syscall_emul.hh revision 13571:a320800ceccf
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <poll.h>
82#include <sys/mman.h>
83#include <sys/socket.h>
84#include <sys/stat.h>
85#if (NO_STATFS == 0)
86#include <sys/statfs.h>
87#else
88#include <sys/mount.h>
89#endif
90#include <sys/time.h>
91#include <sys/types.h>
92#include <sys/uio.h>
93#include <unistd.h>
94
95#include <cerrno>
96#include <memory>
97#include <string>
98
99#include "arch/generic/tlb.hh"
100#include "arch/utility.hh"
101#include "base/intmath.hh"
102#include "base/loader/object_file.hh"
103#include "base/logging.hh"
104#include "base/trace.hh"
105#include "base/types.hh"
106#include "config/the_isa.hh"
107#include "cpu/base.hh"
108#include "cpu/thread_context.hh"
109#include "mem/page_table.hh"
110#include "params/Process.hh"
111#include "sim/emul_driver.hh"
112#include "sim/futex_map.hh"
113#include "sim/process.hh"
114#include "sim/syscall_debug_macros.hh"
115#include "sim/syscall_desc.hh"
116#include "sim/syscall_emul_buf.hh"
117#include "sim/syscall_return.hh"
118
119//////////////////////////////////////////////////////////////////////
120//
121// The following emulation functions are generic enough that they
122// don't need to be recompiled for different emulated OS's.  They are
123// defined in sim/syscall_emul.cc.
124//
125//////////////////////////////////////////////////////////////////////
126
127
128/// Handler for unimplemented syscalls that we haven't thought about.
129SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
130                                Process *p, ThreadContext *tc);
131
132/// Handler for unimplemented syscalls that we never intend to
133/// implement (signal handling, etc.) and should not affect the correct
134/// behavior of the program.  Print a warning only if the appropriate
135/// trace flag is enabled.  Return success to the target program.
136SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
137                         Process *p, ThreadContext *tc);
138
139// Target fallocateFunc() handler.
140SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
141                            Process *p, ThreadContext *tc);
142
143/// Target exit() handler: terminate current context.
144SyscallReturn exitFunc(SyscallDesc *desc, int num,
145                       Process *p, ThreadContext *tc);
146
147/// Target exit_group() handler: terminate simulation. (exit all threads)
148SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
149                       Process *p, ThreadContext *tc);
150
151/// Target set_tid_address() handler.
152SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
153                                Process *p, ThreadContext *tc);
154
155/// Target getpagesize() handler.
156SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
157                              Process *p, ThreadContext *tc);
158
159/// Target brk() handler: set brk address.
160SyscallReturn brkFunc(SyscallDesc *desc, int num,
161                      Process *p, ThreadContext *tc);
162
163/// Target close() handler.
164SyscallReturn closeFunc(SyscallDesc *desc, int num,
165                        Process *p, ThreadContext *tc);
166
167/// Target lseek() handler.
168SyscallReturn lseekFunc(SyscallDesc *desc, int num,
169                        Process *p, ThreadContext *tc);
170
171/// Target _llseek() handler.
172SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
173                          Process *p, ThreadContext *tc);
174
175/// Target munmap() handler.
176SyscallReturn munmapFunc(SyscallDesc *desc, int num,
177                         Process *p, ThreadContext *tc);
178
179/// Target shutdown() handler.
180SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
181                           Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185                              Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189                         Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193                           Process *p, ThreadContext *tc,
194                           int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196                           Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200                           Process *p, ThreadContext *tc,
201                           int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203                         Process *p, ThreadContext *tc);
204
205/// Target link() handler
206SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
207                       ThreadContext *tc);
208
209/// Target symlink() handler.
210SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
211                          ThreadContext *tc);
212
213/// Target mkdir() handler.
214SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
215                        Process *p, ThreadContext *tc);
216
217/// Target mknod() handler.
218SyscallReturn mknodFunc(SyscallDesc *desc, int num,
219                        Process *p, ThreadContext *tc);
220
221/// Target chdir() handler.
222SyscallReturn chdirFunc(SyscallDesc *desc, int num,
223                        Process *p, ThreadContext *tc);
224
225// Target rmdir() handler.
226SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
227                        Process *p, ThreadContext *tc);
228
229/// Target rename() handler.
230SyscallReturn renameFunc(SyscallDesc *desc, int num,
231                         Process *p, ThreadContext *tc);
232
233
234/// Target truncate() handler.
235SyscallReturn truncateFunc(SyscallDesc *desc, int num,
236                           Process *p, ThreadContext *tc);
237
238
239/// Target ftruncate() handler.
240SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
241                            Process *p, ThreadContext *tc);
242
243
244/// Target truncate64() handler.
245SyscallReturn truncate64Func(SyscallDesc *desc, int num,
246                             Process *p, ThreadContext *tc);
247
248/// Target ftruncate64() handler.
249SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
250                              Process *p, ThreadContext *tc);
251
252
253/// Target umask() handler.
254SyscallReturn umaskFunc(SyscallDesc *desc, int num,
255                        Process *p, ThreadContext *tc);
256
257/// Target gettid() handler.
258SyscallReturn gettidFunc(SyscallDesc *desc, int num,
259                         Process *p, ThreadContext *tc);
260
261/// Target chown() handler.
262SyscallReturn chownFunc(SyscallDesc *desc, int num,
263                        Process *p, ThreadContext *tc);
264
265/// Target setpgid() handler.
266SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
267                          Process *p, ThreadContext *tc);
268
269/// Target fchown() handler.
270SyscallReturn fchownFunc(SyscallDesc *desc, int num,
271                         Process *p, ThreadContext *tc);
272
273/// Target dup() handler.
274SyscallReturn dupFunc(SyscallDesc *desc, int num,
275                      Process *process, ThreadContext *tc);
276
277/// Target dup2() handler.
278SyscallReturn dup2Func(SyscallDesc *desc, int num,
279                       Process *process, ThreadContext *tc);
280
281/// Target fcntl() handler.
282SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
283                        Process *process, ThreadContext *tc);
284
285/// Target fcntl64() handler.
286SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
287                          Process *process, ThreadContext *tc);
288
289/// Target setuid() handler.
290SyscallReturn setuidFunc(SyscallDesc *desc, int num,
291                         Process *p, ThreadContext *tc);
292
293/// Target pipe() handler.
294SyscallReturn pipeFunc(SyscallDesc *desc, int num,
295                       Process *p, ThreadContext *tc);
296
297/// Internal pipe() handler.
298SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
299                       ThreadContext *tc, bool pseudoPipe);
300
301/// Target getpid() handler.
302SyscallReturn getpidFunc(SyscallDesc *desc, int num,
303                         Process *p, ThreadContext *tc);
304
305// Target getpeername() handler.
306SyscallReturn getpeernameFunc(SyscallDesc *desc, int num,
307                              Process *p, ThreadContext *tc);
308
309// Target bind() handler.
310SyscallReturn bindFunc(SyscallDesc *desc, int num,
311                       Process *p, ThreadContext *tc);
312
313// Target listen() handler.
314SyscallReturn listenFunc(SyscallDesc *desc, int num,
315                         Process *p, ThreadContext *tc);
316
317// Target connect() handler.
318SyscallReturn connectFunc(SyscallDesc *desc, int num,
319                          Process *p, ThreadContext *tc);
320
321#if defined(SYS_getdents)
322// Target getdents() handler.
323SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
324                           Process *p, ThreadContext *tc);
325#endif
326
327#if defined(SYS_getdents64)
328// Target getdents() handler.
329SyscallReturn getdents64Func(SyscallDesc *desc, int num,
330                           Process *p, ThreadContext *tc);
331#endif
332
333// Target sendto() handler.
334SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
335                         Process *p, ThreadContext *tc);
336
337// Target recvfrom() handler.
338SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
339                           Process *p, ThreadContext *tc);
340
341// Target recvmsg() handler.
342SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
343                          Process *p, ThreadContext *tc);
344
345// Target sendmsg() handler.
346SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
347                          Process *p, ThreadContext *tc);
348
349// Target getuid() handler.
350SyscallReturn getuidFunc(SyscallDesc *desc, int num,
351                         Process *p, ThreadContext *tc);
352
353/// Target getgid() handler.
354SyscallReturn getgidFunc(SyscallDesc *desc, int num,
355                         Process *p, ThreadContext *tc);
356
357/// Target getppid() handler.
358SyscallReturn getppidFunc(SyscallDesc *desc, int num,
359                          Process *p, ThreadContext *tc);
360
361/// Target geteuid() handler.
362SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
363                          Process *p, ThreadContext *tc);
364
365/// Target getegid() handler.
366SyscallReturn getegidFunc(SyscallDesc *desc, int num,
367                          Process *p, ThreadContext *tc);
368
369/// Target access() handler
370SyscallReturn accessFunc(SyscallDesc *desc, int num,
371                         Process *p, ThreadContext *tc);
372SyscallReturn accessFunc(SyscallDesc *desc, int num,
373                         Process *p, ThreadContext *tc,
374                         int index);
375
376// Target getsockopt() handler.
377SyscallReturn getsockoptFunc(SyscallDesc *desc, int num,
378                             Process *p, ThreadContext *tc);
379
380// Target setsockopt() handler.
381SyscallReturn setsockoptFunc(SyscallDesc *desc, int num,
382                             Process *p, ThreadContext *tc);
383
384// Target getsockname() handler.
385SyscallReturn getsocknameFunc(SyscallDesc *desc, int num,
386                              Process *p, ThreadContext *tc);
387
388/// Futex system call
389/// Implemented by Daniel Sanchez
390/// Used by printf's in multi-threaded apps
391template <class OS>
392SyscallReturn
393futexFunc(SyscallDesc *desc, int callnum, Process *process,
394          ThreadContext *tc)
395{
396    using namespace std;
397
398    int index = 0;
399    Addr uaddr = process->getSyscallArg(tc, index);
400    int op = process->getSyscallArg(tc, index);
401    int val = process->getSyscallArg(tc, index);
402
403    /*
404     * Unsupported option that does not affect the correctness of the
405     * application. This is a performance optimization utilized by Linux.
