd = sim_fd;
2490    pfd.events = POLLIN | POLLPRI;
2491    if ((poll(&pfd, 1, 0) == 0)
2492        && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2493        return SyscallReturn::retry();
2494
2495    BufferArg buf_arg(buf_ptr, nbytes);
2496    int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2497
2498    if (bytes_read > 0)
2499        buf_arg.copyOut(tc->getMemProxy());
2500
2501    return (bytes_read == -1) ? -errno : bytes_read;
2502}
2503
2504template <class OS>
2505SyscallReturn
2506writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2507{
2508    int index = 0;
2509    int tgt_fd = p->getSyscallArg(tc, index);
2510    Addr buf_ptr = p->getSyscallArg(tc, index);
2511    int nbytes = p->getSyscallArg(tc, index);
2512
2513    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2514    if (!hbfdp)
2515        return -EBADF;
2516    int sim_fd = hbfdp->getSimFD();
2517
2518    BufferArg buf_arg(buf_ptr, nbytes);
2519    buf_arg.copyIn(tc->getMemProxy());
2520
2521    struct pollfd pfd;
2522    pfd.fd = sim_fd;
2523    pfd.events = POLLOUT;
2524
2525    /**
2526     * We don't want to poll on /dev/random. The kernel will not enable the
2527     * file descriptor for writing unless the entropy in the system falls
2528     * below write_wakeup_threshold. This is not guaranteed to happen
2529     * depending on host settings.
2530     */
2531    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2532    if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2533        if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2534            return SyscallReturn::retry();
2535    }
2536
2537    int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2538
2539    if (bytes_written != -1)
2540        fsync(sim_fd);
2541
2542    return (bytes_written == -1) ? -errno : bytes_written;
2543}
2544
2545template <class OS>
2546SyscallReturn
2547wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2548{
2549    int index = 0;
2550    pid_t pid = p->getSyscallArg(tc, index);
2551    Addr statPtr = p->getSyscallArg(tc, index);
2552    int options = p->getSyscallArg(tc, index);
2553    Addr rusagePtr = p->getSyscallArg(tc, index);
2554
2555    if (rusagePtr)
2556        DPRINTFR(SyscallVerbose,
2557                 "%d: %s: syscall wait4: rusage pointer provided however "
2558                 "functionality not supported. Ignoring rusage pointer.\n",
2559                 curTick(), tc->getCpuPtr()->name());
2560
2561    /**
2562     * Currently, wait4 is only implemented so that it will wait for children
2563     * exit conditions which are denoted by a SIGCHLD signals posted into the
2564     * system signal list. We return no additional information via any of the
2565     * parameters supplied to wait4. If nothing is found in the system signal
2566     * list, we will wait indefinitely for SIGCHLD to post by retrying the
2567     * call.
2568     */
2569    System *sysh = tc->getSystemPtr();
2570    std::list<BasicSignal>::iterator iter;
2571    for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2572        if (iter->receiver == p) {
2573            if (pid < -1) {
2574                if ((iter->sender->pgid() == -pid)
2575                    && (iter->signalValue == OS::TGT_SIGCHLD))
2576                    goto success;
2577            } else if (pid == -1) {
2578                if (iter->signalValue == OS::TGT_SIGCHLD)
2579                    goto success;
2580            } else if (pid == 0) {
2581                if ((iter->sender->pgid() == p->pgid())
2582                    && (iter->signalValue == OS::TGT_SIGCHLD))
2583                    goto success;
2584            } else {
2585                if ((iter->sender->pid() == pid)
2586                    && (iter->signalValue == OS::TGT_SIGCHLD))
2587                    goto success;
2588            }
2589        }
2590    }
2591
2592    return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2593
2594success:
2595    // Set status to EXITED for WIFEXITED evaluations.
2596    const int EXITED = 0;
2597    BufferArg statusBuf(statPtr, sizeof(int));
2598    *(int *)statusBuf.bufferPtr() = EXITED;
2599    statusBuf.copyOut(tc->getMemProxy());
2600
2601    // Return the child PID.
2602    pid_t retval = iter->sender->pid();
2603    sysh->signalList.erase(iter);
2604    return retval;
2605}
2606
2607template <class OS>
2608SyscallReturn
2609acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2610{
2611    struct sockaddr sa;
2612    socklen_t addrLen;
2613    int host_fd;
2614    int index = 0;
2615    int tgt_fd = p->getSyscallArg(tc, index);
2616    Addr addrPtr = p->getSyscallArg(tc, index);
2617    Addr lenPtr = p->getSyscallArg(tc, index);
2618
2619    BufferArg *lenBufPtr = nullptr;
2620    BufferArg *addrBufPtr = nullptr;
2621
2622    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2623    if (!sfdp)
2624        return -EBADF;
2625    int sim_fd = sfdp->getSimFD();
2626
2627    /**
2628     * We poll the socket file descriptor first to guarantee that we do not
2629     * block on our accept call. The socket can be opened without the
2630     * non-blocking flag (it blocks). This will cause deadlocks between
2631     * communicating processes.
2632     */
2633    struct pollfd pfd;
2634    pfd.fd = sim_fd;
2635    pfd.events = POLLIN | POLLPRI;
2636    if ((poll(&pfd, 1, 0) == 0)
2637        && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2638        return SyscallReturn::retry();
2639
2640    if (lenPtr) {
2641        lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2642        lenBufPtr->copyIn(tc->getMemProxy());
2643        memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2644               sizeof(socklen_t));
2645    }
2646
2647    if (addrPtr) {
2648        addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2649        addrBufPtr->copyIn(tc->getMemProxy());
2650        memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2651               sizeof(struct sockaddr));
2652    }
2653
2654    host_fd = accept(sim_fd, &sa, &addrLen);
2655
2656    if (host_fd == -1)
2657        return -errno;
2658
2659    if (addrPtr) {
2660        memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2661        addrBufPtr->copyOut(tc->getMemProxy());
2662        delete(addrBufPtr);
2663    }
2664
2665    if (lenPtr) {
2666        *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2667        lenBufPtr->copyOut(tc->getMemProxy());
2668        delete(lenBufPtr);
2669    }
2670
2671    auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2672                                                sfdp->_type, sfdp->_protocol);
2673    return p->fds->allocFD(afdp);
2674}
2675
2676#endif // __SIM_SYSCALL_EMUL_HH__
2677