syscall_emul.hh revision 13570
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <poll.h>
82#include <sys/mman.h>
83#include <sys/socket.h>
84#include <sys/stat.h>
85#if (NO_STATFS == 0)
86#include <sys/statfs.h>
87#else
88#include <sys/mount.h>
89#endif
90#include <sys/time.h>
91#include <sys/types.h>
92#include <sys/uio.h>
93#include <unistd.h>
94
95#include <cerrno>
96#include <memory>
97#include <string>
98
99#include "arch/generic/tlb.hh"
100#include "arch/utility.hh"
101#include "base/intmath.hh"
102#include "base/loader/object_file.hh"
103#include "base/logging.hh"
104#include "base/trace.hh"
105#include "base/types.hh"
106#include "config/the_isa.hh"
107#include "cpu/base.hh"
108#include "cpu/thread_context.hh"
109#include "mem/page_table.hh"
110#include "params/Process.hh"
111#include "sim/emul_driver.hh"
112#include "sim/futex_map.hh"
113#include "sim/process.hh"
114#include "sim/syscall_debug_macros.hh"
115#include "sim/syscall_desc.hh"
116#include "sim/syscall_emul_buf.hh"
117#include "sim/syscall_return.hh"
118
119//////////////////////////////////////////////////////////////////////
120//
121// The following emulation functions are generic enough that they
122// don't need to be recompiled for different emulated OS's.  They are
123// defined in sim/syscall_emul.cc.
124//
125//////////////////////////////////////////////////////////////////////
126
127
128/// Handler for unimplemented syscalls that we haven't thought about.
129SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
130                                Process *p, ThreadContext *tc);
131
132/// Handler for unimplemented syscalls that we never intend to
133/// implement (signal handling, etc.) and should not affect the correct
134/// behavior of the program.  Print a warning only if the appropriate
135/// trace flag is enabled.  Return success to the target program.
136SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
137                         Process *p, ThreadContext *tc);
138
139// Target fallocateFunc() handler.
140SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
141                            Process *p, ThreadContext *tc);
142
143/// Target exit() handler: terminate current context.
144SyscallReturn exitFunc(SyscallDesc *desc, int num,
145                       Process *p, ThreadContext *tc);
146
147/// Target exit_group() handler: terminate simulation. (exit all threads)
148SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
149                       Process *p, ThreadContext *tc);
150
151/// Target set_tid_address() handler.
152SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
153                                Process *p, ThreadContext *tc);
154
155/// Target getpagesize() handler.
156SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
157                              Process *p, ThreadContext *tc);
158
159/// Target brk() handler: set brk address.
160SyscallReturn brkFunc(SyscallDesc *desc, int num,
161                      Process *p, ThreadContext *tc);
162
163/// Target close() handler.
164SyscallReturn closeFunc(SyscallDesc *desc, int num,
165                        Process *p, ThreadContext *tc);
166
167/// Target lseek() handler.
168SyscallReturn lseekFunc(SyscallDesc *desc, int num,
169                        Process *p, ThreadContext *tc);
170
171/// Target _llseek() handler.
172SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
173                          Process *p, ThreadContext *tc);
174
175/// Target munmap() handler.
176SyscallReturn munmapFunc(SyscallDesc *desc, int num,
177                         Process *p, ThreadContext *tc);
178
179/// Target shutdown() handler.
180SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
181                           Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185                              Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189                         Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193                           Process *p, ThreadContext *tc,
194                           int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196                           Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200                           Process *p, ThreadContext *tc,
201                           int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203                         Process *p, ThreadContext *tc);
204
205/// Target link() handler
206SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
207                       ThreadContext *tc);
208
209/// Target symlink() handler.
210SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
211                          ThreadContext *tc);
212
213/// Target mkdir() handler.
214SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
215                        Process *p, ThreadContext *tc);
216
217/// Target mknod() handler.
218SyscallReturn mknodFunc(SyscallDesc *desc, int num,
219                        Process *p, ThreadContext *tc);
220
221/// Target chdir() handler.
222SyscallReturn chdirFunc(SyscallDesc *desc, int num,
223                        Process *p, ThreadContext *tc);
224
225// Target rmdir() handler.
226SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
227                        Process *p, ThreadContext *tc);
228
229/// Target rename() handler.
230SyscallReturn renameFunc(SyscallDesc *desc, int num,
231                         Process *p, ThreadContext *tc);
232
233
234/// Target truncate() handler.
235SyscallReturn truncateFunc(SyscallDesc *desc, int num,
236                           Process *p, ThreadContext *tc);
237
238
239/// Target ftruncate() handler.
240SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
241                            Process *p, ThreadContext *tc);
242
243
244/// Target truncate64() handler.
245SyscallReturn truncate64Func(SyscallDesc *desc, int num,
246                             Process *p, ThreadContext *tc);
247
248/// Target ftruncate64() handler.
249SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
250                              Process *p, ThreadContext *tc);
251
252
253/// Target umask() handler.
254SyscallReturn umaskFunc(SyscallDesc *desc, int num,
255                        Process *p, ThreadContext *tc);
256
257/// Target gettid() handler.
258SyscallReturn gettidFunc(SyscallDesc *desc, int num,
259                         Process *p, ThreadContext *tc);
260
261/// Target chown() handler.
262SyscallReturn chownFunc(SyscallDesc *desc, int num,
263                        Process *p, ThreadContext *tc);
264
265/// Target setpgid() handler.
266SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
267                          Process *p, ThreadContext *tc);
268
269/// Target fchown() handler.
270SyscallReturn fchownFunc(SyscallDesc *desc, int num,
271                         Process *p, ThreadContext *tc);
272
273/// Target dup() handler.
274SyscallReturn dupFunc(SyscallDesc *desc, int num,
275                      Process *process, ThreadContext *tc);
276
277/// Target dup2() handler.
278SyscallReturn dup2Func(SyscallDesc *desc, int num,
279                       Process *process, ThreadContext *tc);
280
281/// Target fcntl() handler.
282SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
283                        Process *process, ThreadContext *tc);
284
285/// Target fcntl64() handler.
286SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
287                          Process *process, ThreadContext *tc);
288
289/// Target setuid() handler.
290SyscallReturn setuidFunc(SyscallDesc *desc, int num,
291                         Process *p, ThreadContext *tc);
292
293/// Target pipe() handler.
294SyscallReturn pipeFunc(SyscallDesc *desc, int num,
295                       Process *p, ThreadContext *tc);
296
297/// Internal pipe() handler.
298SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
299                       ThreadContext *tc, bool pseudoPipe);
300
301/// Target getpid() handler.
302SyscallReturn getpidFunc(SyscallDesc *desc, int num,
303                         Process *p, ThreadContext *tc);
304
305// Target bind() handler.
306SyscallReturn bindFunc(SyscallDesc *desc, int num,
307                       Process *p, ThreadContext *tc);
308
309// Target listen() handler.
310SyscallReturn listenFunc(SyscallDesc *desc, int num,
311                         Process *p, ThreadContext *tc);
312
313// Target connect() handler.
314SyscallReturn connectFunc(SyscallDesc *desc, int num,
315                          Process *p, ThreadContext *tc);
316
317#if defined(SYS_getdents)
318// Target getdents() handler.
319SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
320                           Process *p, ThreadContext *tc);
321#endif
322
323#if defined(SYS_getdents64)
324// Target getdents() handler.
325SyscallReturn getdents64Func(SyscallDesc *desc, int num,
326                           Process *p, ThreadContext *tc);
327#endif
328
329// Target sendto() handler.
330SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
331                         Process *p, ThreadContext *tc);
332
333// Target recvfrom() handler.
334SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
335                           Process *p, ThreadContext *tc);
336
337// Target recvmsg() handler.
338SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
339                          Process *p, ThreadContext *tc);
340
341// Target sendmsg() handler.
342SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
343                          Process *p, ThreadContext *tc);
344
345// Target getuid() handler.
346SyscallReturn getuidFunc(SyscallDesc *desc, int num,
347                         Process *p, ThreadContext *tc);
348
349/// Target getgid() handler.
350SyscallReturn getgidFunc(SyscallDesc *desc, int num,
351                         Process *p, ThreadContext *tc);
352
353/// Target getppid() handler.
354SyscallReturn getppidFunc(SyscallDesc *desc, int num,
355                          Process *p, ThreadContext *tc);
356
357/// Target geteuid() handler.
358SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
359                          Process *p, ThreadContext *tc);
360
361/// Target getegid() handler.
362SyscallReturn getegidFunc(SyscallDesc *desc, int num,
363                          Process *p, ThreadContext *tc);
364
365/// Target access() handler
366SyscallReturn accessFunc(SyscallDesc *desc, int num,
367                         Process *p, ThreadContext *tc);
368SyscallReturn accessFunc(SyscallDesc *desc, int num,
369                         Process *p, ThreadContext *tc,
370                         int index);
371
372/// Futex system call
373/// Implemented by Daniel Sanchez
374/// Used by printf's in multi-threaded apps
375template <class OS>
376SyscallReturn
377futexFunc(SyscallDesc *desc, int callnum, Process *process,
378          ThreadContext *tc)
379{
380    using namespace std;
381
382    int index = 0;
383    Addr uaddr = process->getSyscallArg(tc, index);
384    int op = process->getSyscallArg(tc, index);
385    int val = process->getSyscallArg(tc, index);
386
387    /*
388     * Unsupported option that does not affect the correctness of the
389     * application. This is a performance optimization utilized by Linux.
390     */
391    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
392
393    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
394
395    if (OS::TGT_FUTEX_WAIT == op) {
396        // Ensure futex system call accessed atomically.
397        BufferArg buf(uaddr, sizeof(int));
398        buf.copyIn(tc->getMemProxy());
399        int mem_val = *(int*)buf.bufferPtr();
400
401        /*
402         * The value in memory at uaddr is not equal with the expected val
403         * (a different thread must have changed it before the system call was
404         * invoked). In this case, we need to throw an error.
