syscall_emul.hh revision 12796
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/generic/tlb.hh"
97#include "arch/utility.hh"
98#include "base/intmath.hh"
99#include "base/loader/object_file.hh"
100#include "base/logging.hh"
101#include "base/trace.hh"
102#include "base/types.hh"
103#include "config/the_isa.hh"
104#include "cpu/base.hh"
105#include "cpu/thread_context.hh"
106#include "mem/page_table.hh"
107#include "params/Process.hh"
108#include "sim/emul_driver.hh"
109#include "sim/futex_map.hh"
110#include "sim/process.hh"
111#include "sim/syscall_debug_macros.hh"
112#include "sim/syscall_desc.hh"
113#include "sim/syscall_emul_buf.hh"
114#include "sim/syscall_return.hh"
115
116//////////////////////////////////////////////////////////////////////
117//
118// The following emulation functions are generic enough that they
119// don't need to be recompiled for different emulated OS's.  They are
120// defined in sim/syscall_emul.cc.
121//
122//////////////////////////////////////////////////////////////////////
123
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
127                                Process *p, ThreadContext *tc);
128
129/// Handler for unimplemented syscalls that we never intend to
130/// implement (signal handling, etc.) and should not affect the correct
131/// behavior of the program.  Print a warning only if the appropriate
132/// trace flag is enabled.  Return success to the target program.
133SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
134                         Process *p, ThreadContext *tc);
135
136// Target fallocateFunc() handler.
137SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
138                            Process *p, ThreadContext *tc);
139
140/// Target exit() handler: terminate current context.
141SyscallReturn exitFunc(SyscallDesc *desc, int num,
142                       Process *p, ThreadContext *tc);
143
144/// Target exit_group() handler: terminate simulation. (exit all threads)
145SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
146                       Process *p, ThreadContext *tc);
147
148/// Target set_tid_address() handler.
149SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
150                                Process *p, ThreadContext *tc);
151
152/// Target getpagesize() handler.
153SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
154                              Process *p, ThreadContext *tc);
155
156/// Target brk() handler: set brk address.
157SyscallReturn brkFunc(SyscallDesc *desc, int num,
158                      Process *p, ThreadContext *tc);
159
160/// Target close() handler.
161SyscallReturn closeFunc(SyscallDesc *desc, int num,
162                        Process *p, ThreadContext *tc);
163
164// Target read() handler.
165SyscallReturn readFunc(SyscallDesc *desc, int num,
166                       Process *p, ThreadContext *tc);
167
168/// Target write() handler.
169SyscallReturn writeFunc(SyscallDesc *desc, int num,
170                        Process *p, ThreadContext *tc);
171
172/// Target lseek() handler.
173SyscallReturn lseekFunc(SyscallDesc *desc, int num,
174                        Process *p, ThreadContext *tc);
175
176/// Target _llseek() handler.
177SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
178                          Process *p, ThreadContext *tc);
179
180/// Target munmap() handler.
181SyscallReturn munmapFunc(SyscallDesc *desc, int num,
182                         Process *p, ThreadContext *tc);
183
184/// Target gethostname() handler.
185SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
186                              Process *p, ThreadContext *tc);
187
188/// Target getcwd() handler.
189SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
190                         Process *p, ThreadContext *tc);
191
192/// Target readlink() handler.
193SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
194                           Process *p, ThreadContext *tc,
195                           int index = 0);
196SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
197                           Process *p, ThreadContext *tc);
198
199/// Target unlink() handler.
200SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
201                           Process *p, ThreadContext *tc,
202                           int index);
203SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
204                         Process *p, ThreadContext *tc);
205
206/// Target link() handler
207SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
208                       ThreadContext *tc);
209
210/// Target symlink() handler.
211SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
212                          ThreadContext *tc);
213
214/// Target mkdir() handler.
215SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
216                        Process *p, ThreadContext *tc);
217
218/// Target rename() handler.
219SyscallReturn renameFunc(SyscallDesc *desc, int num,
220                         Process *p, ThreadContext *tc);
221
222
223/// Target truncate() handler.
224SyscallReturn truncateFunc(SyscallDesc *desc, int num,
225                           Process *p, ThreadContext *tc);
226
227
228/// Target ftruncate() handler.
229SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
230                            Process *p, ThreadContext *tc);
231
232
233/// Target truncate64() handler.
234SyscallReturn truncate64Func(SyscallDesc *desc, int num,
235                             Process *p, ThreadContext *tc);
236
237/// Target ftruncate64() handler.
238SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
239                              Process *p, ThreadContext *tc);
240
241
242/// Target umask() handler.
243SyscallReturn umaskFunc(SyscallDesc *desc, int num,
244                        Process *p, ThreadContext *tc);
245
246/// Target gettid() handler.
247SyscallReturn gettidFunc(SyscallDesc *desc, int num,
248                         Process *p, ThreadContext *tc);
249
250/// Target chown() handler.
251SyscallReturn chownFunc(SyscallDesc *desc, int num,
252                        Process *p, ThreadContext *tc);
253
254/// Target setpgid() handler.
255SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
256                          Process *p, ThreadContext *tc);
257
258/// Target fchown() handler.
259SyscallReturn fchownFunc(SyscallDesc *desc, int num,
260                         Process *p, ThreadContext *tc);
261
262/// Target dup() handler.
263SyscallReturn dupFunc(SyscallDesc *desc, int num,
264                      Process *process, ThreadContext *tc);
265
266/// Target dup2() handler.
267SyscallReturn dup2Func(SyscallDesc *desc, int num,
268                       Process *process, ThreadContext *tc);
269
270/// Target fcntl() handler.
271SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
272                        Process *process, ThreadContext *tc);
273
274/// Target fcntl64() handler.
275SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
276                          Process *process, ThreadContext *tc);
277
278/// Target setuid() handler.
279SyscallReturn setuidFunc(SyscallDesc *desc, int num,
280                         Process *p, ThreadContext *tc);
281
282/// Target pipe() handler.
283SyscallReturn pipeFunc(SyscallDesc *desc, int num,
284                       Process *p, ThreadContext *tc);
285
286/// Internal pipe() handler.
287SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
288                       ThreadContext *tc, bool pseudoPipe);
289
290/// Target getpid() handler.
291SyscallReturn getpidFunc(SyscallDesc *desc, int num,
292                         Process *p, ThreadContext *tc);
293
294/// Target getuid() handler.
295SyscallReturn getuidFunc(SyscallDesc *desc, int num,
296                         Process *p, ThreadContext *tc);
297
298/// Target getgid() handler.
299SyscallReturn getgidFunc(SyscallDesc *desc, int num,
300                         Process *p, ThreadContext *tc);
301
302/// Target getppid() handler.
303SyscallReturn getppidFunc(SyscallDesc *desc, int num,
304                          Process *p, ThreadContext *tc);
305
306/// Target geteuid() handler.
307SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
308                          Process *p, ThreadContext *tc);
309
310/// Target getegid() handler.
311SyscallReturn getegidFunc(SyscallDesc *desc, int num,
312                          Process *p, ThreadContext *tc);
313
314/// Target access() handler
315SyscallReturn accessFunc(SyscallDesc *desc, int num,
316                         Process *p, ThreadContext *tc);
317SyscallReturn accessFunc(SyscallDesc *desc, int num,
318                         Process *p, ThreadContext *tc,
319                         int index);
320
321/// Futex system call
322/// Implemented by Daniel Sanchez
323/// Used by printf's in multi-threaded apps
324template <class OS>
325SyscallReturn
326futexFunc(SyscallDesc *desc, int callnum, Process *process,
327          ThreadContext *tc)
328{
329    using namespace std;
330
331    int index = 0;
332    Addr uaddr = process->getSyscallArg(tc, index);
333    int op = process->getSyscallArg(tc, index);
334    int val = process->getSyscallArg(tc, index);
335
336    /*
337     * Unsupported option that does not affect the correctness of the
338     * application. This is a performance optimization utilized by Linux.
339     */
340    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
341
342    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
343
344    if (OS::TGT_FUTEX_WAIT == op) {
345        // Ensure futex system call accessed atomically.