406     */
407    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
408
409    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
410
411    if (OS::TGT_FUTEX_WAIT == op) {
412        // Ensure futex system call accessed atomically.
413        BufferArg buf(uaddr, sizeof(int));
414        buf.copyIn(tc->getMemProxy());
415        int mem_val = *(int*)buf.bufferPtr();
416
417        /*
418         * The value in memory at uaddr is not equal with the expected val
419         * (a different thread must have changed it before the system call was
420         * invoked). In this case, we need to throw an error.
421         */
422        if (val != mem_val)
423            return -OS::TGT_EWOULDBLOCK;
424
425        futex_map.suspend(uaddr, process->tgid(), tc);
426
427        return 0;
428    } else if (OS::TGT_FUTEX_WAKE == op) {
429        return futex_map.wakeup(uaddr, process->tgid(), val);
430    }
431
432    warn("futex: op %d not implemented; ignoring.", op);
433    return -ENOSYS;
434}
435
436
437/// Pseudo Funcs  - These functions use a different return convension,
438/// returning a second value in a register other than the normal return register
439SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
440                             Process *process, ThreadContext *tc);
441
442/// Target getpidPseudo() handler.
443SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
444                               Process *p, ThreadContext *tc);
445
446/// Target getuidPseudo() handler.
447SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
448                               Process *p, ThreadContext *tc);
449
450/// Target getgidPseudo() handler.
451SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
452                               Process *p, ThreadContext *tc);
453
454
455/// A readable name for 1,000,000, for converting microseconds to seconds.
456const int one_million = 1000000;
457/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
458const int one_billion = 1000000000;
459
460/// Approximate seconds since the epoch (1/1/1970).  About a billion,
461/// by my reckoning.  We want to keep this a constant (not use the
462/// real-world time) to keep simulations repeatable.
463const unsigned seconds_since_epoch = 1000000000;
464
465/// Helper function to convert current elapsed time to seconds and
466/// microseconds.
467template <class T1, class T2>
468void
469getElapsedTimeMicro(T1 &sec, T2 &usec)
470{
471    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
472    sec = elapsed_usecs / one_million;
473    usec = elapsed_usecs % one_million;
474}
475
476/// Helper function to convert current elapsed time to seconds and
477/// nanoseconds.
478template <class T1, class T2>
479void
480getElapsedTimeNano(T1 &sec, T2 &nsec)
481{
482    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
483    sec = elapsed_nsecs / one_billion;
484    nsec = elapsed_nsecs % one_billion;
485}
486
487//////////////////////////////////////////////////////////////////////
488//
489// The following emulation functions are generic, but need to be
490// templated to account for differences in types, constants, etc.
491//
492//////////////////////////////////////////////////////////////////////
493
494    typedef struct statfs hst_statfs;
495#if NO_STAT64
496    typedef struct stat hst_stat;
497    typedef struct stat hst_stat64;
498#else
499    typedef struct stat hst_stat;
500    typedef struct stat64 hst_stat64;
501#endif
502
503//// Helper function to convert a host stat buffer to a target stat
504//// buffer.  Also copies the target buffer out to the simulated
505//// memory space.  Used by stat(), fstat(), and lstat().
506
507template <typename target_stat, typename host_stat>
508void
509convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
510{
511    using namespace TheISA;
512
513    if (fakeTTY)
514        tgt->st_dev = 0xA;
515    else
516        tgt->st_dev = host->st_dev;
517    tgt->st_dev = TheISA::htog(tgt->st_dev);
518    tgt->st_ino = host->st_ino;
519    tgt->st_ino = TheISA::htog(tgt->st_ino);
520    tgt->st_mode = host->st_mode;
521    if (fakeTTY) {
522        // Claim to be a character device
523        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
524        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
525    }
526    tgt->st_mode = TheISA::htog(tgt->st_mode);
527    tgt->st_nlink = host->st_nlink;
528    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
529    tgt->st_uid = host->st_uid;
530    tgt->st_uid = TheISA::htog(tgt->st_uid);
531    tgt->st_gid = host->st_gid;
532    tgt->st_gid = TheISA::htog(tgt->st_gid);
533    if (fakeTTY)
534        tgt->st_rdev = 0x880d;
535    else
536        tgt->st_rdev = host->st_rdev;
537    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
538    tgt->st_size = host->st_size;
539    tgt->st_size = TheISA::htog(tgt->st_size);
540    tgt->st_atimeX = host->st_atime;
541    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
542    tgt->st_mtimeX = host->st_mtime;
543    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
544    tgt->st_ctimeX = host->st_ctime;
545    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
546    // Force the block size to be 8KB. This helps to ensure buffered io works
547    // consistently across different hosts.
548    tgt->st_blksize = 0x2000;
549    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
550    tgt->st_blocks = host->st_blocks;
551    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
552}
553
554// Same for stat64
555
556template <typename target_stat, typename host_stat64>
557void
558convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
559{
560    using namespace TheISA;
561
562    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
563#if defined(STAT_HAVE_NSEC)
564    tgt->st_atime_nsec = host->st_atime_nsec;
565    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
566    tgt->st_mtime_nsec = host->st_mtime_nsec;
567    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
568    tgt->st_ctime_nsec = host->st_ctime_nsec;
569    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
570#else
571    tgt->st_atime_nsec = 0;
572    tgt->st_mtime_nsec = 0;
573    tgt->st_ctime_nsec = 0;
574#endif
575}
576
577// Here are a couple of convenience functions
578template<class OS>
579void
580copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
581               hst_stat *host, bool fakeTTY = false)
582{
583    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
584    tgt_stat_buf tgt(addr);
585    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
586    tgt.copyOut(mem);
587}
588
589template<class OS>
590void
591copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
592                 hst_stat64 *host, bool fakeTTY = false)
593{
594    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
595    tgt_stat_buf tgt(addr);
596    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
597    tgt.copyOut(mem);
598}
599
600template <class OS>
601void
602copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
603                 hst_statfs *host)
604{
605    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
606
607    tgt->f_type = TheISA::htog(host->f_type);
608#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
609    tgt->f_bsize = TheISA::htog(host->f_iosize);
610#else
611    tgt->f_bsize = TheISA::htog(host->f_bsize);
612#endif
613    tgt->f_blocks = TheISA::htog(host->f_blocks);
614    tgt->f_bfree = TheISA::htog(host->f_bfree);
615    tgt->f_bavail = TheISA::htog(host->f_bavail);
616    tgt->f_files = TheISA::htog(host->f_files);
617    tgt->f_ffree = TheISA::htog(host->f_ffree);
618    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
619#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
620    tgt->f_namelen = TheISA::htog(host->f_namemax);
621    tgt->f_frsize = TheISA::htog(host->f_bsize);
622#elif defined(__APPLE__)
623    tgt->f_namelen = 0;
624    tgt->f_frsize = 0;
625#else
626    tgt->f_namelen = TheISA::htog(host->f_namelen);
627    tgt->f_frsize = TheISA::htog(host->f_frsize);
628#endif
629#if defined(__linux__)
630    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
631#else
632    /*
633     * The fields are different sizes per OS. Don't bother with
634     * f_spare or f_reserved on non-Linux for now.
635     */
636    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
637#endif
638
639    tgt.copyOut(mem);
640}
641
642/// Target ioctl() handler.  For the most part, programs call ioctl()
643/// only to find out if their stdout is a tty, to determine whether to
644/// do line or block buffering.  We always claim that output fds are
645/// not TTYs to provide repeatable results.
646template <class OS>
647SyscallReturn
648ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
649{
650    int index = 0;
651    int tgt_fd = p->getSyscallArg(tc, index);
652    unsigned req = p->getSyscallArg(tc, index);
653
654    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
655
656    if (OS::isTtyReq(req))
657        return -ENOTTY;
658
659    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
660    if (!dfdp)
661        return -EBADF;
662
663    /**
664     * If the driver is valid, issue the ioctl through it. Otherwise,
665     * there's an implicit assumption that the device is a TTY type and we
666     * return that we do not have a valid TTY.
667     */
668    EmulatedDriver *emul_driver = dfdp->getDriver();
669    if (emul_driver)
670        return emul_driver->ioctl(p, tc, req);
671
672    /**
673     * For lack of a better return code, return ENOTTY. Ideally, we should
674     * return something better here, but at least we issue the warning.
675     */
676    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
677         tgt_fd, req, tc->pcState());
678    return -ENOTTY;
679}
680
681template <class OS>
682SyscallReturn
683openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
684         bool isopenat)
685{
686    int index = 0;
687    int tgt_dirfd = -1;
688
689    /**
690     * If using the openat variant, read in the target directory file
691     * descriptor from the simulated process.
692     */
693    if (isopenat)
694        tgt_dirfd = p->getSyscallArg(tc, index);
695
696    /**
697     * Retrieve the simulated process' memory proxy and then read in the path
698     * string from that memory space into the host's working memory space.
699     */
700    std::string path;
701    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
702        return -EFAULT;
703
704#ifdef __CYGWIN32__
705    int host_flags = O_BINARY;
706#else
707    int host_flags = 0;
708#endif
709    /**
710     * Translate target flags into host flags. Flags exist which are not
711     * ported between architectures which can cause check failures.
712     */
713    int tgt_flags = p->getSyscallArg(tc, index);
714    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
715        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
716            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
717            host_flags |= OS::openFlagTable[i].hostFlag;
718        }
719    }
720    if (tgt_flags) {
721        warn("open%s: cannot decode flags 0x%x",
722             isopenat ? "at" : "", tgt_flags);
723    }
724#ifdef __CYGWIN32__
725    host_flags |= O_BINARY;
726#endif
727
728    int mode = p->getSyscallArg(tc, index);
729
730    /**
731     * If the simulated process called open or openat with AT_FDCWD specified,
732     * take the current working directory value which was passed into the
733     * process class as a Python parameter and append the current path to
734     * create a full path.