405         */
406        if (val != mem_val)
407            return -OS::TGT_EWOULDBLOCK;
408
409        futex_map.suspend(uaddr, process->tgid(), tc);
410
411        return 0;
412    } else if (OS::TGT_FUTEX_WAKE == op) {
413        return futex_map.wakeup(uaddr, process->tgid(), val);
414    }
415
416    warn("futex: op %d not implemented; ignoring.", op);
417    return -ENOSYS;
418}
419
420
421/// Pseudo Funcs  - These functions use a different return convension,
422/// returning a second value in a register other than the normal return register
423SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
424                             Process *process, ThreadContext *tc);
425
426/// Target getpidPseudo() handler.
427SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
428                               Process *p, ThreadContext *tc);
429
430/// Target getuidPseudo() handler.
431SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
432                               Process *p, ThreadContext *tc);
433
434/// Target getgidPseudo() handler.
435SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
436                               Process *p, ThreadContext *tc);
437
438
439/// A readable name for 1,000,000, for converting microseconds to seconds.
440const int one_million = 1000000;
441/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
442const int one_billion = 1000000000;
443
444/// Approximate seconds since the epoch (1/1/1970).  About a billion,
445/// by my reckoning.  We want to keep this a constant (not use the
446/// real-world time) to keep simulations repeatable.
447const unsigned seconds_since_epoch = 1000000000;
448
449/// Helper function to convert current elapsed time to seconds and
450/// microseconds.
451template <class T1, class T2>
452void
453getElapsedTimeMicro(T1 &sec, T2 &usec)
454{
455    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
456    sec = elapsed_usecs / one_million;
457    usec = elapsed_usecs % one_million;
458}
459
460/// Helper function to convert current elapsed time to seconds and
461/// nanoseconds.
462template <class T1, class T2>
463void
464getElapsedTimeNano(T1 &sec, T2 &nsec)
465{
466    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
467    sec = elapsed_nsecs / one_billion;
468    nsec = elapsed_nsecs % one_billion;
469}
470
471//////////////////////////////////////////////////////////////////////
472//
473// The following emulation functions are generic, but need to be
474// templated to account for differences in types, constants, etc.
475//
476//////////////////////////////////////////////////////////////////////
477
478    typedef struct statfs hst_statfs;
479#if NO_STAT64
480    typedef struct stat hst_stat;
481    typedef struct stat hst_stat64;
482#else
483    typedef struct stat hst_stat;
484    typedef struct stat64 hst_stat64;
485#endif
486
487//// Helper function to convert a host stat buffer to a target stat
488//// buffer.  Also copies the target buffer out to the simulated
489//// memory space.  Used by stat(), fstat(), and lstat().
490
491template <typename target_stat, typename host_stat>
492void
493convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
494{
495    using namespace TheISA;
496
497    if (fakeTTY)
498        tgt->st_dev = 0xA;
499    else
500        tgt->st_dev = host->st_dev;
501    tgt->st_dev = TheISA::htog(tgt->st_dev);
502    tgt->st_ino = host->st_ino;
503    tgt->st_ino = TheISA::htog(tgt->st_ino);
504    tgt->st_mode = host->st_mode;
505    if (fakeTTY) {
506        // Claim to be a character device
507        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
508        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
509    }
510    tgt->st_mode = TheISA::htog(tgt->st_mode);
511    tgt->st_nlink = host->st_nlink;
512    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
513    tgt->st_uid = host->st_uid;
514    tgt->st_uid = TheISA::htog(tgt->st_uid);
515    tgt->st_gid = host->st_gid;
516    tgt->st_gid = TheISA::htog(tgt->st_gid);
517    if (fakeTTY)
518        tgt->st_rdev = 0x880d;
519    else
520        tgt->st_rdev = host->st_rdev;
521    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
522    tgt->st_size = host->st_size;
523    tgt->st_size = TheISA::htog(tgt->st_size);
524    tgt->st_atimeX = host->st_atime;
525    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
526    tgt->st_mtimeX = host->st_mtime;
527    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
528    tgt->st_ctimeX = host->st_ctime;
529    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
530    // Force the block size to be 8KB. This helps to ensure buffered io works
531    // consistently across different hosts.
532    tgt->st_blksize = 0x2000;
533    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
534    tgt->st_blocks = host->st_blocks;
535    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
536}
537
538// Same for stat64
539
540template <typename target_stat, typename host_stat64>
541void
542convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
543{
544    using namespace TheISA;
545
546    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
547#if defined(STAT_HAVE_NSEC)
548    tgt->st_atime_nsec = host->st_atime_nsec;
549    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
550    tgt->st_mtime_nsec = host->st_mtime_nsec;
551    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
552    tgt->st_ctime_nsec = host->st_ctime_nsec;
553    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
554#else
555    tgt->st_atime_nsec = 0;
556    tgt->st_mtime_nsec = 0;
557    tgt->st_ctime_nsec = 0;
558#endif
559}
560
561// Here are a couple of convenience functions
562template<class OS>
563void
564copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
565               hst_stat *host, bool fakeTTY = false)
566{
567    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
568    tgt_stat_buf tgt(addr);
569    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
570    tgt.copyOut(mem);
571}
572
573template<class OS>
574void
575copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
576                 hst_stat64 *host, bool fakeTTY = false)
577{
578    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
579    tgt_stat_buf tgt(addr);
580    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
581    tgt.copyOut(mem);
582}
583
584template <class OS>
585void
586copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
587                 hst_statfs *host)
588{
589    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
590
591    tgt->f_type = TheISA::htog(host->f_type);
592#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
593    tgt->f_bsize = TheISA::htog(host->f_iosize);
594#else
595    tgt->f_bsize = TheISA::htog(host->f_bsize);
596#endif
597    tgt->f_blocks = TheISA::htog(host->f_blocks);
598    tgt->f_bfree = TheISA::htog(host->f_bfree);
599    tgt->f_bavail = TheISA::htog(host->f_bavail);
600    tgt->f_files = TheISA::htog(host->f_files);
601    tgt->f_ffree = TheISA::htog(host->f_ffree);
602    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
603#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
604    tgt->f_namelen = TheISA::htog(host->f_namemax);
605    tgt->f_frsize = TheISA::htog(host->f_bsize);
606#elif defined(__APPLE__)
607    tgt->f_namelen = 0;
608    tgt->f_frsize = 0;
609#else
610    tgt->f_namelen = TheISA::htog(host->f_namelen);
611    tgt->f_frsize = TheISA::htog(host->f_frsize);
612#endif
613#if defined(__linux__)
614    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
615#else
616    /*
617     * The fields are different sizes per OS. Don't bother with
618     * f_spare or f_reserved on non-Linux for now.
619     */
620    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
621#endif
622
623    tgt.copyOut(mem);
624}
625
626/// Target ioctl() handler.  For the most part, programs call ioctl()
627/// only to find out if their stdout is a tty, to determine whether to
628/// do line or block buffering.  We always claim that output fds are
629/// not TTYs to provide repeatable results.
630template <class OS>
631SyscallReturn
632ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
633{
634    int index = 0;
635    int tgt_fd = p->getSyscallArg(tc, index);
636    unsigned req = p->getSyscallArg(tc, index);
637
638    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
639
640    if (OS::isTtyReq(req))
641        return -ENOTTY;
642
643    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
644    if (!dfdp)
645        return -EBADF;
646
647    /**
648     * If the driver is valid, issue the ioctl through it. Otherwise,
649     * there's an implicit assumption that the device is a TTY type and we
650     * return that we do not have a valid TTY.
651     */
652    EmulatedDriver *emul_driver = dfdp->getDriver();
653    if (emul_driver)
654        return emul_driver->ioctl(p, tc, req);
655
656    /**
657     * For lack of a better return code, return ENOTTY. Ideally, we should
658     * return something better here, but at least we issue the warning.
659     */
660    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
661         tgt_fd, req, tc->pcState());
662    return -ENOTTY;
663}
664
665template <class OS>
666SyscallReturn
667openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
668         bool isopenat)
669{
670    int index = 0;
671    int tgt_dirfd = -1;
672
673    /**
674     * If using the openat variant, read in the target directory file
675     * descriptor from the simulated process.
676     */
677    if (isopenat)
678        tgt_dirfd = p->getSyscallArg(tc, index);
679
680    /**
681     * Retrieve the simulated process' memory proxy and then read in the path
682     * string from that memory space into the host's working memory space.
683     */
684    std::string path;
685    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
686        return -EFAULT;
687
688#ifdef __CYGWIN32__
689    int host_flags = O_BINARY;
690#else
691    int host_flags = 0;
692#endif
693    /**
694     * Translate target flags into host flags. Flags exist which are not
695     * ported between architectures which can cause check failures.
696     */
697    int tgt_flags = p->getSyscallArg(tc, index);
698    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
699        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
700            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
701            host_flags |= OS::openFlagTable[i].hostFlag;
702        }
703    }
704    if (tgt_flags) {
705        warn("open%s: cannot decode flags 0x%x",
706             isopenat ? "at" : "", tgt_flags);
707    }
708#ifdef __CYGWIN32__
709    host_flags |= O_BINARY;
710#endif
711
712    int mode = p->getSyscallArg(tc, index);
713
714    /**
715     * If the simulated process called open or openat with AT_FDCWD specified,
716     * take the current working directory value which was passed into the
717     * process class as a Python parameter and append the current path to
718     * create a full path.
719     * Otherwise, openat with a valid target directory file descriptor has
720     * been called. If the path option, which was passed in as a parameter,
721     * is not absolute, retrieve the directory file descriptor's path and
722     * prepend it to the path passed in as a parameter.
723     * In every case, we should have a full path (which is relevant to the
724     * host) to work with after this block has been passed.