346        BufferArg buf(uaddr, sizeof(int));
347        buf.copyIn(tc->getMemProxy());
348        int mem_val = *(int*)buf.bufferPtr();
349
350        /*
351         * The value in memory at uaddr is not equal with the expected val
352         * (a different thread must have changed it before the system call was
353         * invoked). In this case, we need to throw an error.
354         */
355        if (val != mem_val)
356            return -OS::TGT_EWOULDBLOCK;
357
358        futex_map.suspend(uaddr, process->tgid(), tc);
359
360        return 0;
361    } else if (OS::TGT_FUTEX_WAKE == op) {
362        return futex_map.wakeup(uaddr, process->tgid(), val);
363    }
364
365    warn("futex: op %d not implemented; ignoring.", op);
366    return -ENOSYS;
367}
368
369
370/// Pseudo Funcs  - These functions use a different return convension,
371/// returning a second value in a register other than the normal return register
372SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
373                             Process *process, ThreadContext *tc);
374
375/// Target getpidPseudo() handler.
376SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
377                               Process *p, ThreadContext *tc);
378
379/// Target getuidPseudo() handler.
380SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
381                               Process *p, ThreadContext *tc);
382
383/// Target getgidPseudo() handler.
384SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
385                               Process *p, ThreadContext *tc);
386
387
388/// A readable name for 1,000,000, for converting microseconds to seconds.
389const int one_million = 1000000;
390/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
391const int one_billion = 1000000000;
392
393/// Approximate seconds since the epoch (1/1/1970).  About a billion,
394/// by my reckoning.  We want to keep this a constant (not use the
395/// real-world time) to keep simulations repeatable.
396const unsigned seconds_since_epoch = 1000000000;
397
398/// Helper function to convert current elapsed time to seconds and
399/// microseconds.
400template <class T1, class T2>
401void
402getElapsedTimeMicro(T1 &sec, T2 &usec)
403{
404    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
405    sec = elapsed_usecs / one_million;
406    usec = elapsed_usecs % one_million;
407}
408
409/// Helper function to convert current elapsed time to seconds and
410/// nanoseconds.
411template <class T1, class T2>
412void
413getElapsedTimeNano(T1 &sec, T2 &nsec)
414{
415    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
416    sec = elapsed_nsecs / one_billion;
417    nsec = elapsed_nsecs % one_billion;
418}
419
420//////////////////////////////////////////////////////////////////////
421//
422// The following emulation functions are generic, but need to be
423// templated to account for differences in types, constants, etc.
424//
425//////////////////////////////////////////////////////////////////////
426
427    typedef struct statfs hst_statfs;
428#if NO_STAT64
429    typedef struct stat hst_stat;
430    typedef struct stat hst_stat64;
431#else
432    typedef struct stat hst_stat;
433    typedef struct stat64 hst_stat64;
434#endif
435
436//// Helper function to convert a host stat buffer to a target stat
437//// buffer.  Also copies the target buffer out to the simulated
438//// memory space.  Used by stat(), fstat(), and lstat().
439
440template <typename target_stat, typename host_stat>
441void
442convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
443{
444    using namespace TheISA;
445
446    if (fakeTTY)
447        tgt->st_dev = 0xA;
448    else
449        tgt->st_dev = host->st_dev;
450    tgt->st_dev = TheISA::htog(tgt->st_dev);
451    tgt->st_ino = host->st_ino;
452    tgt->st_ino = TheISA::htog(tgt->st_ino);
453    tgt->st_mode = host->st_mode;
454    if (fakeTTY) {
455        // Claim to be a character device
456        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
457        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
458    }
459    tgt->st_mode = TheISA::htog(tgt->st_mode);
460    tgt->st_nlink = host->st_nlink;
461    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
462    tgt->st_uid = host->st_uid;
463    tgt->st_uid = TheISA::htog(tgt->st_uid);
464    tgt->st_gid = host->st_gid;
465    tgt->st_gid = TheISA::htog(tgt->st_gid);
466    if (fakeTTY)
467        tgt->st_rdev = 0x880d;
468    else
469        tgt->st_rdev = host->st_rdev;
470    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
471    tgt->st_size = host->st_size;
472    tgt->st_size = TheISA::htog(tgt->st_size);
473    tgt->st_atimeX = host->st_atime;
474    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
475    tgt->st_mtimeX = host->st_mtime;
476    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
477    tgt->st_ctimeX = host->st_ctime;
478    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
479    // Force the block size to be 8KB. This helps to ensure buffered io works
480    // consistently across different hosts.