735     * Otherwise, openat with a valid target directory file descriptor has
736     * been called. If the path option, which was passed in as a parameter,
737     * is not absolute, retrieve the directory file descriptor's path and
738     * prepend it to the path passed in as a parameter.
739     * In every case, we should have a full path (which is relevant to the
740     * host) to work with after this block has been passed.
741     */
742    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
743        path = p->fullPath(path);
744    } else if (!startswith(path, "/")) {
745        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
746        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
747        if (!ffdp)
748            return -EBADF;
749        path.insert(0, ffdp->getFileName() + "/");
750    }
751
752    /**
753     * Since this is an emulated environment, we create pseudo file
754     * descriptors for device requests that have been registered with
755     * the process class through Python; this allows us to create a file
756     * descriptor for subsequent ioctl or mmap calls.
757     */
758    if (startswith(path, "/dev/")) {
759        std::string filename = path.substr(strlen("/dev/"));
760        EmulatedDriver *drv = p->findDriver(filename);
761        if (drv) {
762            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
763                            "driver open with path[%s]\n",
764                            isopenat ? "at" : "", path.c_str());
765            return drv->open(p, tc, mode, host_flags);
766        }
767        /**
768         * Fall through here for pass through to host devices, such
769         * as /dev/zero
770         */
771    }
772
773    /**
774     * Some special paths and files cannot be called on the host and need
775     * to be handled as special cases inside the simulator.
776     * If the full path that was created above does not match any of the
777     * special cases, pass it through to the open call on the host to let
778     * the host open the file on our behalf.
779     * If the host cannot open the file, return the host's error code back
780     * through the system call to the simulated process.
781     */
782    int sim_fd = -1;
783    std::vector<std::string> special_paths =
784            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
785    for (auto entry : special_paths) {
786        if (startswith(path, entry))
787            sim_fd = OS::openSpecialFile(path, p, tc);
788    }
789    if (sim_fd == -1) {
790        sim_fd = open(path.c_str(), host_flags, mode);
791    }
792    if (sim_fd == -1) {
793        int local = -errno;
794        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
795                        isopenat ? "at" : "", path.c_str());
796        return local;
797    }
798
799    /**
800     * The file was opened successfully and needs to be recorded in the
801     * process' file descriptor array so that it can be retrieved later.
802     * The target file descriptor that is chosen will be the lowest unused
803     * file descriptor.
804     * Return the indirect target file descriptor back to the simulated
805     * process to act as a handle for the opened file.
806     */
807    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
808    int tgt_fd = p->fds->allocFD(ffdp);
809    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
810                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
811    return tgt_fd;
812}
813
814/// Target open() handler.
815template <class OS>
816SyscallReturn
817openFunc(SyscallDesc *desc, int callnum, Process *process,
818         ThreadContext *tc)
819{
820    return openImpl<OS>(desc, callnum, process, tc, false);
821}
822
823/// Target openat() handler.
824template <class OS>
825SyscallReturn
826openatFunc(SyscallDesc *desc, int callnum, Process *process,
827           ThreadContext *tc)
828{
829    return openImpl<OS>(desc, callnum, process, tc, true);
830}
831
832/// Target unlinkat() handler.
833template <class OS>
834SyscallReturn
835unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
836             ThreadContext *tc)
837{
838    int index = 0;
839    int dirfd = process->getSyscallArg(tc, index);
840    if (dirfd != OS::TGT_AT_FDCWD)
841        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
842
843    return unlinkHelper(desc, callnum, process, tc, 1);
844}
845
846/// Target facessat() handler
847template <class OS>
848SyscallReturn
849faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
850              ThreadContext *tc)
851{
852    int index = 0;
853    int dirfd = process->getSyscallArg(tc, index);
854    if (dirfd != OS::TGT_AT_FDCWD)
855        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
856    return accessFunc(desc, callnum, process, tc, 1);
857}
858
859/// Target readlinkat() handler
860template <class OS>
861SyscallReturn
862readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
863               ThreadContext *tc)
864{
865    int index = 0;
866    int dirfd = process->getSyscallArg(tc, index);
867    if (dirfd != OS::TGT_AT_FDCWD)
868        warn("openat: first argument not AT_FDCWD; unlikely to work");
869    return readlinkFunc(desc, callnum, process, tc, 1);
870}
871
872/// Target renameat() handler.
873template <class OS>
874SyscallReturn
875renameatFunc(SyscallDesc *desc, int callnum, Process *process,
876             ThreadContext *tc)
877{
878    int index = 0;
879
880    int olddirfd = process->getSyscallArg(tc, index);
881    if (olddirfd != OS::TGT_AT_FDCWD)
882        warn("renameat: first argument not AT_FDCWD; unlikely to work");
883
884    std::string old_name;
885
886    if (!tc->getMemProxy().tryReadString(old_name,
887                                         process->getSyscallArg(tc, index)))
888        return -EFAULT;
889
890    int newdirfd = process->getSyscallArg(tc, index);
891    if (newdirfd != OS::TGT_AT_FDCWD)
892        warn("renameat: third argument not AT_FDCWD; unlikely to work");
893
894    std::string new_name;
895
896    if (!tc->getMemProxy().tryReadString(new_name,
897                                         process->getSyscallArg(tc, index)))
898        return -EFAULT;
899
900    // Adjust path for current working directory
901    old_name = process->fullPath(old_name);
902    new_name = process->fullPath(new_name);
903
904    int result = rename(old_name.c_str(), new_name.c_str());
905    return (result == -1) ? -errno : result;
906}
907
908/// Target sysinfo() handler.
909template <class OS>
910SyscallReturn
911sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
912            ThreadContext *tc)
913{
914
915    int index = 0;
916    TypedBufferArg<typename OS::tgt_sysinfo>
917        sysinfo(process->getSyscallArg(tc, index));
918
919    sysinfo->uptime = seconds_since_epoch;
920    sysinfo->totalram = process->system->memSize();
921    sysinfo->mem_unit = 1;
922
923    sysinfo.copyOut(tc->getMemProxy());
924
925    return 0;
926}
927
928/// Target chmod() handler.
929template <class OS>
930SyscallReturn
931chmodFunc(SyscallDesc *desc, int callnum, Process *process,
932          ThreadContext *tc)
933{
934    std::string path;
935
936    int index = 0;
937    if (!tc->getMemProxy().tryReadString(path,
938                process->getSyscallArg(tc, index))) {
939        return -EFAULT;
940    }
941
942    uint32_t mode = process->getSyscallArg(tc, index);
943    mode_t hostMode = 0;
944
945    // XXX translate mode flags via OS::something???
946    hostMode = mode;
947
948    // Adjust path for current working directory
949    path = process->fullPath(path);
950
951    // do the chmod
952    int result = chmod(path.c_str(), hostMode);
953    if (result < 0)
954        return -errno;
955
956    return 0;
957}
958
959template <class OS>
960SyscallReturn
961pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
962{
963    int index = 0;
964    Addr fdsPtr = p->getSyscallArg(tc, index);
965    int nfds = p->getSyscallArg(tc, index);
966    int tmout = p->getSyscallArg(tc, index);
967
968    BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
969    fdsBuf.copyIn(tc->getMemProxy());
970
971    /**
972     * Record the target file descriptors in a local variable. We need to
973     * replace them with host file descriptors but we need a temporary copy
974     * for later. Afterwards, replace each target file descriptor in the
975     * poll_fd array with its host_fd.
976     */
977    int temp_tgt_fds[nfds];
978    for (index = 0; index < nfds; index++) {
979        temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
980        auto tgt_fd = temp_tgt_fds[index];
981        auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
982        if (!hbfdp)
983            return -EBADF;
984        auto host_fd = hbfdp->getSimFD();
985        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
986    }
987
988    /**
989     * We cannot allow an infinite poll to occur or it will inevitably cause
990     * a deadlock in the gem5 simulator with clone. We must pass in tmout with
991     * a non-negative value, however it also makes no sense to poll on the
992     * underlying host for any other time than tmout a zero timeout.
993     */
994    int status;
995    if (tmout < 0) {
996        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
997        if (status == 0) {
998            /**
999             * If blocking indefinitely, check the signal list to see if a
1000             * signal would break the poll out of the retry cycle and try
1001             * to return the signal interrupt instead.
1002             */
1003            System *sysh = tc->getSystemPtr();
1004            std::list<BasicSignal>::iterator it;
1005            for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1006                if (it->receiver == p)
1007                    return -EINTR;
1008            return SyscallReturn::retry();
1009        }
1010    } else
1011        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1012
1013    if (status == -1)
1014        return -errno;
1015
1016    /**
1017     * Replace each host_fd in the returned poll_fd array with its original
1018     * target file descriptor.
1019     */
1020    for (index = 0; index < nfds; index++) {
1021        auto tgt_fd = temp_tgt_fds[index];
1022        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1023    }
1024
1025    /**
1026     * Copy out the pollfd struct because the host may have updated fields
1027     * in the structure.
1028     */
1029    fdsBuf.copyOut(tc->getMemProxy());
1030
1031    return status;
1032}
1033
1034/// Target fchmod() handler.
1035template <class OS>
1036SyscallReturn
1037fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1038{
1039    int index = 0;
1040    int tgt_fd = p->getSyscallArg(tc, index);
1041    uint32_t mode = p->getSyscallArg(tc, index);
1042
1043    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1044    if (!ffdp)
1045        return -EBADF;
1046    int sim_fd = ffdp->getSimFD();
1047
1048    mode_t hostMode = mode;
1049
1050    int result = fchmod(sim_fd, hostMode);
1051
1052    return (result < 0) ? -errno : 0;
1053}
1054
1055/// Target mremap() handler.