725     */
726    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
727        path = p->fullPath(path);
728    } else if (!startswith(path, "/")) {
729        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
730        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
731        if (!ffdp)
732            return -EBADF;
733        path.insert(0, ffdp->getFileName() + "/");
734    }
735
736    /**
737     * Since this is an emulated environment, we create pseudo file
738     * descriptors for device requests that have been registered with
739     * the process class through Python; this allows us to create a file
740     * descriptor for subsequent ioctl or mmap calls.
741     */
742    if (startswith(path, "/dev/")) {
743        std::string filename = path.substr(strlen("/dev/"));
744        EmulatedDriver *drv = p->findDriver(filename);
745        if (drv) {
746            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
747                            "driver open with path[%s]\n",
748                            isopenat ? "at" : "", path.c_str());
749            return drv->open(p, tc, mode, host_flags);
750        }
751        /**
752         * Fall through here for pass through to host devices, such
753         * as /dev/zero
754         */
755    }
756
757    /**
758     * Some special paths and files cannot be called on the host and need
759     * to be handled as special cases inside the simulator.
760     * If the full path that was created above does not match any of the
761     * special cases, pass it through to the open call on the host to let
762     * the host open the file on our behalf.
763     * If the host cannot open the file, return the host's error code back
764     * through the system call to the simulated process.
765     */
766    int sim_fd = -1;
767    std::vector<std::string> special_paths =
768            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
769    for (auto entry : special_paths) {
770        if (startswith(path, entry))
771            sim_fd = OS::openSpecialFile(path, p, tc);
772    }
773    if (sim_fd == -1) {
774        sim_fd = open(path.c_str(), host_flags, mode);
775    }
776    if (sim_fd == -1) {
777        int local = -errno;
778        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
779                        isopenat ? "at" : "", path.c_str());
780        return local;
781    }
782
783    /**
784     * The file was opened successfully and needs to be recorded in the
785     * process' file descriptor array so that it can be retrieved later.
786     * The target file descriptor that is chosen will be the lowest unused
787     * file descriptor.
788     * Return the indirect target file descriptor back to the simulated
789     * process to act as a handle for the opened file.
790     */
791    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
792    int tgt_fd = p->fds->allocFD(ffdp);
793    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
794                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
795    return tgt_fd;
796}
797
798/// Target open() handler.
799template <class OS>
800SyscallReturn
801openFunc(SyscallDesc *desc, int callnum, Process *process,
802         ThreadContext *tc)
803{
804    return openImpl<OS>(desc, callnum, process, tc, false);
805}
806
807/// Target openat() handler.
808template <class OS>
809SyscallReturn
810openatFunc(SyscallDesc *desc, int callnum, Process *process,
811           ThreadContext *tc)
812{
813    return openImpl<OS>(desc, callnum, process, tc, true);
814}
815
816/// Target unlinkat() handler.
817template <class OS>
818SyscallReturn
819unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
820             ThreadContext *tc)
821{
822    int index = 0;
823    int dirfd = process->getSyscallArg(tc, index);
824    if (dirfd != OS::TGT_AT_FDCWD)
825        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
826
827    return unlinkHelper(desc, callnum, process, tc, 1);
828}
829
830/// Target facessat() handler
831template <class OS>
832SyscallReturn
833faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
834              ThreadContext *tc)
835{
836    int index = 0;
837    int dirfd = process->getSyscallArg(tc, index);
838    if (dirfd != OS::TGT_AT_FDCWD)
839        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
840    return accessFunc(desc, callnum, process, tc, 1);
841}
842
843/// Target readlinkat() handler
844template <class OS>
845SyscallReturn
846readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
847               ThreadContext *tc)
848{
849    int index = 0;
850    int dirfd = process->getSyscallArg(tc, index);
851    if (dirfd != OS::TGT_AT_FDCWD)
852        warn("openat: first argument not AT_FDCWD; unlikely to work");
853    return readlinkFunc(desc, callnum, process, tc, 1);
854}
855
856/// Target renameat() handler.
857template <class OS>
858SyscallReturn
859renameatFunc(SyscallDesc *desc, int callnum, Process *process,
860             ThreadContext *tc)
861{
862    int index = 0;
863
864    int olddirfd = process->getSyscallArg(tc, index);
865    if (olddirfd != OS::TGT_AT_FDCWD)
866        warn("renameat: first argument not AT_FDCWD; unlikely to work");
867
868    std::string old_name;
869
870    if (!tc->getMemProxy().tryReadString(old_name,
871                                         process->getSyscallArg(tc, index)))
872        return -EFAULT;
873
874    int newdirfd = process->getSyscallArg(tc, index);
875    if (newdirfd != OS::TGT_AT_FDCWD)
876        warn("renameat: third argument not AT_FDCWD; unlikely to work");
877
878    std::string new_name;
879
880    if (!tc->getMemProxy().tryReadString(new_name,
881                                         process->getSyscallArg(tc, index)))
882        return -EFAULT;
883
884    // Adjust path for current working directory
885    old_name = process->fullPath(old_name);
886    new_name = process->fullPath(new_name);
887
888    int result = rename(old_name.c_str(), new_name.c_str());
889    return (result == -1) ? -errno : result;
890}
891
892/// Target sysinfo() handler.
893template <class OS>
894SyscallReturn
895sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
896            ThreadContext *tc)
897{
898
899    int index = 0;
900    TypedBufferArg<typename OS::tgt_sysinfo>
901        sysinfo(process->getSyscallArg(tc, index));
902
903    sysinfo->uptime = seconds_since_epoch;
904    sysinfo->totalram = process->system->memSize();
905    sysinfo->mem_unit = 1;
906
907    sysinfo.copyOut(tc->getMemProxy());
908
909    return 0;
910}
911
912/// Target chmod() handler.
913template <class OS>
914SyscallReturn
915chmodFunc(SyscallDesc *desc, int callnum, Process *process,
916          ThreadContext *tc)
917{
918    std::string path;
919
920    int index = 0;
921    if (!tc->getMemProxy().tryReadString(path,
922                process->getSyscallArg(tc, index))) {
923        return -EFAULT;
924    }
925
926    uint32_t mode = process->getSyscallArg(tc, index);
927    mode_t hostMode = 0;
928
929    // XXX translate mode flags via OS::something???
930    hostMode = mode;
931
932    // Adjust path for current working directory
933    path = process->fullPath(path);
934
935    // do the chmod
936    int result = chmod(path.c_str(), hostMode);
937    if (result < 0)
938        return -errno;
939
940    return 0;
941}
942
943template <class OS>
944SyscallReturn
945pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
946{
947    int index = 0;
948    Addr fdsPtr = p->getSyscallArg(tc, index);
949    int nfds = p->getSyscallArg(tc, index);
950    int tmout = p->getSyscallArg(tc, index);
951
952    BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
953    fdsBuf.copyIn(tc->getMemProxy());
954
955    /**
956     * Record the target file descriptors in a local variable. We need to
957     * replace them with host file descriptors but we need a temporary copy
958     * for later. Afterwards, replace each target file descriptor in the
959     * poll_fd array with its host_fd.
960     */
961    int temp_tgt_fds[nfds];
962    for (index = 0; index < nfds; index++) {
963        temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
964        auto tgt_fd = temp_tgt_fds[index];
965        auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
966        if (!hbfdp)
967            return -EBADF;
968        auto host_fd = hbfdp->getSimFD();
969        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
970    }
971
972    /**
973     * We cannot allow an infinite poll to occur or it will inevitably cause
974     * a deadlock in the gem5 simulator with clone. We must pass in tmout with
975     * a non-negative value, however it also makes no sense to poll on the
976     * underlying host for any other time than tmout a zero timeout.
977     */
978    int status;
979    if (tmout < 0) {
980        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
981        if (status == 0) {
982            /**
983             * If blocking indefinitely, check the signal list to see if a
984             * signal would break the poll out of the retry cycle and try
985             * to return the signal interrupt instead.
986             */
987            System *sysh = tc->getSystemPtr();
988            std::list<BasicSignal>::iterator it;
989            for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
990                if (it->receiver == p)
991                    return -EINTR;
992            return SyscallReturn::retry();
993        }
994    } else
995        status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
996
997    if (status == -1)
998        return -errno;
999
1000    /**
1001     * Replace each host_fd in the returned poll_fd array with its original
1002     * target file descriptor.
1003     */
1004    for (index = 0; index < nfds; index++) {
1005        auto tgt_fd = temp_tgt_fds[index];
1006        ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1007    }
1008
1009    /**
1010     * Copy out the pollfd struct because the host may have updated fields
1011     * in the structure.
1012     */
1013    fdsBuf.copyOut(tc->getMemProxy());
1014
1015    return status;
1016}
1017
1018/// Target fchmod() handler.
1019template <class OS>
1020SyscallReturn
1021fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1022{
1023    int index = 0;
1024    int tgt_fd = p->getSyscallArg(tc, index);
1025    uint32_t mode = p->getSyscallArg(tc, index);
1026
1027    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1028    if (!ffdp)
1029        return -EBADF;
1030    int sim_fd = ffdp->getSimFD();
1031
1032    mode_t hostMode = mode;
1033
1034    int result = fchmod(sim_fd, hostMode);
1035
1036    return (result < 0) ? -errno : 0;
1037}
1038
1039/// Target mremap() handler.