481    tgt->st_blksize = 0x2000;
482    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
483    tgt->st_blocks = host->st_blocks;
484    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
485}
486
487// Same for stat64
488
489template <typename target_stat, typename host_stat64>
490void
491convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
492{
493    using namespace TheISA;
494
495    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
496#if defined(STAT_HAVE_NSEC)
497    tgt->st_atime_nsec = host->st_atime_nsec;
498    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
499    tgt->st_mtime_nsec = host->st_mtime_nsec;
500    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
501    tgt->st_ctime_nsec = host->st_ctime_nsec;
502    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
503#else
504    tgt->st_atime_nsec = 0;
505    tgt->st_mtime_nsec = 0;
506    tgt->st_ctime_nsec = 0;
507#endif
508}
509
510// Here are a couple of convenience functions
511template<class OS>
512void
513copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
514               hst_stat *host, bool fakeTTY = false)
515{
516    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
517    tgt_stat_buf tgt(addr);
518    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
519    tgt.copyOut(mem);
520}
521
522template<class OS>
523void
524copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
525                 hst_stat64 *host, bool fakeTTY = false)
526{
527    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
528    tgt_stat_buf tgt(addr);
529    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
530    tgt.copyOut(mem);
531}
532
533template <class OS>
534void
535copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
536                 hst_statfs *host)
537{
538    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
539
540    tgt->f_type = TheISA::htog(host->f_type);
541#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
542    tgt->f_bsize = TheISA::htog(host->f_iosize);
543#else
544    tgt->f_bsize = TheISA::htog(host->f_bsize);
545#endif
546    tgt->f_blocks = TheISA::htog(host->f_blocks);
547    tgt->f_bfree = TheISA::htog(host->f_bfree);
548    tgt->f_bavail = TheISA::htog(host->f_bavail);
549    tgt->f_files = TheISA::htog(host->f_files);
550    tgt->f_ffree = TheISA::htog(host->f_ffree);
551    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
552#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
553    tgt->f_namelen = TheISA::htog(host->f_namemax);
554    tgt->f_frsize = TheISA::htog(host->f_bsize);
555#elif defined(__APPLE__)
556    tgt->f_namelen = 0;
557    tgt->f_frsize = 0;
558#else
559    tgt->f_namelen = TheISA::htog(host->f_namelen);
560    tgt->f_frsize = TheISA::htog(host->f_frsize);
561#endif
562#if defined(__linux__)
563    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
564#else
565    /*
566     * The fields are different sizes per OS. Don't bother with
567     * f_spare or f_reserved on non-Linux for now.
568     */
569    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
570#endif
571
572    tgt.copyOut(mem);
573}
574
575/// Target ioctl() handler.  For the most part, programs call ioctl()
576/// only to find out if their stdout is a tty, to determine whether to
577/// do line or block buffering.  We always claim that output fds are
578/// not TTYs to provide repeatable results.
579template <class OS>
580SyscallReturn
581ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
582{
583    int index = 0;
584    int tgt_fd = p->getSyscallArg(tc, index);
585    unsigned req = p->getSyscallArg(tc, index);
586
587    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
588
589    if (OS::isTtyReq(req))
590        return -ENOTTY;
591
592    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
593    if (!dfdp)
594        return -EBADF;
595
596    /**
597     * If the driver is valid, issue the ioctl through it. Otherwise,
598     * there's an implicit assumption that the device is a TTY type and we
599     * return that we do not have a valid TTY.
600     */
601    EmulatedDriver *emul_driver = dfdp->getDriver();
602    if (emul_driver)
603        return emul_driver->ioctl(p, tc, req);
604
605    /**
606     * For lack of a better return code, return ENOTTY. Ideally, we should
607     * return something better here, but at least we issue the warning.
608     */
609    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
610         tgt_fd, req, tc->pcState());
611    return -ENOTTY;
612}
613
614template <class OS>
615SyscallReturn
616openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
617         bool isopenat)
618{
619    int index = 0;
620    int tgt_dirfd = -1;
621
622    /**
623     * If using the openat variant, read in the target directory file
624     * descriptor from the simulated process.