1056template <class OS>
1057SyscallReturn
1058mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1059{
1060    int index = 0;
1061    Addr start = process->getSyscallArg(tc, index);
1062    uint64_t old_length = process->getSyscallArg(tc, index);
1063    uint64_t new_length = process->getSyscallArg(tc, index);
1064    uint64_t flags = process->getSyscallArg(tc, index);
1065    uint64_t provided_address = 0;
1066    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1067
1068    if (use_provided_address)
1069        provided_address = process->getSyscallArg(tc, index);
1070
1071    if ((start % TheISA::PageBytes != 0) ||
1072        (provided_address % TheISA::PageBytes != 0)) {
1073        warn("mremap failing: arguments not page aligned");
1074        return -EINVAL;
1075    }
1076
1077    new_length = roundUp(new_length, TheISA::PageBytes);
1078
1079    if (new_length > old_length) {
1080        std::shared_ptr<MemState> mem_state = process->memState;
1081        Addr mmap_end = mem_state->getMmapEnd();
1082
1083        if ((start + old_length) == mmap_end &&
1084            (!use_provided_address || provided_address == start)) {
1085            // This case cannot occur when growing downward, as
1086            // start is greater than or equal to mmap_end.
1087            uint64_t diff = new_length - old_length;
1088            process->allocateMem(mmap_end, diff);
1089            mem_state->setMmapEnd(mmap_end + diff);
1090            return start;
1091        } else {
1092            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1093                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1094                return -ENOMEM;
1095            } else {
1096                uint64_t new_start = provided_address;
1097                if (!use_provided_address) {
1098                    new_start = process->mmapGrowsDown() ?
1099                                mmap_end - new_length : mmap_end;
1100                    mmap_end = process->mmapGrowsDown() ?
1101                               new_start : mmap_end + new_length;
1102                    mem_state->setMmapEnd(mmap_end);
1103                }
1104
1105                process->pTable->remap(start, old_length, new_start);
1106                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1107                     new_start, new_start + new_length,
1108                     new_length - old_length);
1109                // add on the remaining unallocated pages
1110                process->allocateMem(new_start + old_length,
1111                                     new_length - old_length,
1112                                     use_provided_address /* clobber */);
1113                if (use_provided_address &&
1114                    ((new_start + new_length > mem_state->getMmapEnd() &&
1115                      !process->mmapGrowsDown()) ||
1116                    (new_start < mem_state->getMmapEnd() &&
1117                      process->mmapGrowsDown()))) {
1118                    // something fishy going on here, at least notify the user
1119                    // @todo: increase mmap_end?
1120                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
1121                }
1122                warn("returning %08p as start\n", new_start);
1123                return new_start;
1124            }
1125        }
1126    } else {
1127        if (use_provided_address && provided_address != start)
1128            process->pTable->remap(start, new_length, provided_address);
1129        process->pTable->unmap(start + new_length, old_length - new_length);
1130        return use_provided_address ? provided_address : start;
1131    }
1132}
1133
1134/// Target stat() handler.
1135template <class OS>
1136SyscallReturn
1137statFunc(SyscallDesc *desc, int callnum, Process *process,
1138         ThreadContext *tc)
1139{
1140    std::string path;
1141
1142    int index = 0;
1143    if (!tc->getMemProxy().tryReadString(path,
1144                process->getSyscallArg(tc, index))) {
1145        return -EFAULT;
1146    }
1147    Addr bufPtr = process->getSyscallArg(tc, index);
1148
1149    // Adjust path for current working directory
1150    path = process->fullPath(path);
1151
1152    struct stat hostBuf;
1153    int result = stat(path.c_str(), &hostBuf);
1154
1155    if (result < 0)
1156        return -errno;
1157
1158    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1159
1160    return 0;
1161}
1162
1163
1164/// Target stat64() handler.
1165template <class OS>
1166SyscallReturn
1167stat64Func(SyscallDesc *desc, int callnum, Process *process,
1168           ThreadContext *tc)
1169{
1170    std::string path;
1171
1172    int index = 0;
1173    if (!tc->getMemProxy().tryReadString(path,
1174                process->getSyscallArg(tc, index)))
1175        return -EFAULT;
1176    Addr bufPtr = process->getSyscallArg(tc, index);
1177
1178    // Adjust path for current working directory
1179    path = process->fullPath(path);
1180
1181#if NO_STAT64
1182    struct stat  hostBuf;
1183    int result = stat(path.c_str(), &hostBuf);
1184#else
1185    struct stat64 hostBuf;
1186    int result = stat64(path.c_str(), &hostBuf);
1187#endif
1188
1189    if (result < 0)
1190        return -errno;
1191
1192    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1193
1194    return 0;
1195}
1196
1197
1198/// Target fstatat64() handler.
1199template <class OS>
1200SyscallReturn
1201fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1202              ThreadContext *tc)
1203{
1204    int index = 0;
1205    int dirfd = process->getSyscallArg(tc, index);
1206    if (dirfd != OS::TGT_AT_FDCWD)
1207        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1208
1209    std::string path;
1210    if (!tc->getMemProxy().tryReadString(path,
1211                process->getSyscallArg(tc, index)))
1212        return -EFAULT;
1213    Addr bufPtr = process->getSyscallArg(tc, index);
1214
1215    // Adjust path for current working directory
1216    path = process->fullPath(path);
1217
1218#if NO_STAT64
1219    struct stat  hostBuf;
1220    int result = stat(path.c_str(), &hostBuf);
1221#else
1222    struct stat64 hostBuf;
1223    int result = stat64(path.c_str(), &hostBuf);
1224#endif
1225
1226    if (result < 0)
1227        return -errno;
1228
1229    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1230
1231    return 0;
1232}
1233
1234
1235/// Target fstat64() handler.
1236template <class OS>
1237SyscallReturn
1238fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1239{
1240    int index = 0;
1241    int tgt_fd = p->getSyscallArg(tc, index);
1242    Addr bufPtr = p->getSyscallArg(tc, index);
1243
1244    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1245    if (!ffdp)
1246        return -EBADF;
1247    int sim_fd = ffdp->getSimFD();
1248
1249#if NO_STAT64
1250    struct stat  hostBuf;
1251    int result = fstat(sim_fd, &hostBuf);
1252#else
1253    struct stat64  hostBuf;
1254    int result = fstat64(sim_fd, &hostBuf);
1255#endif
1256
1257    if (result < 0)
1258        return -errno;
1259
1260    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1261
1262    return 0;
1263}
1264
1265
1266/// Target lstat() handler.
1267template <class OS>
1268SyscallReturn
1269lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1270          ThreadContext *tc)
1271{
1272    std::string path;
1273
1274    int index = 0;
1275    if (!tc->getMemProxy().tryReadString(path,
1276                process->getSyscallArg(tc, index))) {
1277        return -EFAULT;
1278    }
1279    Addr bufPtr = process->getSyscallArg(tc, index);
1280
1281    // Adjust path for current working directory
1282    path = process->fullPath(path);
1283
1284    struct stat hostBuf;
1285    int result = lstat(path.c_str(), &hostBuf);
1286
1287    if (result < 0)
1288        return -errno;
1289
1290    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1291
1292    return 0;
1293}
1294
1295/// Target lstat64() handler.
1296template <class OS>
1297SyscallReturn
1298lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1299            ThreadContext *tc)
1300{
1301    std::string path;
1302
1303    int index = 0;
1304    if (!tc->getMemProxy().tryReadString(path,
1305                process->getSyscallArg(tc, index))) {
1306        return -EFAULT;
1307    }
1308    Addr bufPtr = process->getSyscallArg(tc, index);
1309
1310    // Adjust path for current working directory
1311    path = process->fullPath(path);
1312
1313#if NO_STAT64
1314    struct stat hostBuf;
1315    int result = lstat(path.c_str(), &hostBuf);
1316#else
1317    struct stat64 hostBuf;
1318    int result = lstat64(path.c_str(), &hostBuf);
1319#endif
1320
1321    if (result < 0)
1322        return -errno;
1323
1324    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1325
1326    return 0;
1327}
1328
1329/// Target fstat() handler.
1330template <class OS>
1331SyscallReturn
1332fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1333{
1334    int index = 0;
1335    int tgt_fd = p->getSyscallArg(tc, index);
1336    Addr bufPtr = p->getSyscallArg(tc, index);
1337
1338    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1339
1340    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1341    if (!ffdp)
1342        return -EBADF;
1343    int sim_fd = ffdp->getSimFD();
1344
1345    struct stat hostBuf;
1346    int result = fstat(sim_fd, &hostBuf);
1347
1348    if (result < 0)
1349        return -errno;
1350
1351    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1352
1353    return 0;
1354}
1355
1356/// Target statfs() handler.
1357template <class OS>
1358SyscallReturn
1359statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1360           ThreadContext *tc)
1361{
1362#if NO_STATFS
1363    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1364#else
1365    std::string path;
1366
1367    int index = 0;
1368    if (!tc->getMemProxy().tryReadString(path,
1369                process->getSyscallArg(tc, index))) {
1370        return -EFAULT;
1371    }
1372    Addr bufPtr = process->getSyscallArg(tc, index);
1373
1374    // Adjust path for current working directory
1375    path = process->fullPath(path);
1376
1377    struct statfs hostBuf;
1378    int result = statfs(path.c_str(), &hostBuf);
1379
1380    if (result < 0)
1381        return -errno;
1382
1383    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1384#endif
1385    return 0;
1386}
1387
1388template <class OS>
1389SyscallReturn
1390cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1391{
1392    int index = 0;
1393
1394    RegVal flags = p->getSyscallArg(tc, index);
1395    RegVal newStack = p->getSyscallArg(tc, index);
1396    Addr ptidPtr = p->getSyscallArg(tc, index);
1397
1398#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1399    /**
1400     * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1401     * The flag defines the list of clone() arguments in the following
1402     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1403     */
1404    Addr tlsPtr = p->getSyscallArg(tc, index);
1405    Addr ctidPtr = p->getSyscallArg(tc, index);
1406#else
1407    Addr ctidPtr = p->getSyscallArg(tc, index);
1408    Addr tlsPtr = p->getSyscallArg(tc, index);
1409#endif
1410
1411    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1412        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1413        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1414        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1415        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1416        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1417        return -EINVAL;
1418
1419    ThreadContext *ctc;
1420    if (!(ctc = p->findFreeContext()))
1421        fatal("clone: no spare thread context in system");
1422
1423    /**
1424     * Note that ProcessParams is generated by swig and there are no other
1425     * examples of how to create anything but this default constructor. The
1426     * fields are manually initialized instead of passing parameters to the
1427     * constructor.