1040template <class OS>
1041SyscallReturn
1042mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1043{
1044    int index = 0;
1045    Addr start = process->getSyscallArg(tc, index);
1046    uint64_t old_length = process->getSyscallArg(tc, index);
1047    uint64_t new_length = process->getSyscallArg(tc, index);
1048    uint64_t flags = process->getSyscallArg(tc, index);
1049    uint64_t provided_address = 0;
1050    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1051
1052    if (use_provided_address)
1053        provided_address = process->getSyscallArg(tc, index);
1054
1055    if ((start % TheISA::PageBytes != 0) ||
1056        (provided_address % TheISA::PageBytes != 0)) {
1057        warn("mremap failing: arguments not page aligned");
1058        return -EINVAL;
1059    }
1060
1061    new_length = roundUp(new_length, TheISA::PageBytes);
1062
1063    if (new_length > old_length) {
1064        std::shared_ptr<MemState> mem_state = process->memState;
1065        Addr mmap_end = mem_state->getMmapEnd();
1066
1067        if ((start + old_length) == mmap_end &&
1068            (!use_provided_address || provided_address == start)) {
1069            // This case cannot occur when growing downward, as
1070            // start is greater than or equal to mmap_end.
1071            uint64_t diff = new_length - old_length;
1072            process->allocateMem(mmap_end, diff);
1073            mem_state->setMmapEnd(mmap_end + diff);
1074            return start;
1075        } else {
1076            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1077                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1078                return -ENOMEM;
1079            } else {
1080                uint64_t new_start = provided_address;
1081                if (!use_provided_address) {
1082                    new_start = process->mmapGrowsDown() ?
1083                                mmap_end - new_length : mmap_end;
1084                    mmap_end = process->mmapGrowsDown() ?
1085                               new_start : mmap_end + new_length;
1086                    mem_state->setMmapEnd(mmap_end);
1087                }
1088
1089                process->pTable->remap(start, old_length, new_start);
1090                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1091                     new_start, new_start + new_length,
1092                     new_length - old_length);
1093                // add on the remaining unallocated pages
1094                process->allocateMem(new_start + old_length,
1095                                     new_length - old_length,
1096                                     use_provided_address /* clobber */);
1097                if (use_provided_address &&
1098                    ((new_start + new_length > mem_state->getMmapEnd() &&
1099                      !process->mmapGrowsDown()) ||
1100                    (new_start < mem_state->getMmapEnd() &&
1101                      process->mmapGrowsDown()))) {
1102                    // something fishy going on here, at least notify the user
1103                    // @todo: increase mmap_end?
1104                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
1105                }
1106                warn("returning %08p as start\n", new_start);
1107                return new_start;
1108            }
1109        }
1110    } else {
1111        if (use_provided_address && provided_address != start)
1112            process->pTable->remap(start, new_length, provided_address);
1113        process->pTable->unmap(start + new_length, old_length - new_length);
1114        return use_provided_address ? provided_address : start;
1115    }
1116}
1117
1118/// Target stat() handler.
1119template <class OS>
1120SyscallReturn
1121statFunc(SyscallDesc *desc, int callnum, Process *process,
1122         ThreadContext *tc)
1123{
1124    std::string path;
1125
1126    int index = 0;
1127    if (!tc->getMemProxy().tryReadString(path,
1128                process->getSyscallArg(tc, index))) {
1129        return -EFAULT;
1130    }
1131    Addr bufPtr = process->getSyscallArg(tc, index);
1132
1133    // Adjust path for current working directory
1134    path = process->fullPath(path);
1135
1136    struct stat hostBuf;
1137    int result = stat(path.c_str(), &hostBuf);
1138
1139    if (result < 0)
1140        return -errno;
1141
1142    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1143
1144    return 0;
1145}
1146
1147
1148/// Target stat64() handler.
1149template <class OS>
1150SyscallReturn
1151stat64Func(SyscallDesc *desc, int callnum, Process *process,
1152           ThreadContext *tc)
1153{
1154    std::string path;
1155
1156    int index = 0;
1157    if (!tc->getMemProxy().tryReadString(path,
1158                process->getSyscallArg(tc, index)))
1159        return -EFAULT;
1160    Addr bufPtr = process->getSyscallArg(tc, index);
1161
1162    // Adjust path for current working directory
1163    path = process->fullPath(path);
1164
1165#if NO_STAT64
1166    struct stat  hostBuf;
1167    int result = stat(path.c_str(), &hostBuf);
1168#else
1169    struct stat64 hostBuf;
1170    int result = stat64(path.c_str(), &hostBuf);
1171#endif
1172
1173    if (result < 0)
1174        return -errno;
1175
1176    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1177
1178    return 0;
1179}
1180
1181
1182/// Target fstatat64() handler.
1183template <class OS>
1184SyscallReturn
1185fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1186              ThreadContext *tc)
1187{
1188    int index = 0;
1189    int dirfd = process->getSyscallArg(tc, index);
1190    if (dirfd != OS::TGT_AT_FDCWD)
1191        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1192
1193    std::string path;
1194    if (!tc->getMemProxy().tryReadString(path,
1195                process->getSyscallArg(tc, index)))
1196        return -EFAULT;
1197    Addr bufPtr = process->getSyscallArg(tc, index);
1198
1199    // Adjust path for current working directory
1200    path = process->fullPath(path);
1201
1202#if NO_STAT64
1203    struct stat  hostBuf;
1204    int result = stat(path.c_str(), &hostBuf);
1205#else
1206    struct stat64 hostBuf;
1207    int result = stat64(path.c_str(), &hostBuf);
1208#endif
1209
1210    if (result < 0)
1211        return -errno;
1212
1213    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1214
1215    return 0;
1216}
1217
1218
1219/// Target fstat64() handler.
1220template <class OS>
1221SyscallReturn
1222fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1223{
1224    int index = 0;
1225    int tgt_fd = p->getSyscallArg(tc, index);
1226    Addr bufPtr = p->getSyscallArg(tc, index);
1227
1228    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1229    if (!ffdp)
1230        return -EBADF;
1231    int sim_fd = ffdp->getSimFD();
1232
1233#if NO_STAT64
1234    struct stat  hostBuf;
1235    int result = fstat(sim_fd, &hostBuf);
1236#else
1237    struct stat64  hostBuf;
1238    int result = fstat64(sim_fd, &hostBuf);
1239#endif
1240
1241    if (result < 0)
1242        return -errno;
1243
1244    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1245
1246    return 0;
1247}
1248
1249
1250/// Target lstat() handler.
1251template <class OS>
1252SyscallReturn
1253lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1254          ThreadContext *tc)
1255{
1256    std::string path;
1257
1258    int index = 0;
1259    if (!tc->getMemProxy().tryReadString(path,
1260                process->getSyscallArg(tc, index))) {
1261        return -EFAULT;
1262    }
1263    Addr bufPtr = process->getSyscallArg(tc, index);
1264
1265    // Adjust path for current working directory
1266    path = process->fullPath(path);
1267
1268    struct stat hostBuf;
1269    int result = lstat(path.c_str(), &hostBuf);
1270
1271    if (result < 0)
1272        return -errno;
1273
1274    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1275
1276    return 0;
1277}
1278
1279/// Target lstat64() handler.
1280template <class OS>
1281SyscallReturn
1282lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1283            ThreadContext *tc)
1284{
1285    std::string path;
1286
1287    int index = 0;
1288    if (!tc->getMemProxy().tryReadString(path,
1289                process->getSyscallArg(tc, index))) {
1290        return -EFAULT;
1291    }
1292    Addr bufPtr = process->getSyscallArg(tc, index);
1293
1294    // Adjust path for current working directory
1295    path = process->fullPath(path);
1296
1297#if NO_STAT64
1298    struct stat hostBuf;
1299    int result = lstat(path.c_str(), &hostBuf);
1300#else
1301    struct stat64 hostBuf;
1302    int result = lstat64(path.c_str(), &hostBuf);
1303#endif
1304
1305    if (result < 0)
1306        return -errno;
1307
1308    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1309
1310    return 0;
1311}
1312
1313/// Target fstat() handler.
1314template <class OS>
1315SyscallReturn
1316fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1317{
1318    int index = 0;
1319    int tgt_fd = p->getSyscallArg(tc, index);
1320    Addr bufPtr = p->getSyscallArg(tc, index);
1321
1322    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1323
1324    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1325    if (!ffdp)
1326        return -EBADF;
1327    int sim_fd = ffdp->getSimFD();
1328
1329    struct stat hostBuf;
1330    int result = fstat(sim_fd, &hostBuf);
1331
1332    if (result < 0)
1333        return -errno;
1334
1335    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1336
1337    return 0;
1338}
1339
1340/// Target statfs() handler.
1341template <class OS>
1342SyscallReturn
1343statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1344           ThreadContext *tc)
1345{
1346#if NO_STATFS
1347    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1348#else
1349    std::string path;
1350
1351    int index = 0;
1352    if (!tc->getMemProxy().tryReadString(path,
1353                process->getSyscallArg(tc, index))) {
1354        return -EFAULT;
1355    }
1356    Addr bufPtr = process->getSyscallArg(tc, index);
1357
1358    // Adjust path for current working directory
1359    path = process->fullPath(path);
1360
1361    struct statfs hostBuf;
1362    int result = statfs(path.c_str(), &hostBuf);
1363
1364    if (result < 0)
1365        return -errno;
1366
1367    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1368#endif
1369    return 0;
1370}
1371
1372template <class OS>
1373SyscallReturn
1374cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1375{
1376    int index = 0;
1377
1378    RegVal flags = p->getSyscallArg(tc, index);
1379    RegVal newStack = p->getSyscallArg(tc, index);
1380    Addr ptidPtr = p->getSyscallArg(tc, index);
1381
1382#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1383    /**
1384     * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1385     * The flag defines the list of clone() arguments in the following
1386     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1387     */
1388    Addr tlsPtr = p->getSyscallArg(tc, index);
1389    Addr ctidPtr = p->getSyscallArg(tc, index);
1390#else
1391    Addr ctidPtr = p->getSyscallArg(tc, index);
1392    Addr tlsPtr = p->getSyscallArg(tc, index);
1393#endif
1394
1395    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1396        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1397        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1398        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1399        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1400        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1401        return -EINVAL;
1402
1403    ThreadContext *ctc;
1404    if (!(ctc = p->findFreeContext()))
1405        fatal("clone: no spare thread context in system");
1406
1407    /**
1408     * Note that ProcessParams is generated by swig and there are no other
1409     * examples of how to create anything but this default constructor. The
1410     * fields are manually initialized instead of passing parameters to the
1411     * constructor.