625     */
626    if (isopenat)
627        tgt_dirfd = p->getSyscallArg(tc, index);
628
629    /**
630     * Retrieve the simulated process' memory proxy and then read in the path
631     * string from that memory space into the host's working memory space.
632     */
633    std::string path;
634    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
635        return -EFAULT;
636
637#ifdef __CYGWIN32__
638    int host_flags = O_BINARY;
639#else
640    int host_flags = 0;
641#endif
642    /**
643     * Translate target flags into host flags. Flags exist which are not
644     * ported between architectures which can cause check failures.
645     */
646    int tgt_flags = p->getSyscallArg(tc, index);
647    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
648        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
649            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
650            host_flags |= OS::openFlagTable[i].hostFlag;
651        }
652    }
653    if (tgt_flags) {
654        warn("open%s: cannot decode flags 0x%x",
655             isopenat ? "at" : "", tgt_flags);
656    }
657#ifdef __CYGWIN32__
658    host_flags |= O_BINARY;
659#endif
660
661    int mode = p->getSyscallArg(tc, index);
662
663    /**
664     * If the simulated process called open or openat with AT_FDCWD specified,
665     * take the current working directory value which was passed into the
666     * process class as a Python parameter and append the current path to
667     * create a full path.
668     * Otherwise, openat with a valid target directory file descriptor has
669     * been called. If the path option, which was passed in as a parameter,
670     * is not absolute, retrieve the directory file descriptor's path and
671     * prepend it to the path passed in as a parameter.
672     * In every case, we should have a full path (which is relevant to the
673     * host) to work with after this block has been passed.
674     */
675    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
676        path = p->fullPath(path);
677    } else if (!startswith(path, "/")) {
678        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
679        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
680        if (!ffdp)
681            return -EBADF;
682        path.insert(0, ffdp->getFileName());
683    }
684
685    /**
686     * Since this is an emulated environment, we create pseudo file
687     * descriptors for device requests that have been registered with
688     * the process class through Python; this allows us to create a file
689     * descriptor for subsequent ioctl or mmap calls.
690     */
691    if (startswith(path, "/dev/")) {
692        std::string filename = path.substr(strlen("/dev/"));
693        EmulatedDriver *drv = p->findDriver(filename);
694        if (drv) {
695            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
696                            "driver open with path[%s]\n",
697                            isopenat ? "at" : "", path.c_str());
698            return drv->open(p, tc, mode, host_flags);
699        }
700        /**
701         * Fall through here for pass through to host devices, such
702         * as /dev/zero
703         */
704    }
705
706    /**
707     * Some special paths and files cannot be called on the host and need
708     * to be handled as special cases inside the simulator.
709     * If the full path that was created above does not match any of the
710     * special cases, pass it through to the open call on the host to let
711     * the host open the file on our behalf.
712     * If the host cannot open the file, return the host's error code back
713     * through the system call to the simulated process.
714     */
715    int sim_fd = -1;
716    std::vector<std::string> special_paths =
717            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
718    for (auto entry : special_paths) {
719        if (startswith(path, entry))
720            sim_fd = OS::openSpecialFile(path, p, tc);
721    }
722    if (sim_fd == -1) {
723        sim_fd = open(path.c_str(), host_flags, mode);
724    }
725    if (sim_fd == -1) {
726        int local = -errno;
727        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
728                        isopenat ? "at" : "", path.c_str());
729        return local;
730    }
731
732    /**
733     * The file was opened successfully and needs to be recorded in the
734     * process' file descriptor array so that it can be retrieved later.
735     * The target file descriptor that is chosen will be the lowest unused
736     * file descriptor.
737     * Return the indirect target file descriptor back to the simulated
738     * process to act as a handle for the opened file.
739     */
740    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
741    int tgt_fd = p->fds->allocFD(ffdp);
742    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
743                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
744    return tgt_fd;
745}
746
747/// Target open() handler.
748template <class OS>
749SyscallReturn
750openFunc(SyscallDesc *desc, int callnum, Process *process,
751         ThreadContext *tc)
752{
753    return openImpl<OS>(desc, callnum, process, tc, false);
754}
755
756/// Target openat() handler.