1428     */
1429    ProcessParams *pp = new ProcessParams();
1430    pp->executable.assign(*(new std::string(p->progName())));
1431    pp->cmd.push_back(*(new std::string(p->progName())));
1432    pp->system = p->system;
1433    pp->cwd.assign(p->getcwd());
1434    pp->input.assign("stdin");
1435    pp->output.assign("stdout");
1436    pp->errout.assign("stderr");
1437    pp->uid = p->uid();
1438    pp->euid = p->euid();
1439    pp->gid = p->gid();
1440    pp->egid = p->egid();
1441
1442    /* Find the first free PID that's less than the maximum */
1443    std::set<int> const& pids = p->system->PIDs;
1444    int temp_pid = *pids.begin();
1445    do {
1446        temp_pid++;
1447    } while (pids.find(temp_pid) != pids.end());
1448    if (temp_pid >= System::maxPID)
1449        fatal("temp_pid is too large: %d", temp_pid);
1450
1451    pp->pid = temp_pid;
1452    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1453    Process *cp = pp->create();
1454    delete pp;
1455
1456    Process *owner = ctc->getProcessPtr();
1457    ctc->setProcessPtr(cp);
1458    cp->assignThreadContext(ctc->contextId());
1459    owner->revokeThreadContext(ctc->contextId());
1460
1461    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1462        BufferArg ptidBuf(ptidPtr, sizeof(long));
1463        long *ptid = (long *)ptidBuf.bufferPtr();
1464        *ptid = cp->pid();
1465        ptidBuf.copyOut(tc->getMemProxy());
1466    }
1467
1468    cp->initState();
1469    p->clone(tc, ctc, cp, flags);
1470
1471    if (flags & OS::TGT_CLONE_THREAD) {
1472        delete cp->sigchld;
1473        cp->sigchld = p->sigchld;
1474    } else if (flags & OS::TGT_SIGCHLD) {
1475        *cp->sigchld = true;
1476    }
1477
1478    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1479        BufferArg ctidBuf(ctidPtr, sizeof(long));
1480        long *ctid = (long *)ctidBuf.bufferPtr();
1481        *ctid = cp->pid();
1482        ctidBuf.copyOut(ctc->getMemProxy());
1483    }
1484
1485    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1486        cp->childClearTID = (uint64_t)ctidPtr;
1487
1488    ctc->clearArchRegs();
1489
1490    OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1491
1492    cp->setSyscallReturn(ctc, 0);
1493
1494#if THE_ISA == ALPHA_ISA
1495    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1496#elif THE_ISA == SPARC_ISA
1497    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1498    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1499#endif
1500
1501    TheISA::PCState cpc = tc->pcState();
1502    cpc.advance();
1503    ctc->pcState(cpc);
1504    ctc->activate();
1505
1506    return cp->pid();
1507}
1508
1509/// Target fstatfs() handler.
1510template <class OS>
1511SyscallReturn
1512fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1513{
1514    int index = 0;
1515    int tgt_fd = p->getSyscallArg(tc, index);
1516    Addr bufPtr = p->getSyscallArg(tc, index);
1517
1518    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1519    if (!ffdp)
1520        return -EBADF;
1521    int sim_fd = ffdp->getSimFD();
1522
1523    struct statfs hostBuf;
1524    int result = fstatfs(sim_fd, &hostBuf);
1525
1526    if (result < 0)
1527        return -errno;
1528
1529    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1530
1531    return 0;
1532}
1533
1534
1535/// Target writev() handler.
1536template <class OS>
1537SyscallReturn
1538writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1539{
1540    int index = 0;
1541    int tgt_fd = p->getSyscallArg(tc, index);
1542
1543    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1544    if (!hbfdp)
1545        return -EBADF;
1546    int sim_fd = hbfdp->getSimFD();
1547
1548    SETranslatingPortProxy &prox = tc->getMemProxy();
1549    uint64_t tiov_base = p->getSyscallArg(tc, index);
1550    size_t count = p->getSyscallArg(tc, index);
1551    struct iovec hiov[count];
1552    for (size_t i = 0; i < count; ++i) {
1553        typename OS::tgt_iovec tiov;
1554
1555        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1556                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1557        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1558        hiov[i].iov_base = new char [hiov[i].iov_len];
1559        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1560                      hiov[i].iov_len);
1561    }
1562
1563    int result = writev(sim_fd, hiov, count);
1564
1565    for (size_t i = 0; i < count; ++i)
1566        delete [] (char *)hiov[i].iov_base;
1567
1568    if (result < 0)
1569        return -errno;
1570
1571    return result;
1572}
1573
1574/// Real mmap handler.
1575template <class OS>
1576SyscallReturn
1577mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1578         bool is_mmap2)
1579{
1580    int index = 0;
1581    Addr start = p->getSyscallArg(tc, index);
1582    uint64_t length = p->getSyscallArg(tc, index);
1583    int prot = p->getSyscallArg(tc, index);
1584    int tgt_flags = p->getSyscallArg(tc, index);
1585    int tgt_fd = p->getSyscallArg(tc, index);
1586    int offset = p->getSyscallArg(tc, index);
1587
1588    if (is_mmap2)
1589        offset *= TheISA::PageBytes;
1590
1591    if (start & (TheISA::PageBytes - 1) ||
1592        offset & (TheISA::PageBytes - 1) ||
1593        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1594         tgt_flags & OS::TGT_MAP_SHARED) ||
1595        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1596         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1597        !length) {
1598        return -EINVAL;
1599    }
1600
1601    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1602        // With shared mmaps, there are two cases to consider:
1603        // 1) anonymous: writes should modify the mapping and this should be
1604        // visible to observers who share the mapping. Currently, it's
1605        // difficult to update the shared mapping because there's no
1606        // structure which maintains information about the which virtual
1607        // memory areas are shared. If that structure existed, it would be
1608        // possible to make the translations point to the same frames.
1609        // 2) file-backed: writes should modify the mapping and the file
1610        // which is backed by the mapping. The shared mapping problem is the
1611        // same as what was mentioned about the anonymous mappings. For
1612        // file-backed mappings, the writes to the file are difficult
1613        // because it requires syncing what the mapping holds with the file
1614        // that resides on the host system. So, any write on a real system
1615        // would cause the change to be propagated to the file mapping at
1616        // some point in the future (the inode is tracked along with the
1617        // mapping). This isn't guaranteed to always happen, but it usually
1618        // works well enough. The guarantee is provided by the msync system
1619        // call. We could force the change through with shared mappings with
1620        // a call to msync, but that again would require more information
1621        // than we currently maintain.
1622        warn("mmap: writing to shared mmap region is currently "
1623             "unsupported. The write succeeds on the target, but it "
1624             "will not be propagated to the host or shared mappings");
1625    }
1626
1627    length = roundUp(length, TheISA::PageBytes);
1628
1629    int sim_fd = -1;
1630    uint8_t *pmap = nullptr;
1631    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1632        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1633
1634        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1635        if (dfdp) {
1636            EmulatedDriver *emul_driver = dfdp->getDriver();
1637            return emul_driver->mmap(p, tc, start, length, prot,
1638                                     tgt_flags, tgt_fd, offset);
1639        }
1640
1641        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1642        if (!ffdp)
1643            return -EBADF;
1644        sim_fd = ffdp->getSimFD();
1645
1646        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1647                                    sim_fd, offset);
1648
1649        if (pmap == (decltype(pmap))-1) {
1650            warn("mmap: failed to map file into host address space");
1651            return -errno;
1652        }
1653    }
1654
1655    // Extend global mmap region if necessary. Note that we ignore the
1656    // start address unless MAP_FIXED is specified.
1657    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1658        std::shared_ptr<MemState> mem_state = p->memState;
1659        Addr mmap_end = mem_state->getMmapEnd();
1660
1661        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1662        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1663
1664        mem_state->setMmapEnd(mmap_end);
1665    }
1666
1667    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1668                    start, start + length - 1);
1669
1670    // We only allow mappings to overwrite existing mappings if
1671    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1672    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1673    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1674    if (clobber) {
1675        for (auto tc : p->system->threadContexts) {
1676            // If we might be overwriting old mappings, we need to
1677            // invalidate potentially stale mappings out of the TLBs.
1678            tc->getDTBPtr()->flushAll();
1679            tc->getITBPtr()->flushAll();
1680        }
1681    }
1682
1683    // Allocate physical memory and map it in. If the page table is already
1684    // mapped and clobber is not set, the simulator will issue throw a
1685    // fatal and bail out of the simulation.
1686    p->allocateMem(start, length, clobber);
1687
1688    // Transfer content into target address space.
1689    SETranslatingPortProxy &tp = tc->getMemProxy();
1690    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1691        // In general, we should zero the mapped area for anonymous mappings,
1692        // with something like:
1693        //     tp.memsetBlob(start, 0, length);
1694        // However, given that we don't support sparse mappings, and
1695        // some applications can map a couple of gigabytes of space
1696        // (intending sparse usage), that can get painfully expensive.
1697        // Fortunately, since we don't properly implement munmap either,
1698        // there's no danger of remapping used memory, so for now all
1699        // newly mapped memory should already be zeroed so we can skip it.
1700    } else {
1701        // It is possible to mmap an area larger than a file, however
1702        // accessing unmapped portions the system triggers a "Bus error"
1703        // on the host. We must know when to stop copying the file from
1704        // the host into the target address space.