1412     */
1413    ProcessParams *pp = new ProcessParams();
1414    pp->executable.assign(*(new std::string(p->progName())));
1415    pp->cmd.push_back(*(new std::string(p->progName())));
1416    pp->system = p->system;
1417    pp->cwd.assign(p->getcwd());
1418    pp->input.assign("stdin");
1419    pp->output.assign("stdout");
1420    pp->errout.assign("stderr");
1421    pp->uid = p->uid();
1422    pp->euid = p->euid();
1423    pp->gid = p->gid();
1424    pp->egid = p->egid();
1425
1426    /* Find the first free PID that's less than the maximum */
1427    std::set<int> const& pids = p->system->PIDs;
1428    int temp_pid = *pids.begin();
1429    do {
1430        temp_pid++;
1431    } while (pids.find(temp_pid) != pids.end());
1432    if (temp_pid >= System::maxPID)
1433        fatal("temp_pid is too large: %d", temp_pid);
1434
1435    pp->pid = temp_pid;
1436    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1437    Process *cp = pp->create();
1438    delete pp;
1439
1440    Process *owner = ctc->getProcessPtr();
1441    ctc->setProcessPtr(cp);
1442    cp->assignThreadContext(ctc->contextId());
1443    owner->revokeThreadContext(ctc->contextId());
1444
1445    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1446        BufferArg ptidBuf(ptidPtr, sizeof(long));
1447        long *ptid = (long *)ptidBuf.bufferPtr();
1448        *ptid = cp->pid();
1449        ptidBuf.copyOut(tc->getMemProxy());
1450    }
1451
1452    cp->initState();
1453    p->clone(tc, ctc, cp, flags);
1454
1455    if (flags & OS::TGT_CLONE_THREAD) {
1456        delete cp->sigchld;
1457        cp->sigchld = p->sigchld;
1458    } else if (flags & OS::TGT_SIGCHLD) {
1459        *cp->sigchld = true;
1460    }
1461
1462    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1463        BufferArg ctidBuf(ctidPtr, sizeof(long));
1464        long *ctid = (long *)ctidBuf.bufferPtr();
1465        *ctid = cp->pid();
1466        ctidBuf.copyOut(ctc->getMemProxy());
1467    }
1468
1469    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1470        cp->childClearTID = (uint64_t)ctidPtr;
1471
1472    ctc->clearArchRegs();
1473
1474    OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1475
1476    cp->setSyscallReturn(ctc, 0);
1477
1478#if THE_ISA == ALPHA_ISA
1479    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1480#elif THE_ISA == SPARC_ISA
1481    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1482    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1483#endif
1484
1485    TheISA::PCState cpc = tc->pcState();
1486    cpc.advance();
1487    ctc->pcState(cpc);
1488    ctc->activate();
1489
1490    return cp->pid();
1491}
1492
1493/// Target fstatfs() handler.
1494template <class OS>
1495SyscallReturn
1496fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1497{
1498    int index = 0;
1499    int tgt_fd = p->getSyscallArg(tc, index);
1500    Addr bufPtr = p->getSyscallArg(tc, index);
1501
1502    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1503    if (!ffdp)
1504        return -EBADF;
1505    int sim_fd = ffdp->getSimFD();
1506
1507    struct statfs hostBuf;
1508    int result = fstatfs(sim_fd, &hostBuf);
1509
1510    if (result < 0)
1511        return -errno;
1512
1513    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1514
1515    return 0;
1516}
1517
1518
1519/// Target writev() handler.
1520template <class OS>
1521SyscallReturn
1522writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1523{
1524    int index = 0;
1525    int tgt_fd = p->getSyscallArg(tc, index);
1526
1527    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1528    if (!hbfdp)
1529        return -EBADF;
1530    int sim_fd = hbfdp->getSimFD();
1531
1532    SETranslatingPortProxy &prox = tc->getMemProxy();
1533    uint64_t tiov_base = p->getSyscallArg(tc, index);
1534    size_t count = p->getSyscallArg(tc, index);
1535    struct iovec hiov[count];
1536    for (size_t i = 0; i < count; ++i) {
1537        typename OS::tgt_iovec tiov;
1538
1539        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1540                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1541        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1542        hiov[i].iov_base = new char [hiov[i].iov_len];
1543        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1544                      hiov[i].iov_len);
1545    }
1546
1547    int result = writev(sim_fd, hiov, count);
1548
1549    for (size_t i = 0; i < count; ++i)
1550        delete [] (char *)hiov[i].iov_base;
1551
1552    if (result < 0)
1553        return -errno;
1554
1555    return result;
1556}
1557
1558/// Real mmap handler.
1559template <class OS>
1560SyscallReturn
1561mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1562         bool is_mmap2)
1563{
1564    int index = 0;
1565    Addr start = p->getSyscallArg(tc, index);
1566    uint64_t length = p->getSyscallArg(tc, index);
1567    int prot = p->getSyscallArg(tc, index);
1568    int tgt_flags = p->getSyscallArg(tc, index);
1569    int tgt_fd = p->getSyscallArg(tc, index);
1570    int offset = p->getSyscallArg(tc, index);
1571
1572    if (is_mmap2)
1573        offset *= TheISA::PageBytes;
1574
1575    if (start & (TheISA::PageBytes - 1) ||
1576        offset & (TheISA::PageBytes - 1) ||
1577        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1578         tgt_flags & OS::TGT_MAP_SHARED) ||
1579        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1580         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1581        !length) {
1582        return -EINVAL;
1583    }
1584
1585    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1586        // With shared mmaps, there are two cases to consider:
1587        // 1) anonymous: writes should modify the mapping and this should be
1588        // visible to observers who share the mapping. Currently, it's
1589        // difficult to update the shared mapping because there's no
1590        // structure which maintains information about the which virtual
1591        // memory areas are shared. If that structure existed, it would be
1592        // possible to make the translations point to the same frames.
1593        // 2) file-backed: writes should modify the mapping and the file
1594        // which is backed by the mapping. The shared mapping problem is the
1595        // same as what was mentioned about the anonymous mappings. For
1596        // file-backed mappings, the writes to the file are difficult
1597        // because it requires syncing what the mapping holds with the file
1598        // that resides on the host system. So, any write on a real system
1599        // would cause the change to be propagated to the file mapping at
1600        // some point in the future (the inode is tracked along with the
1601        // mapping). This isn't guaranteed to always happen, but it usually
1602        // works well enough. The guarantee is provided by the msync system
1603        // call. We could force the change through with shared mappings with
1604        // a call to msync, but that again would require more information
1605        // than we currently maintain.
1606        warn("mmap: writing to shared mmap region is currently "
1607             "unsupported. The write succeeds on the target, but it "
1608             "will not be propagated to the host or shared mappings");
1609    }
1610
1611    length = roundUp(length, TheISA::PageBytes);
1612
1613    int sim_fd = -1;
1614    uint8_t *pmap = nullptr;
1615    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1616        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1617
1618        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1619        if (dfdp) {
1620            EmulatedDriver *emul_driver = dfdp->getDriver();
1621            return emul_driver->mmap(p, tc, start, length, prot,
1622                                     tgt_flags, tgt_fd, offset);
1623        }
1624
1625        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1626        if (!ffdp)
1627            return -EBADF;
1628        sim_fd = ffdp->getSimFD();
1629
1630        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1631                                    sim_fd, offset);
1632
1633        if (pmap == (decltype(pmap))-1) {
1634            warn("mmap: failed to map file into host address space");
1635            return -errno;
1636        }
1637    }
1638
1639    // Extend global mmap region if necessary. Note that we ignore the
1640    // start address unless MAP_FIXED is specified.
1641    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1642        std::shared_ptr<MemState> mem_state = p->memState;
1643        Addr mmap_end = mem_state->getMmapEnd();
1644
1645        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1646        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1647
1648        mem_state->setMmapEnd(mmap_end);
1649    }
1650
1651    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1652                    start, start + length - 1);
1653
1654    // We only allow mappings to overwrite existing mappings if
1655    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1656    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1657    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1658    if (clobber) {
1659        for (auto tc : p->system->threadContexts) {
1660            // If we might be overwriting old mappings, we need to
1661            // invalidate potentially stale mappings out of the TLBs.
1662            tc->getDTBPtr()->flushAll();
1663            tc->getITBPtr()->flushAll();
1664        }
1665    }
1666
1667    // Allocate physical memory and map it in. If the page table is already
1668    // mapped and clobber is not set, the simulator will issue throw a
1669    // fatal and bail out of the simulation.
1670    p->allocateMem(start, length, clobber);
1671
1672    // Transfer content into target address space.
1673    SETranslatingPortProxy &tp = tc->getMemProxy();
1674    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1675        // In general, we should zero the mapped area for anonymous mappings,
1676        // with something like:
1677        //     tp.memsetBlob(start, 0, length);
1678        // However, given that we don't support sparse mappings, and
1679        // some applications can map a couple of gigabytes of space
1680        // (intending sparse usage), that can get painfully expensive.
1681        // Fortunately, since we don't properly implement munmap either,
1682        // there's no danger of remapping used memory, so for now all
1683        // newly mapped memory should already be zeroed so we can skip it.
1684    } else {
1685        // It is possible to mmap an area larger than a file, however
1686        // accessing unmapped portions the system triggers a "Bus error"
1687        // on the host. We must know when to stop copying the file from
1688        // the host into the target address space.