757template <class OS>
758SyscallReturn
759openatFunc(SyscallDesc *desc, int callnum, Process *process,
760           ThreadContext *tc)
761{
762    return openImpl<OS>(desc, callnum, process, tc, true);
763}
764
765/// Target unlinkat() handler.
766template <class OS>
767SyscallReturn
768unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
769             ThreadContext *tc)
770{
771    int index = 0;
772    int dirfd = process->getSyscallArg(tc, index);
773    if (dirfd != OS::TGT_AT_FDCWD)
774        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
775
776    return unlinkHelper(desc, callnum, process, tc, 1);
777}
778
779/// Target facessat() handler
780template <class OS>
781SyscallReturn
782faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
783              ThreadContext *tc)
784{
785    int index = 0;
786    int dirfd = process->getSyscallArg(tc, index);
787    if (dirfd != OS::TGT_AT_FDCWD)
788        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
789    return accessFunc(desc, callnum, process, tc, 1);
790}
791
792/// Target readlinkat() handler
793template <class OS>
794SyscallReturn
795readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
796               ThreadContext *tc)
797{
798    int index = 0;
799    int dirfd = process->getSyscallArg(tc, index);
800    if (dirfd != OS::TGT_AT_FDCWD)
801        warn("openat: first argument not AT_FDCWD; unlikely to work");
802    return readlinkFunc(desc, callnum, process, tc, 1);
803}
804
805/// Target renameat() handler.
806template <class OS>
807SyscallReturn
808renameatFunc(SyscallDesc *desc, int callnum, Process *process,
809             ThreadContext *tc)
810{
811    int index = 0;
812
813    int olddirfd = process->getSyscallArg(tc, index);
814    if (olddirfd != OS::TGT_AT_FDCWD)
815        warn("renameat: first argument not AT_FDCWD; unlikely to work");
816
817    std::string old_name;
818
819    if (!tc->getMemProxy().tryReadString(old_name,
820                                         process->getSyscallArg(tc, index)))
821        return -EFAULT;
822
823    int newdirfd = process->getSyscallArg(tc, index);
824    if (newdirfd != OS::TGT_AT_FDCWD)
825        warn("renameat: third argument not AT_FDCWD; unlikely to work");
826
827    std::string new_name;
828
829    if (!tc->getMemProxy().tryReadString(new_name,
830                                         process->getSyscallArg(tc, index)))
831        return -EFAULT;
832
833    // Adjust path for current working directory
834    old_name = process->fullPath(old_name);
835    new_name = process->fullPath(new_name);
836
837    int result = rename(old_name.c_str(), new_name.c_str());
838    return (result == -1) ? -errno : result;
839}
840
841/// Target sysinfo() handler.
842template <class OS>
843SyscallReturn
844sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
845            ThreadContext *tc)
846{
847
848    int index = 0;
849    TypedBufferArg<typename OS::tgt_sysinfo>
850        sysinfo(process->getSyscallArg(tc, index));
851
852    sysinfo->uptime = seconds_since_epoch;
853    sysinfo->totalram = process->system->memSize();
854    sysinfo->mem_unit = 1;
855
856    sysinfo.copyOut(tc->getMemProxy());
857
858    return 0;
859}
860
861/// Target chmod() handler.
862template <class OS>
863SyscallReturn
864chmodFunc(SyscallDesc *desc, int callnum, Process *process,
865          ThreadContext *tc)
866{
867    std::string path;
868
869    int index = 0;
870    if (!tc->getMemProxy().tryReadString(path,
871                process->getSyscallArg(tc, index))) {
872        return -EFAULT;
873    }
874
875    uint32_t mode = process->getSyscallArg(tc, index);
876    mode_t hostMode = 0;
877
878    // XXX translate mode flags via OS::something???
879    hostMode = mode;
880
881    // Adjust path for current working directory
882    path = process->fullPath(path);
883
884    // do the chmod
885    int result = chmod(path.c_str(), hostMode);
886    if (result < 0)
887        return -errno;
888
889    return 0;
890}
891
892
893/// Target fchmod() handler.