1705        struct stat file_stat;
1706        if (fstat(sim_fd, &file_stat) > 0)
1707            fatal("mmap: cannot stat file");
1708
1709        // Copy the portion of the file that is resident. This requires
1710        // checking both the mmap size and the filesize that we are
1711        // trying to mmap into this space; the mmap size also depends
1712        // on the specified offset into the file.
1713        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1714                                 length);
1715        tp.writeBlob(start, pmap, size);
1716
1717        // Cleanup the mmap region before exiting this function.
1718        munmap(pmap, length);
1719
1720        // Maintain the symbol table for dynamic executables.
1721        // The loader will call mmap to map the images into its address
1722        // space and we intercept that here. We can verify that we are
1723        // executing inside the loader by checking the program counter value.
1724        // XXX: with multiprogrammed workloads or multi-node configurations,
1725        // this will not work since there is a single global symbol table.
1726        ObjectFile *interpreter = p->getInterpreter();
1727        if (interpreter) {
1728            Addr text_start = interpreter->textBase();
1729            Addr text_end = text_start + interpreter->textSize();
1730
1731            Addr pc = tc->pcState().pc();
1732
1733            if (pc >= text_start && pc < text_end) {
1734                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1735                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1736                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1737
1738                if (lib) {
1739                    lib->loadAllSymbols(debugSymbolTable,
1740                                        lib->textBase(), start);
1741                }
1742            }
1743        }
1744
1745        // Note that we do not zero out the remainder of the mapping. This
1746        // is done by a real system, but it probably will not affect
1747        // execution (hopefully).
1748    }
1749
1750    return start;
1751}
1752
1753template <class OS>
1754SyscallReturn
1755pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1756{
1757    int index = 0;
1758    int tgt_fd = p->getSyscallArg(tc, index);
1759    Addr bufPtr = p->getSyscallArg(tc, index);
1760    int nbytes = p->getSyscallArg(tc, index);
1761    int offset = p->getSyscallArg(tc, index);
1762
1763    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1764    if (!ffdp)
1765        return -EBADF;
1766    int sim_fd = ffdp->getSimFD();
1767
1768    BufferArg bufArg(bufPtr, nbytes);
1769    bufArg.copyIn(tc->getMemProxy());
1770
1771    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1772
1773    return (bytes_written == -1) ? -errno : bytes_written;
1774}
1775
1776/// Target mmap() handler.
1777template <class OS>
1778SyscallReturn
1779mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1780{
1781    return mmapImpl<OS>(desc, num, p, tc, false);
1782}
1783
1784/// Target mmap2() handler.
1785template <class OS>
1786SyscallReturn
1787mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1788{
1789    return mmapImpl<OS>(desc, num, p, tc, true);
1790}
1791
1792/// Target getrlimit() handler.
1793template <class OS>
1794SyscallReturn
1795getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1796              ThreadContext *tc)
1797{
1798    int index = 0;
1799    unsigned resource = process->getSyscallArg(tc, index);
1800    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1801
1802    switch (resource) {
1803      case OS::TGT_RLIMIT_STACK:
1804        // max stack size in bytes: make up a number (8MB for now)
1805        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1806        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1807        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1808        break;
1809
1810      case OS::TGT_RLIMIT_DATA:
1811        // max data segment size in bytes: make up a number
1812        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1813        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1814        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1815        break;
1816
1817      default:
1818        warn("getrlimit: unimplemented resource %d", resource);
1819        return -EINVAL;
1820        break;
1821    }
1822
1823    rlp.copyOut(tc->getMemProxy());
1824    return 0;
1825}
1826
1827template <class OS>
1828SyscallReturn
1829prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1830            ThreadContext *tc)
1831{
1832    int index = 0;
1833    if (process->getSyscallArg(tc, index) != 0)
1834    {
1835        warn("prlimit: ignoring rlimits for nonzero pid");
1836        return -EPERM;
1837    }
1838    int resource = process->getSyscallArg(tc, index);
1839    Addr n = process->getSyscallArg(tc, index);
1840    if (n != 0)
1841        warn("prlimit: ignoring new rlimit");
1842    Addr o = process->getSyscallArg(tc, index);
1843    if (o != 0)
1844    {
1845        TypedBufferArg<typename OS::rlimit> rlp(o);
1846        switch (resource) {
1847          case OS::TGT_RLIMIT_STACK:
1848            // max stack size in bytes: make up a number (8MB for now)
1849            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1850            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1851            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1852            break;
1853          case OS::TGT_RLIMIT_DATA:
1854            // max data segment size in bytes: make up a number
1855            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1856            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1857            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1858            break;
1859          default:
1860            warn("prlimit: unimplemented resource %d", resource);
1861            return -EINVAL;
1862            break;
1863        }
1864        rlp.copyOut(tc->getMemProxy());
1865    }
1866    return 0;
1867}
1868
1869/// Target clock_gettime() function.
1870template <class OS>
1871SyscallReturn
1872clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1873{
1874    int index = 1;
1875    //int clk_id = p->getSyscallArg(tc, index);
1876    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1877
1878    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1879    tp->tv_sec += seconds_since_epoch;
1880    tp->tv_sec = TheISA::htog(tp->tv_sec);
1881    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1882
1883    tp.copyOut(tc->getMemProxy());
1884
1885    return 0;
1886}
1887
1888/// Target clock_getres() function.
1889template <class OS>
1890SyscallReturn
1891clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1892{
1893    int index = 1;
1894    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1895
1896    // Set resolution at ns, which is what clock_gettime() returns
1897    tp->tv_sec = 0;
1898    tp->tv_nsec = 1;
1899
1900    tp.copyOut(tc->getMemProxy());
1901
1902    return 0;
1903}
1904
1905/// Target gettimeofday() handler.
1906template <class OS>
1907SyscallReturn
1908gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1909                 ThreadContext *tc)
1910{
1911    int index = 0;
1912    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1913
1914    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1915    tp->tv_sec += seconds_since_epoch;
1916    tp->tv_sec = TheISA::htog(tp->tv_sec);
1917    tp->tv_usec = TheISA::htog(tp->tv_usec);
1918
1919    tp.copyOut(tc->getMemProxy());
1920
1921    return 0;
1922}
1923
1924
1925/// Target utimes() handler.
1926template <class OS>
1927SyscallReturn
1928utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1929           ThreadContext *tc)
1930{
1931    std::string path;
1932
1933    int index = 0;
1934    if (!tc->getMemProxy().tryReadString(path,
1935                process->getSyscallArg(tc, index))) {
1936        return -EFAULT;
1937    }
1938
1939    TypedBufferArg<typename OS::timeval [2]>
1940        tp(process->getSyscallArg(tc, index));
1941    tp.copyIn(tc->getMemProxy());
1942
1943    struct timeval hostTimeval[2];
1944    for (int i = 0; i < 2; ++i) {
1945        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1946        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1947    }
1948
1949    // Adjust path for current working directory
1950    path = process->fullPath(path);
1951
1952    int result = utimes(path.c_str(), hostTimeval);
1953
1954    if (result < 0)
1955        return -errno;
1956
1957    return 0;
1958}
1959
1960template <class OS>
1961SyscallReturn
1962execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1963{
1964    desc->setFlags(0);
1965
1966    int index = 0;
1967    std::string path;
1968    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1969    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1970        return -EFAULT;
1971
1972    if (access(path.c_str(), F_OK) == -1)
1973        return -EACCES;
1974
1975    auto read_in = [](std::vector<std::string> & vect,
1976                      SETranslatingPortProxy & mem_proxy,
1977                      Addr mem_loc)
1978    {
1979        for (int inc = 0; ; inc++) {
1980            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1981            b.copyIn(mem_proxy);
1982
1983            if (!*(Addr*)b.bufferPtr())
1984                break;
1985
1986            vect.push_back(std::string());
1987            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1988        }
1989    };
1990
1991    /**
1992     * Note that ProcessParams is generated by swig and there are no other
1993     * examples of how to create anything but this default constructor. The
1994     * fields are manually initialized instead of passing parameters to the
1995     * constructor.
1996     */
1997    ProcessParams *pp = new ProcessParams();
1998    pp->executable = path;
1999    Addr argv_mem_loc = p->getSyscallArg(tc, index);
2000    read_in(pp->cmd, mem_proxy, argv_mem_loc);
2001    Addr envp_mem_loc = p->getSyscallArg(tc, index);
2002    read_in(pp->env, mem_proxy, envp_mem_loc);
2003    pp->uid = p->uid();
2004    pp->egid = p->egid();
2005    pp->euid = p->euid();
2006    pp->gid = p->gid();
2007    pp->ppid = p->ppid();
2008    pp->pid = p->pid();
2009    pp->input.assign("cin");
2010    pp->output.assign("cout");
2011    pp->errout.assign("cerr");
2012    pp->cwd.assign(p->getcwd());
2013    pp->system = p->system;
2014    /**
2015     * Prevent process object creation with identical PIDs (which will trip
2016     * a fatal check in Process constructor). The execve call is supposed to
2017     * take over the currently executing process' identity but replace
2018     * whatever it is doing with a new process image. Instead of hijacking
2019     * the process object in the simulator, we create a new process object
2020     * and bind to the previous process' thread below (hijacking the thread).
2021     */
2022    p->system->PIDs.erase(p->pid());
2023    Process *new_p = pp->create();
2024    delete pp;
2025
2026    /**
2027     * Work through the file descriptor array and close any files marked
2028     * close-on-exec.