1689        struct stat file_stat;
1690        if (fstat(sim_fd, &file_stat) > 0)
1691            fatal("mmap: cannot stat file");
1692
1693        // Copy the portion of the file that is resident. This requires
1694        // checking both the mmap size and the filesize that we are
1695        // trying to mmap into this space; the mmap size also depends
1696        // on the specified offset into the file.
1697        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1698                                 length);
1699        tp.writeBlob(start, pmap, size);
1700
1701        // Cleanup the mmap region before exiting this function.
1702        munmap(pmap, length);
1703
1704        // Maintain the symbol table for dynamic executables.
1705        // The loader will call mmap to map the images into its address
1706        // space and we intercept that here. We can verify that we are
1707        // executing inside the loader by checking the program counter value.
1708        // XXX: with multiprogrammed workloads or multi-node configurations,
1709        // this will not work since there is a single global symbol table.
1710        ObjectFile *interpreter = p->getInterpreter();
1711        if (interpreter) {
1712            Addr text_start = interpreter->textBase();
1713            Addr text_end = text_start + interpreter->textSize();
1714
1715            Addr pc = tc->pcState().pc();
1716
1717            if (pc >= text_start && pc < text_end) {
1718                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1719                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1720                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1721
1722                if (lib) {
1723                    lib->loadAllSymbols(debugSymbolTable,
1724                                        lib->textBase(), start);
1725                }
1726            }
1727        }
1728
1729        // Note that we do not zero out the remainder of the mapping. This
1730        // is done by a real system, but it probably will not affect
1731        // execution (hopefully).
1732    }
1733
1734    return start;
1735}
1736
1737template <class OS>
1738SyscallReturn
1739pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1740{
1741    int index = 0;
1742    int tgt_fd = p->getSyscallArg(tc, index);
1743    Addr bufPtr = p->getSyscallArg(tc, index);
1744    int nbytes = p->getSyscallArg(tc, index);
1745    int offset = p->getSyscallArg(tc, index);
1746
1747    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1748    if (!ffdp)
1749        return -EBADF;
1750    int sim_fd = ffdp->getSimFD();
1751
1752    BufferArg bufArg(bufPtr, nbytes);
1753    bufArg.copyIn(tc->getMemProxy());
1754
1755    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1756
1757    return (bytes_written == -1) ? -errno : bytes_written;
1758}
1759
1760/// Target mmap() handler.
1761template <class OS>
1762SyscallReturn
1763mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1764{
1765    return mmapImpl<OS>(desc, num, p, tc, false);
1766}
1767
1768/// Target mmap2() handler.
1769template <class OS>
1770SyscallReturn
1771mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1772{
1773    return mmapImpl<OS>(desc, num, p, tc, true);
1774}
1775
1776/// Target getrlimit() handler.
1777template <class OS>
1778SyscallReturn
1779getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1780              ThreadContext *tc)
1781{
1782    int index = 0;
1783    unsigned resource = process->getSyscallArg(tc, index);
1784    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1785
1786    switch (resource) {
1787      case OS::TGT_RLIMIT_STACK:
1788        // max stack size in bytes: make up a number (8MB for now)
1789        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1790        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1791        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1792        break;
1793
1794      case OS::TGT_RLIMIT_DATA:
1795        // max data segment size in bytes: make up a number
1796        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1797        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1798        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1799        break;
1800
1801      default:
1802        warn("getrlimit: unimplemented resource %d", resource);
1803        return -EINVAL;
1804        break;
1805    }
1806
1807    rlp.copyOut(tc->getMemProxy());
1808    return 0;
1809}
1810
1811template <class OS>
1812SyscallReturn
1813prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1814            ThreadContext *tc)
1815{
1816    int index = 0;
1817    if (process->getSyscallArg(tc, index) != 0)
1818    {
1819        warn("prlimit: ignoring rlimits for nonzero pid");
1820        return -EPERM;
1821    }
1822    int resource = process->getSyscallArg(tc, index);
1823    Addr n = process->getSyscallArg(tc, index);
1824    if (n != 0)
1825        warn("prlimit: ignoring new rlimit");
1826    Addr o = process->getSyscallArg(tc, index);
1827    if (o != 0)
1828    {
1829        TypedBufferArg<typename OS::rlimit> rlp(o);
1830        switch (resource) {
1831          case OS::TGT_RLIMIT_STACK:
1832            // max stack size in bytes: make up a number (8MB for now)
1833            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1834            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1835            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1836            break;
1837          case OS::TGT_RLIMIT_DATA:
1838            // max data segment size in bytes: make up a number
1839            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1840            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1841            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1842            break;
1843          default:
1844            warn("prlimit: unimplemented resource %d", resource);
1845            return -EINVAL;
1846            break;
1847        }
1848        rlp.copyOut(tc->getMemProxy());
1849    }
1850    return 0;
1851}
1852
1853/// Target clock_gettime() function.
1854template <class OS>
1855SyscallReturn
1856clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1857{
1858    int index = 1;
1859    //int clk_id = p->getSyscallArg(tc, index);
1860    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1861
1862    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1863    tp->tv_sec += seconds_since_epoch;
1864    tp->tv_sec = TheISA::htog(tp->tv_sec);
1865    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1866
1867    tp.copyOut(tc->getMemProxy());
1868
1869    return 0;
1870}
1871
1872/// Target clock_getres() function.
1873template <class OS>
1874SyscallReturn
1875clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1876{
1877    int index = 1;
1878    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1879
1880    // Set resolution at ns, which is what clock_gettime() returns
1881    tp->tv_sec = 0;
1882    tp->tv_nsec = 1;
1883
1884    tp.copyOut(tc->getMemProxy());
1885
1886    return 0;
1887}
1888
1889/// Target gettimeofday() handler.
1890template <class OS>
1891SyscallReturn
1892gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1893                 ThreadContext *tc)
1894{
1895    int index = 0;
1896    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1897
1898    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1899    tp->tv_sec += seconds_since_epoch;
1900    tp->tv_sec = TheISA::htog(tp->tv_sec);
1901    tp->tv_usec = TheISA::htog(tp->tv_usec);
1902
1903    tp.copyOut(tc->getMemProxy());
1904
1905    return 0;
1906}
1907
1908
1909/// Target utimes() handler.
1910template <class OS>
1911SyscallReturn
1912utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1913           ThreadContext *tc)
1914{
1915    std::string path;
1916
1917    int index = 0;
1918    if (!tc->getMemProxy().tryReadString(path,
1919                process->getSyscallArg(tc, index))) {
1920        return -EFAULT;
1921    }
1922
1923    TypedBufferArg<typename OS::timeval [2]>
1924        tp(process->getSyscallArg(tc, index));
1925    tp.copyIn(tc->getMemProxy());
1926
1927    struct timeval hostTimeval[2];
1928    for (int i = 0; i < 2; ++i) {
1929        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1930        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1931    }
1932
1933    // Adjust path for current working directory
1934    path = process->fullPath(path);
1935
1936    int result = utimes(path.c_str(), hostTimeval);
1937
1938    if (result < 0)
1939        return -errno;
1940
1941    return 0;
1942}
1943
1944template <class OS>
1945SyscallReturn
1946execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1947{
1948    desc->setFlags(0);
1949
1950    int index = 0;
1951    std::string path;
1952    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1953    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1954        return -EFAULT;
1955
1956    if (access(path.c_str(), F_OK) == -1)
1957        return -EACCES;
1958
1959    auto read_in = [](std::vector<std::string> & vect,
1960                      SETranslatingPortProxy & mem_proxy,
1961                      Addr mem_loc)
1962    {
1963        for (int inc = 0; ; inc++) {
1964            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1965            b.copyIn(mem_proxy);
1966
1967            if (!*(Addr*)b.bufferPtr())
1968                break;
1969
1970            vect.push_back(std::string());
1971            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1972        }
1973    };
1974
1975    /**
1976     * Note that ProcessParams is generated by swig and there are no other
1977     * examples of how to create anything but this default constructor. The
1978     * fields are manually initialized instead of passing parameters to the
1979     * constructor.
1980     */
1981    ProcessParams *pp = new ProcessParams();
1982    pp->executable = path;
1983    Addr argv_mem_loc = p->getSyscallArg(tc, index);
1984    read_in(pp->cmd, mem_proxy, argv_mem_loc);
1985    Addr envp_mem_loc = p->getSyscallArg(tc, index);
1986    read_in(pp->env, mem_proxy, envp_mem_loc);
1987    pp->uid = p->uid();
1988    pp->egid = p->egid();
1989    pp->euid = p->euid();
1990    pp->gid = p->gid();
1991    pp->ppid = p->ppid();
1992    pp->pid = p->pid();
1993    pp->input.assign("cin");
1994    pp->output.assign("cout");
1995    pp->errout.assign("cerr");
1996    pp->cwd.assign(p->getcwd());
1997    pp->system = p->system;
1998    /**
1999     * Prevent process object creation with identical PIDs (which will trip
2000     * a fatal check in Process constructor). The execve call is supposed to
2001     * take over the currently executing process' identity but replace
2002     * whatever it is doing with a new process image. Instead of hijacking
2003     * the process object in the simulator, we create a new process object
2004     * and bind to the previous process' thread below (hijacking the thread).
2005     */
2006    p->system->PIDs.erase(p->pid());
2007    Process *new_p = pp->create();
2008    delete pp;
2009
2010    /**
2011     * Work through the file descriptor array and close any files marked
2012     * close-on-exec.
2013     */
2014    new_p->fds = p->fds;
2015    for (int i = 0; i < new_p->fds->getSize(); i++) {
2016        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2017        if (fdep && fdep->getCOE())
2018            new_p->fds->closeFDEntry(i);
2019    }
2020
2021    *new_p->sigchld = true;
2022
2023    delete p;
2024    tc->clearArchRegs();
2025    tc->setProcessPtr(new_p);
2026    new_p->assignThreadContext(tc->contextId());
2027    new_p->initState();
2028    tc->activate();
2029    TheISA::PCState pcState = tc->pcState();
2030    tc->setNPC(pcState.instAddr());
2031
2032    desc->setFlags(SyscallDesc::SuppressReturnValue);
2033    return 0;
2034}
2035
2036/// Target getrusage() function.