2029     */
2030    new_p->fds = p->fds;
2031    for (int i = 0; i < new_p->fds->getSize(); i++) {
2032        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2033        if (fdep && fdep->getCOE())
2034            new_p->fds->closeFDEntry(i);
2035    }
2036
2037    *new_p->sigchld = true;
2038
2039    delete p;
2040    tc->clearArchRegs();
2041    tc->setProcessPtr(new_p);
2042    new_p->assignThreadContext(tc->contextId());
2043    new_p->initState();
2044    tc->activate();
2045    TheISA::PCState pcState = tc->pcState();
2046    tc->setNPC(pcState.instAddr());
2047
2048    desc->setFlags(SyscallDesc::SuppressReturnValue);
2049    return 0;
2050}
2051
2052/// Target getrusage() function.
2053template <class OS>
2054SyscallReturn
2055getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2056              ThreadContext *tc)
2057{
2058    int index = 0;
2059    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2060    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2061
2062    rup->ru_utime.tv_sec = 0;
2063    rup->ru_utime.tv_usec = 0;
2064    rup->ru_stime.tv_sec = 0;
2065    rup->ru_stime.tv_usec = 0;
2066    rup->ru_maxrss = 0;
2067    rup->ru_ixrss = 0;
2068    rup->ru_idrss = 0;
2069    rup->ru_isrss = 0;
2070    rup->ru_minflt = 0;
2071    rup->ru_majflt = 0;
2072    rup->ru_nswap = 0;
2073    rup->ru_inblock = 0;
2074    rup->ru_oublock = 0;
2075    rup->ru_msgsnd = 0;
2076    rup->ru_msgrcv = 0;
2077    rup->ru_nsignals = 0;
2078    rup->ru_nvcsw = 0;
2079    rup->ru_nivcsw = 0;
2080
2081    switch (who) {
2082      case OS::TGT_RUSAGE_SELF:
2083        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2084        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2085        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2086        break;
2087
2088      case OS::TGT_RUSAGE_CHILDREN:
2089        // do nothing.  We have no child processes, so they take no time.
2090        break;
2091
2092      default:
2093        // don't really handle THREAD or CHILDREN, but just warn and
2094        // plow ahead
2095        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
2096             who);
2097    }
2098
2099    rup.copyOut(tc->getMemProxy());
2100
2101    return 0;
2102}
2103
2104/// Target times() function.
2105template <class OS>
2106SyscallReturn
2107timesFunc(SyscallDesc *desc, int callnum, Process *process,
2108          ThreadContext *tc)
2109{
2110    int index = 0;
2111    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2112
2113    // Fill in the time structure (in clocks)
2114    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2115    bufp->tms_utime = clocks;
2116    bufp->tms_stime = 0;
2117    bufp->tms_cutime = 0;
2118    bufp->tms_cstime = 0;
2119
2120    // Convert to host endianness
2121    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2122
2123    // Write back
2124    bufp.copyOut(tc->getMemProxy());
2125
2126    // Return clock ticks since system boot
2127    return clocks;
2128}
2129
2130/// Target time() function.
2131template <class OS>
2132SyscallReturn
2133timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2134{
2135    typename OS::time_t sec, usec;
2136    getElapsedTimeMicro(sec, usec);
2137    sec += seconds_since_epoch;
2138
2139    int index = 0;
2140    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2141    if (taddr != 0) {
2142        typename OS::time_t t = sec;
2143        t = TheISA::htog(t);
2144        SETranslatingPortProxy &p = tc->getMemProxy();
2145        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2146    }
2147    return sec;
2148}
2149
2150template <class OS>
2151SyscallReturn
2152tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2153{
2154    int index = 0;
2155    int tgid = process->getSyscallArg(tc, index);
2156    int tid = process->getSyscallArg(tc, index);
2157    int sig = process->getSyscallArg(tc, index);
2158
2159    /**
2160     * This system call is intended to allow killing a specific thread
2161     * within an arbitrary thread group if sanctioned with permission checks.
2162     * It's usually true that threads share the termination signal as pointed
2163     * out by the pthread_kill man page and this seems to be the intended
2164     * usage. Due to this being an emulated environment, assume the following:
2165     * Threads are allowed to call tgkill because the EUID for all threads
2166     * should be the same. There is no signal handling mechanism for kernel
2167     * registration of signal handlers since signals are poorly supported in
2168     * emulation mode. Since signal handlers cannot be registered, all
2169     * threads within in a thread group must share the termination signal.
2170     * We never exhaust PIDs so there's no chance of finding the wrong one
2171     * due to PID rollover.
2172     */
2173
2174    System *sys = tc->getSystemPtr();
2175    Process *tgt_proc = nullptr;
2176    for (int i = 0; i < sys->numContexts(); i++) {
2177        Process *temp = sys->threadContexts[i]->getProcessPtr();
2178        if (temp->pid() == tid) {
2179            tgt_proc = temp;
2180            break;
2181        }
2182    }
2183
2184    if (sig != 0 || sig != OS::TGT_SIGABRT)
2185        return -EINVAL;
2186
2187    if (tgt_proc == nullptr)
2188        return -ESRCH;
2189
2190    if (tgid != -1 && tgt_proc->tgid() != tgid)
2191        return -ESRCH;
2192
2193    if (sig == OS::TGT_SIGABRT)
2194        exitGroupFunc(desc, 252, process, tc);
2195
2196    return 0;
2197}
2198
2199template <class OS>
2200SyscallReturn
2201socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2202{
2203    int index = 0;
2204    int domain = p->getSyscallArg(tc, index);
2205    int type = p->getSyscallArg(tc, index);
2206    int prot = p->getSyscallArg(tc, index);
2207
2208    int sim_fd = socket(domain, type, prot);
2209    if (sim_fd == -1)
2210        return -errno;
2211
2212    auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2213    int tgt_fd = p->fds->allocFD(sfdp);
2214
2215    return tgt_fd;
2216}
2217
2218template <class OS>
2219SyscallReturn
2220socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2221{
2222    int index = 0;
2223    int domain = p->getSyscallArg(tc, index);
2224    int type = p->getSyscallArg(tc, index);
2225    int prot = p->getSyscallArg(tc, index);
2226    Addr svPtr = p->getSyscallArg(tc, index);
2227
2228    BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2229    int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2230    if (status == -1)
2231        return -errno;
2232
2233    int *fds = (int *)svBuf.bufferPtr();
2234
2235    auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2236    fds[0] = p->fds->allocFD(sfdp1);
2237    auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2238    fds[1] = p->fds->allocFD(sfdp2);
2239    svBuf.copyOut(tc->getMemProxy());
2240
2241    return status;
2242}
2243
2244template <class OS>
2245SyscallReturn
2246selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2247{
2248    int retval;
2249
2250    int index = 0;
2251    int nfds_t = p->getSyscallArg(tc, index);
2252    Addr fds_read_ptr = p->getSyscallArg(tc, index);
2253    Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2254    Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2255    Addr time_val_ptr = p->getSyscallArg(tc, index);
2256
2257    TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2258    TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2259    TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2260    TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2261
2262    /**
2263     * Host fields. Notice that these use the definitions from the system
2264     * headers instead of the gem5 headers and libraries. If the host and
2265     * target have different header file definitions, this will not work.
2266     */
2267    fd_set rd_h;
2268    FD_ZERO(&rd_h);
2269    fd_set wr_h;
2270    FD_ZERO(&wr_h);
2271    fd_set ex_h;
2272    FD_ZERO(&ex_h);
2273
2274    /**
2275     * Copy in the fd_set from the target.
2276     */
2277    if (fds_read_ptr)
2278        rd_t.copyIn(tc->getMemProxy());
2279    if (fds_writ_ptr)
2280        wr_t.copyIn(tc->getMemProxy());
2281    if (fds_excp_ptr)
2282        ex_t.copyIn(tc->getMemProxy());
2283
2284    /**
2285     * We need to translate the target file descriptor set into a host file
2286     * descriptor set. This involves both our internal process fd array
2287     * and the fd_set defined in Linux header files. The nfds field also
2288     * needs to be updated as it will be only target specific after
2289     * retrieving it from the target; the nfds value is expected to be the
2290     * highest file descriptor that needs to be checked, so we need to extend
2291     * it out for nfds_h when we do the update.
2292     */
2293    int nfds_h = 0;
2294    std::map<int, int> trans_map;
2295    auto try_add_host_set = [&](fd_set *tgt_set_entry,
2296                                fd_set *hst_set_entry,
2297                                int iter) -> bool
2298    {
2299        /**
2300         * By this point, we know that we are looking at a valid file
2301         * descriptor set on the target. We need to check if the target file
2302         * descriptor value passed in as iter is part of the set.
2303         */
2304        if (FD_ISSET(iter, tgt_set_entry)) {
2305            /**
2306             * We know that the target file descriptor belongs to the set,
2307             * but we do not yet know if the file descriptor is valid or
2308             * that we have a host mapping. Check that now.
2309             */
2310            auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2311            if (!hbfdp)
2312                return true;
2313            auto sim_fd = hbfdp->getSimFD();
2314
2315            /**
2316             * Add the sim_fd to tgt_fd translation into trans_map for use
2317             * later when we need to zero the target fd_set structures and
2318             * then update them with hits returned from the host select call.
2319             */
2320            trans_map[sim_fd] = iter;
2321
2322            /**
2323             * We know that the host file descriptor exists so now we check
2324             * if we need to update the max count for nfds_h before passing
2325             * the duplicated structure into the host.
2326             */
2327            nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2328
2329            /**
2330             * Add the host file descriptor to the set that we are going to
2331             * pass into the host.
2332             */
2333            FD_SET(sim_fd, hst_set_entry);
2334        }
2335        return false;
2336    };
2337
2338    for (int i = 0; i < nfds_t; i++) {
2339        if (fds_read_ptr) {
2340            bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2341            if (ebadf) return -EBADF;
2342        }
2343        if (fds_writ_ptr) {
2344            bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2345            if (ebadf) return -EBADF;
2346        }
2347        if (fds_excp_ptr) {
2348            bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2349            if (ebadf) return -EBADF;
2350        }
2351    }
2352
2353    if (time_val_ptr) {
2354        /**
2355         * It might be possible to decrement the timeval based on some
2356         * derivation of wall clock determined from elapsed simulator ticks
2357         * but that seems like overkill. Rather, we just set the timeval with
2358         * zero timeout. (There is no reason to block during the simulation
2359         * as it only decreases simulator performance.)