2037template <class OS>
2038SyscallReturn
2039getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2040              ThreadContext *tc)
2041{
2042    int index = 0;
2043    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2044    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2045
2046    rup->ru_utime.tv_sec = 0;
2047    rup->ru_utime.tv_usec = 0;
2048    rup->ru_stime.tv_sec = 0;
2049    rup->ru_stime.tv_usec = 0;
2050    rup->ru_maxrss = 0;
2051    rup->ru_ixrss = 0;
2052    rup->ru_idrss = 0;
2053    rup->ru_isrss = 0;
2054    rup->ru_minflt = 0;
2055    rup->ru_majflt = 0;
2056    rup->ru_nswap = 0;
2057    rup->ru_inblock = 0;
2058    rup->ru_oublock = 0;
2059    rup->ru_msgsnd = 0;
2060    rup->ru_msgrcv = 0;
2061    rup->ru_nsignals = 0;
2062    rup->ru_nvcsw = 0;
2063    rup->ru_nivcsw = 0;
2064
2065    switch (who) {
2066      case OS::TGT_RUSAGE_SELF:
2067        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2068        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2069        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2070        break;
2071
2072      case OS::TGT_RUSAGE_CHILDREN:
2073        // do nothing.  We have no child processes, so they take no time.
2074        break;
2075
2076      default:
2077        // don't really handle THREAD or CHILDREN, but just warn and
2078        // plow ahead
2079        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
2080             who);
2081    }
2082
2083    rup.copyOut(tc->getMemProxy());
2084
2085    return 0;
2086}
2087
2088/// Target times() function.
2089template <class OS>
2090SyscallReturn
2091timesFunc(SyscallDesc *desc, int callnum, Process *process,
2092          ThreadContext *tc)
2093{
2094    int index = 0;
2095    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2096
2097    // Fill in the time structure (in clocks)
2098    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2099    bufp->tms_utime = clocks;
2100    bufp->tms_stime = 0;
2101    bufp->tms_cutime = 0;
2102    bufp->tms_cstime = 0;
2103
2104    // Convert to host endianness
2105    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2106
2107    // Write back
2108    bufp.copyOut(tc->getMemProxy());
2109
2110    // Return clock ticks since system boot
2111    return clocks;
2112}
2113
2114/// Target time() function.
2115template <class OS>
2116SyscallReturn
2117timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2118{
2119    typename OS::time_t sec, usec;
2120    getElapsedTimeMicro(sec, usec);
2121    sec += seconds_since_epoch;
2122
2123    int index = 0;
2124    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2125    if (taddr != 0) {
2126        typename OS::time_t t = sec;
2127        t = TheISA::htog(t);
2128        SETranslatingPortProxy &p = tc->getMemProxy();
2129        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2130    }
2131    return sec;
2132}
2133
2134template <class OS>
2135SyscallReturn
2136tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2137{
2138    int index = 0;
2139    int tgid = process->getSyscallArg(tc, index);
2140    int tid = process->getSyscallArg(tc, index);
2141    int sig = process->getSyscallArg(tc, index);
2142
2143    /**
2144     * This system call is intended to allow killing a specific thread
2145     * within an arbitrary thread group if sanctioned with permission checks.
2146     * It's usually true that threads share the termination signal as pointed
2147     * out by the pthread_kill man page and this seems to be the intended
2148     * usage. Due to this being an emulated environment, assume the following:
2149     * Threads are allowed to call tgkill because the EUID for all threads
2150     * should be the same. There is no signal handling mechanism for kernel
2151     * registration of signal handlers since signals are poorly supported in
2152     * emulation mode. Since signal handlers cannot be registered, all
2153     * threads within in a thread group must share the termination signal.
2154     * We never exhaust PIDs so there's no chance of finding the wrong one
2155     * due to PID rollover.
2156     */
2157
2158    System *sys = tc->getSystemPtr();
2159    Process *tgt_proc = nullptr;
2160    for (int i = 0; i < sys->numContexts(); i++) {
2161        Process *temp = sys->threadContexts[i]->getProcessPtr();
2162        if (temp->pid() == tid) {
2163            tgt_proc = temp;
2164            break;
2165        }
2166    }
2167
2168    if (sig != 0 || sig != OS::TGT_SIGABRT)
2169        return -EINVAL;
2170
2171    if (tgt_proc == nullptr)
2172        return -ESRCH;
2173
2174    if (tgid != -1 && tgt_proc->tgid() != tgid)
2175        return -ESRCH;
2176
2177    if (sig == OS::TGT_SIGABRT)
2178        exitGroupFunc(desc, 252, process, tc);
2179
2180    return 0;
2181}
2182
2183template <class OS>
2184SyscallReturn
2185socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2186{
2187    int index = 0;
2188    int domain = p->getSyscallArg(tc, index);
2189    int type = p->getSyscallArg(tc, index);
2190    int prot = p->getSyscallArg(tc, index);
2191
2192    int sim_fd = socket(domain, type, prot);
2193    if (sim_fd == -1)
2194        return -errno;
2195
2196    auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2197    int tgt_fd = p->fds->allocFD(sfdp);
2198
2199    return tgt_fd;
2200}
2201
2202template <class OS>
2203SyscallReturn
2204socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2205{
2206    int index = 0;
2207    int domain = p->getSyscallArg(tc, index);
2208    int type = p->getSyscallArg(tc, index);
2209    int prot = p->getSyscallArg(tc, index);
2210    Addr svPtr = p->getSyscallArg(tc, index);
2211
2212    BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2213    int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2214    if (status == -1)
2215        return -errno;
2216
2217    int *fds = (int *)svBuf.bufferPtr();
2218
2219    auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2220    fds[0] = p->fds->allocFD(sfdp1);
2221    auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2222    fds[1] = p->fds->allocFD(sfdp2);
2223    svBuf.copyOut(tc->getMemProxy());
2224
2225    return status;
2226}
2227
2228template <class OS>
2229SyscallReturn
2230selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2231{
2232    int retval;
2233
2234    int index = 0;
2235    int nfds_t = p->getSyscallArg(tc, index);
2236    Addr fds_read_ptr = p->getSyscallArg(tc, index);
2237    Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2238    Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2239    Addr time_val_ptr = p->getSyscallArg(tc, index);
2240
2241    TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2242    TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2243    TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2244    TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2245
2246    /**
2247     * Host fields. Notice that these use the definitions from the system
2248     * headers instead of the gem5 headers and libraries. If the host and
2249     * target have different header file definitions, this will not work.
2250     */
2251    fd_set rd_h;
2252    FD_ZERO(&rd_h);
2253    fd_set wr_h;
2254    FD_ZERO(&wr_h);
2255    fd_set ex_h;
2256    FD_ZERO(&ex_h);
2257
2258    /**
2259     * Copy in the fd_set from the target.
2260     */
2261    if (fds_read_ptr)
2262        rd_t.copyIn(tc->getMemProxy());
2263    if (fds_writ_ptr)
2264        wr_t.copyIn(tc->getMemProxy());
2265    if (fds_excp_ptr)
2266        ex_t.copyIn(tc->getMemProxy());
2267
2268    /**
2269     * We need to translate the target file descriptor set into a host file
2270     * descriptor set. This involves both our internal process fd array
2271     * and the fd_set defined in Linux header files. The nfds field also
2272     * needs to be updated as it will be only target specific after
2273     * retrieving it from the target; the nfds value is expected to be the
2274     * highest file descriptor that needs to be checked, so we need to extend
2275     * it out for nfds_h when we do the update.
2276     */
2277    int nfds_h = 0;
2278    std::map<int, int> trans_map;
2279    auto try_add_host_set = [&](fd_set *tgt_set_entry,
2280                                fd_set *hst_set_entry,
2281                                int iter) -> bool
2282    {
2283        /**
2284         * By this point, we know that we are looking at a valid file
2285         * descriptor set on the target. We need to check if the target file
2286         * descriptor value passed in as iter is part of the set.
2287         */
2288        if (FD_ISSET(iter, tgt_set_entry)) {
2289            /**
2290             * We know that the target file descriptor belongs to the set,
2291             * but we do not yet know if the file descriptor is valid or
2292             * that we have a host mapping. Check that now.
2293             */
2294            auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2295            if (!hbfdp)
2296                return true;
2297            auto sim_fd = hbfdp->getSimFD();
2298
2299            /**
2300             * Add the sim_fd to tgt_fd translation into trans_map for use
2301             * later when we need to zero the target fd_set structures and
2302             * then update them with hits returned from the host select call.
2303             */
2304            trans_map[sim_fd] = iter;
2305
2306            /**
2307             * We know that the host file descriptor exists so now we check
2308             * if we need to update the max count for nfds_h before passing
2309             * the duplicated structure into the host.
2310             */
2311            nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2312
2313            /**
2314             * Add the host file descriptor to the set that we are going to
2315             * pass into the host.
2316             */
2317            FD_SET(sim_fd, hst_set_entry);
2318        }
2319        return false;
2320    };
2321
2322    for (int i = 0; i < nfds_t; i++) {
2323        if (fds_read_ptr) {
2324            bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2325            if (ebadf) return -EBADF;
2326        }
2327        if (fds_writ_ptr) {
2328            bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2329            if (ebadf) return -EBADF;
2330        }
2331        if (fds_excp_ptr) {
2332            bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2333            if (ebadf) return -EBADF;
2334        }
2335    }
2336
2337    if (time_val_ptr) {
2338        /**
2339         * It might be possible to decrement the timeval based on some
2340         * derivation of wall clock determined from elapsed simulator ticks
2341         * but that seems like overkill. Rather, we just set the timeval with
2342         * zero timeout. (There is no reason to block during the simulation
2343         * as it only decreases simulator performance.)