2360         */
2361        tp->tv_sec = 0;
2362        tp->tv_usec = 0;
2363
2364        retval = select(nfds_h,
2365                        fds_read_ptr ? &rd_h : nullptr,
2366                        fds_writ_ptr ? &wr_h : nullptr,
2367                        fds_excp_ptr ? &ex_h : nullptr,
2368                        (timeval*)&*tp);
2369    } else {
2370        /**
2371         * If the timeval pointer is null, setup a new timeval structure to
2372         * pass into the host select call. Unfortunately, we will need to
2373         * manually check the return value and throw a retry fault if the
2374         * return value is zero. Allowing the system call to block will
2375         * likely deadlock the event queue.
2376         */
2377        struct timeval tv = { 0, 0 };
2378
2379        retval = select(nfds_h,
2380                        fds_read_ptr ? &rd_h : nullptr,
2381                        fds_writ_ptr ? &wr_h : nullptr,
2382                        fds_excp_ptr ? &ex_h : nullptr,
2383                        &tv);
2384
2385        if (retval == 0) {
2386            /**
2387             * If blocking indefinitely, check the signal list to see if a
2388             * signal would break the poll out of the retry cycle and try to
2389             * return the signal interrupt instead.
2390             */
2391            for (auto sig : tc->getSystemPtr()->signalList)
2392                if (sig.receiver == p)
2393                    return -EINTR;
2394            return SyscallReturn::retry();
2395        }
2396    }
2397
2398    if (retval == -1)
2399        return -errno;
2400
2401    FD_ZERO((fd_set*)&*rd_t);
2402    FD_ZERO((fd_set*)&*wr_t);
2403    FD_ZERO((fd_set*)&*ex_t);
2404
2405    /**
2406     * We need to translate the host file descriptor set into a target file
2407     * descriptor set. This involves both our internal process fd array
2408     * and the fd_set defined in header files.
2409     */
2410    for (int i = 0; i < nfds_h; i++) {
2411        if (fds_read_ptr) {
2412            if (FD_ISSET(i, &rd_h))
2413                FD_SET(trans_map[i], (fd_set*)&*rd_t);
2414        }
2415
2416        if (fds_writ_ptr) {
2417            if (FD_ISSET(i, &wr_h))
2418                FD_SET(trans_map[i], (fd_set*)&*wr_t);
2419        }
2420
2421        if (fds_excp_ptr) {
2422            if (FD_ISSET(i, &ex_h))
2423                FD_SET(trans_map[i], (fd_set*)&*ex_t);
2424        }
2425    }
2426
2427    if (fds_read_ptr)
2428        rd_t.copyOut(tc->getMemProxy());
2429    if (fds_writ_ptr)
2430        wr_t.copyOut(tc->getMemProxy());
2431    if (fds_excp_ptr)
2432        ex_t.copyOut(tc->getMemProxy());
2433    if (time_val_ptr)
2434        tp.copyOut(tc->getMemProxy());
2435
2436    return retval;
2437}
2438
2439template <class OS>
2440SyscallReturn
2441readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2442{
2443    int index = 0;
2444    int tgt_fd = p->getSyscallArg(tc, index);
2445    Addr buf_ptr = p->getSyscallArg(tc, index);
2446    int nbytes = p->getSyscallArg(tc, index);
2447
2448    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2449    if (!hbfdp)
2450        return -EBADF;
2451    int sim_fd = hbfdp->getSimFD();
2452
2453    struct pollfd pfd;
2454    pfd.fd = sim_fd;
2455    pfd.events = POLLIN | POLLPRI;
2456    if ((poll(&pfd, 1, 0) == 0)
2457        && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2458        return SyscallReturn::retry();
2459
2460    BufferArg buf_arg(buf_ptr, nbytes);
2461    int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2462
2463    if (bytes_read > 0)
2464        buf_arg.copyOut(tc->getMemProxy());
2465
2466    return (bytes_read == -1) ? -errno : bytes_read;
2467}
2468
2469template <class OS>
2470SyscallReturn
2471writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2472{
2473    int index = 0;
2474    int tgt_fd = p->getSyscallArg(tc, index);
2475    Addr buf_ptr = p->getSyscallArg(tc, index);
2476    int nbytes = p->getSyscallArg(tc, index);
2477
2478    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2479    if (!hbfdp)
2480        return -EBADF;
2481    int sim_fd = hbfdp->getSimFD();
2482
2483    BufferArg buf_arg(buf_ptr, nbytes);
2484    buf_arg.copyIn(tc->getMemProxy());
2485
2486    struct pollfd pfd;
2487    pfd.fd = sim_fd;
2488    pfd.events = POLLOUT;
2489
2490    /**
2491     * We don't want to poll on /dev/random. The kernel will not enable the
2492     * file descriptor for writing unless the entropy in the system falls
2493     * below write_wakeup_threshold. This is not guaranteed to happen
2494     * depending on host settings.
2495     */
2496    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2497    if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2498        if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2499            return SyscallReturn::retry();
2500    }
2501
2502    int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2503
2504    if (bytes_written != -1)
2505        fsync(sim_fd);
2506
2507    return (bytes_written == -1) ? -errno : bytes_written;
2508}
2509
2510template <class OS>
2511SyscallReturn
2512wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2513{
2514    int index = 0;
2515    pid_t pid = p->getSyscallArg(tc, index);
2516    Addr statPtr = p->getSyscallArg(tc, index);
2517    int options = p->getSyscallArg(tc, index);
2518    Addr rusagePtr = p->getSyscallArg(tc, index);
2519
2520    if (rusagePtr)
2521        DPRINTFR(SyscallVerbose,
2522                 "%d: %s: syscall wait4: rusage pointer provided however "
2523                 "functionality not supported. Ignoring rusage pointer.\n",
2524                 curTick(), tc->getCpuPtr()->name());
2525
2526    /**
2527     * Currently, wait4 is only implemented so that it will wait for children
2528     * exit conditions which are denoted by a SIGCHLD signals posted into the
2529     * system signal list. We return no additional information via any of the
2530     * parameters supplied to wait4. If nothing is found in the system signal
2531     * list, we will wait indefinitely for SIGCHLD to post by retrying the
2532     * call.
2533     */
2534    System *sysh = tc->getSystemPtr();
2535    std::list<BasicSignal>::iterator iter;
2536    for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2537        if (iter->receiver == p) {
2538            if (pid < -1) {
2539                if ((iter->sender->pgid() == -pid)
2540                    && (iter->signalValue == OS::TGT_SIGCHLD))
2541                    goto success;
2542            } else if (pid == -1) {
2543                if (iter->signalValue == OS::TGT_SIGCHLD)
2544                    goto success;
2545            } else if (pid == 0) {
2546                if ((iter->sender->pgid() == p->pgid())
2547                    && (iter->signalValue == OS::TGT_SIGCHLD))
2548                    goto success;
2549            } else {
2550                if ((iter->sender->pid() == pid)
2551                    && (iter->signalValue == OS::TGT_SIGCHLD))
2552                    goto success;
2553            }
2554        }
2555    }
2556
2557    return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2558
2559success:
2560    // Set status to EXITED for WIFEXITED evaluations.
2561    const int EXITED = 0;
2562    BufferArg statusBuf(statPtr, sizeof(int));
2563    *(int *)statusBuf.bufferPtr() = EXITED;
2564    statusBuf.copyOut(tc->getMemProxy());
2565
2566    // Return the child PID.
2567    pid_t retval = iter->sender->pid();
2568    sysh->signalList.erase(iter);
2569    return retval;
2570}
2571
2572template <class OS>
2573SyscallReturn
2574acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2575{
2576    struct sockaddr sa;
2577    socklen_t addrLen;
2578    int host_fd;
2579    int index = 0;
2580    int tgt_fd = p->getSyscallArg(tc, index);
2581    Addr addrPtr = p->getSyscallArg(tc, index);
2582    Addr lenPtr = p->getSyscallArg(tc, index);
2583
2584    BufferArg *lenBufPtr = nullptr;
2585    BufferArg *addrBufPtr = nullptr;
2586
2587    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2588    if (!sfdp)
2589        return -EBADF;
2590    int sim_fd = sfdp->getSimFD();
2591
2592    /**
2593     * We poll the socket file descriptor first to guarantee that we do not
2594     * block on our accept call. The socket can be opened without the
2595     * non-blocking flag (it blocks). This will cause deadlocks between
2596     * communicating processes.
2597     */
2598    struct pollfd pfd;
2599    pfd.fd = sim_fd;
2600    pfd.events = POLLIN | POLLPRI;
2601    if ((poll(&pfd, 1, 0) == 0)
2602        && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2603        return SyscallReturn::retry();
2604
2605    if (lenPtr) {
2606        lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2607        lenBufPtr->copyIn(tc->getMemProxy());
2608        memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2609               sizeof(socklen_t));
2610    }
2611
2612    if (addrPtr) {
2613        addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2614        addrBufPtr->copyIn(tc->getMemProxy());
2615        memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2616               sizeof(struct sockaddr));
2617    }
2618
2619    host_fd = accept(sim_fd, &sa, &addrLen);
2620
2621    if (host_fd == -1)
2622        return -errno;
2623
2624    if (addrPtr) {
2625        memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2626        addrBufPtr->copyOut(tc->getMemProxy());
2627        delete(addrBufPtr);
2628    }
2629
2630    if (lenPtr) {
2631        *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2632        lenBufPtr->copyOut(tc->getMemProxy());
2633        delete(lenBufPtr);
2634    }
2635
2636    auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2637                                                sfdp->_type, sfdp->_protocol);
2638    return p->fds->allocFD(afdp);
2639}
2640
2641#endif // __SIM_SYSCALL_EMUL_HH__
2642