2344         */
2345        tp->tv_sec = 0;
2346        tp->tv_usec = 0;
2347
2348        retval = select(nfds_h,
2349                        fds_read_ptr ? &rd_h : nullptr,
2350                        fds_writ_ptr ? &wr_h : nullptr,
2351                        fds_excp_ptr ? &ex_h : nullptr,
2352                        (timeval*)&*tp);
2353    } else {
2354        /**
2355         * If the timeval pointer is null, setup a new timeval structure to
2356         * pass into the host select call. Unfortunately, we will need to
2357         * manually check the return value and throw a retry fault if the
2358         * return value is zero. Allowing the system call to block will
2359         * likely deadlock the event queue.
2360         */
2361        struct timeval tv = { 0, 0 };
2362
2363        retval = select(nfds_h,
2364                        fds_read_ptr ? &rd_h : nullptr,
2365                        fds_writ_ptr ? &wr_h : nullptr,
2366                        fds_excp_ptr ? &ex_h : nullptr,
2367                        &tv);
2368
2369        if (retval == 0) {
2370            /**
2371             * If blocking indefinitely, check the signal list to see if a
2372             * signal would break the poll out of the retry cycle and try to
2373             * return the signal interrupt instead.
2374             */
2375            for (auto sig : tc->getSystemPtr()->signalList)
2376                if (sig.receiver == p)
2377                    return -EINTR;
2378            return SyscallReturn::retry();
2379        }
2380    }
2381
2382    if (retval == -1)
2383        return -errno;
2384
2385    FD_ZERO((fd_set*)&*rd_t);
2386    FD_ZERO((fd_set*)&*wr_t);
2387    FD_ZERO((fd_set*)&*ex_t);
2388
2389    /**
2390     * We need to translate the host file descriptor set into a target file
2391     * descriptor set. This involves both our internal process fd array
2392     * and the fd_set defined in header files.
2393     */
2394    for (int i = 0; i < nfds_h; i++) {
2395        if (fds_read_ptr) {
2396            if (FD_ISSET(i, &rd_h))
2397                FD_SET(trans_map[i], (fd_set*)&*rd_t);
2398        }
2399
2400        if (fds_writ_ptr) {
2401            if (FD_ISSET(i, &wr_h))
2402                FD_SET(trans_map[i], (fd_set*)&*wr_t);
2403        }
2404
2405        if (fds_excp_ptr) {
2406            if (FD_ISSET(i, &ex_h))
2407                FD_SET(trans_map[i], (fd_set*)&*ex_t);
2408        }
2409    }
2410
2411    if (fds_read_ptr)
2412        rd_t.copyOut(tc->getMemProxy());
2413    if (fds_writ_ptr)
2414        wr_t.copyOut(tc->getMemProxy());
2415    if (fds_excp_ptr)
2416        ex_t.copyOut(tc->getMemProxy());
2417    if (time_val_ptr)
2418        tp.copyOut(tc->getMemProxy());
2419
2420    return retval;
2421}
2422
2423template <class OS>
2424SyscallReturn
2425readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2426{
2427    int index = 0;
2428    int tgt_fd = p->getSyscallArg(tc, index);
2429    Addr buf_ptr = p->getSyscallArg(tc, index);
2430    int nbytes = p->getSyscallArg(tc, index);
2431
2432    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2433    if (!hbfdp)
2434        return -EBADF;
2435    int sim_fd = hbfdp->getSimFD();
2436
2437    struct pollfd pfd;
2438    pfd.fd = sim_fd;
2439    pfd.events = POLLIN | POLLPRI;
2440    if ((poll(&pfd, 1, 0) == 0)
2441        && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2442        return SyscallReturn::retry();
2443
2444    BufferArg buf_arg(buf_ptr, nbytes);
2445    int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2446
2447    if (bytes_read > 0)
2448        buf_arg.copyOut(tc->getMemProxy());
2449
2450    return (bytes_read == -1) ? -errno : bytes_read;
2451}
2452
2453template <class OS>
2454SyscallReturn
2455writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2456{
2457    int index = 0;
2458    int tgt_fd = p->getSyscallArg(tc, index);
2459    Addr buf_ptr = p->getSyscallArg(tc, index);
2460    int nbytes = p->getSyscallArg(tc, index);
2461
2462    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2463    if (!hbfdp)
2464        return -EBADF;
2465    int sim_fd = hbfdp->getSimFD();
2466
2467    BufferArg buf_arg(buf_ptr, nbytes);
2468    buf_arg.copyIn(tc->getMemProxy());
2469
2470    struct pollfd pfd;
2471    pfd.fd = sim_fd;
2472    pfd.events = POLLOUT;
2473
2474    /**
2475     * We don't want to poll on /dev/random. The kernel will not enable the
2476     * file descriptor for writing unless the entropy in the system falls
2477     * below write_wakeup_threshold. This is not guaranteed to happen
2478     * depending on host settings.
2479     */
2480    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2481    if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2482        if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2483            return SyscallReturn::retry();
2484    }
2485
2486    int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2487
2488    if (bytes_written != -1)
2489        fsync(sim_fd);
2490
2491    return (bytes_written == -1) ? -errno : bytes_written;
2492}
2493
2494template <class OS>
2495SyscallReturn
2496wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2497{
2498    int index = 0;
2499    pid_t pid = p->getSyscallArg(tc, index);
2500    Addr statPtr = p->getSyscallArg(tc, index);
2501    int options = p->getSyscallArg(tc, index);
2502    Addr rusagePtr = p->getSyscallArg(tc, index);
2503
2504    if (rusagePtr)
2505        DPRINTFR(SyscallVerbose,
2506                 "%d: %s: syscall wait4: rusage pointer provided however "
2507                 "functionality not supported. Ignoring rusage pointer.\n",
2508                 curTick(), tc->getCpuPtr()->name());
2509
2510    /**
2511     * Currently, wait4 is only implemented so that it will wait for children
2512     * exit conditions which are denoted by a SIGCHLD signals posted into the
2513     * system signal list. We return no additional information via any of the
2514     * parameters supplied to wait4. If nothing is found in the system signal
2515     * list, we will wait indefinitely for SIGCHLD to post by retrying the
2516     * call.
2517     */
2518    System *sysh = tc->getSystemPtr();
2519    std::list<BasicSignal>::iterator iter;
2520    for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2521        if (iter->receiver == p) {
2522            if (pid < -1) {
2523                if ((iter->sender->pgid() == -pid)
2524                    && (iter->signalValue == OS::TGT_SIGCHLD))
2525                    goto success;
2526            } else if (pid == -1) {
2527                if (iter->signalValue == OS::TGT_SIGCHLD)
2528                    goto success;
2529            } else if (pid == 0) {
2530                if ((iter->sender->pgid() == p->pgid())
2531                    && (iter->signalValue == OS::TGT_SIGCHLD))
2532                    goto success;
2533            } else {
2534                if ((iter->sender->pid() == pid)
2535                    && (iter->signalValue == OS::TGT_SIGCHLD))
2536                    goto success;
2537            }
2538        }
2539    }
2540
2541    return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2542
2543success:
2544    // Set status to EXITED for WIFEXITED evaluations.
2545    const int EXITED = 0;
2546    BufferArg statusBuf(statPtr, sizeof(int));
2547    *(int *)statusBuf.bufferPtr() = EXITED;
2548    statusBuf.copyOut(tc->getMemProxy());
2549
2550    // Return the child PID.
2551    pid_t retval = iter->sender->pid();
2552    sysh->signalList.erase(iter);
2553    return retval;
2554}
2555
2556template <class OS>
2557SyscallReturn
2558acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2559{
2560    struct sockaddr sa;
2561    socklen_t addrLen;
2562    int host_fd;
2563    int index = 0;
2564    int tgt_fd = p->getSyscallArg(tc, index);
2565    Addr addrPtr = p->getSyscallArg(tc, index);
2566    Addr lenPtr = p->getSyscallArg(tc, index);
2567
2568    BufferArg *lenBufPtr = nullptr;
2569    BufferArg *addrBufPtr = nullptr;
2570
2571    auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2572    if (!sfdp)
2573        return -EBADF;
2574    int sim_fd = sfdp->getSimFD();
2575
2576    /**
2577     * We poll the socket file descriptor first to guarantee that we do not
2578     * block on our accept call. The socket can be opened without the
2579     * non-blocking flag (it blocks). This will cause deadlocks between
2580     * communicating processes.
2581     */
2582    struct pollfd pfd;
2583    pfd.fd = sim_fd;
2584    pfd.events = POLLIN | POLLPRI;
2585    if ((poll(&pfd, 1, 0) == 0)
2586        && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2587        return SyscallReturn::retry();
2588
2589    if (lenPtr) {
2590        lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2591        lenBufPtr->copyIn(tc->getMemProxy());
2592        memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2593               sizeof(socklen_t));
2594    }
2595
2596    if (addrPtr) {
2597        addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2598        addrBufPtr->copyIn(tc->getMemProxy());
2599        memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2600               sizeof(struct sockaddr));
2601    }
2602
2603    host_fd = accept(sim_fd, &sa, &addrLen);
2604
2605    if (host_fd == -1)
2606        return -errno;
2607
2608    if (addrPtr) {
2609        memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2610        addrBufPtr->copyOut(tc->getMemProxy());
2611        delete(addrBufPtr);
2612    }
2613
2614    if (lenPtr) {
2615        *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2616        lenBufPtr->copyOut(tc->getMemProxy());
2617        delete(lenBufPtr);
2618    }
2619
2620    auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2621                                                sfdp->_type, sfdp->_protocol);
2622    return p->fds->allocFD(afdp);
2623}
2624
2625#endif // __SIM_SYSCALL_EMUL_HH__
2626