894template <class OS>
895SyscallReturn
896fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
897{
898    int index = 0;
899    int tgt_fd = p->getSyscallArg(tc, index);
900    uint32_t mode = p->getSyscallArg(tc, index);
901
902    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
903    if (!ffdp)
904        return -EBADF;
905    int sim_fd = ffdp->getSimFD();
906
907    mode_t hostMode = mode;
908
909    int result = fchmod(sim_fd, hostMode);
910
911    return (result < 0) ? -errno : 0;
912}
913
914/// Target mremap() handler.
915template <class OS>
916SyscallReturn
917mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
918{
919    int index = 0;
920    Addr start = process->getSyscallArg(tc, index);
921    uint64_t old_length = process->getSyscallArg(tc, index);
922    uint64_t new_length = process->getSyscallArg(tc, index);
923    uint64_t flags = process->getSyscallArg(tc, index);
924    uint64_t provided_address = 0;
925    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
926
927    if (use_provided_address)
928        provided_address = process->getSyscallArg(tc, index);
929
930    if ((start % TheISA::PageBytes != 0) ||
931        (provided_address % TheISA::PageBytes != 0)) {
932        warn("mremap failing: arguments not page aligned");
933        return -EINVAL;
934    }
935
936    new_length = roundUp(new_length, TheISA::PageBytes);
937
938    if (new_length > old_length) {
939        std::shared_ptr<MemState> mem_state = process->memState;
940        Addr mmap_end = mem_state->getMmapEnd();
941
942        if ((start + old_length) == mmap_end &&
943            (!use_provided_address || provided_address == start)) {
944            // This case cannot occur when growing downward, as
945            // start is greater than or equal to mmap_end.
946            uint64_t diff = new_length - old_length;
947            process->allocateMem(mmap_end, diff);
948            mem_state->setMmapEnd(mmap_end + diff);
949            return start;
950        } else {
951            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
952                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
953                return -ENOMEM;
954            } else {
955                uint64_t new_start = provided_address;
956                if (!use_provided_address) {
957                    new_start = process->mmapGrowsDown() ?
958                                mmap_end - new_length : mmap_end;
959                    mmap_end = process->mmapGrowsDown() ?
960                               new_start : mmap_end + new_length;
961                    mem_state->setMmapEnd(mmap_end);
962                }
963
964                process->pTable->remap(start, old_length, new_start);
965                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
966                     new_start, new_start + new_length,
967                     new_length - old_length);
968                // add on the remaining unallocated pages
969                process->allocateMem(new_start + old_length,
970                                     new_length - old_length,
971                                     use_provided_address /* clobber */);
972                if (use_provided_address &&
973                    ((new_start + new_length > mem_state->getMmapEnd() &&
974                      !process->mmapGrowsDown()) ||
975                    (new_start < mem_state->getMmapEnd() &&
976                      process->mmapGrowsDown()))) {
977                    // something fishy going on here, at least notify the user
978                    // @todo: increase mmap_end?
979                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
980                }
981                warn("returning %08p as start\n", new_start);
982                return new_start;
983            }
984        }
985    } else {
986        if (use_provided_address && provided_address != start)
987            process->pTable->remap(start, new_length, provided_address);
988        process->pTable->unmap(start + new_length, old_length - new_length);
989        return use_provided_address ? provided_address : start;
990    }
991}
992
993/// Target stat() handler.
994template <class OS>
995SyscallReturn
996statFunc(SyscallDesc *desc, int callnum, Process *process,
997         ThreadContext *tc)
998{
999    std::string path;
1000
1001    int index = 0;
1002    if (!tc->getMemProxy().tryReadString(path,
1003                process->getSyscallArg(tc, index))) {
1004        return -EFAULT;
1005    }
1006    Addr bufPtr = process->getSyscallArg(tc, index);
1007
1008    // Adjust path for current working directory
1009    path = process->fullPath(path);
1010
1011    struct stat hostBuf;
1012    int result = stat(path.c_str(), &hostBuf);
1013
1014    if (result < 0)
1015        return -errno;
1016
1017    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1018
1019    return 0;
1020}
1021
1022
1023/// Target stat64() handler.
1024template <class OS>
1025SyscallReturn
1026stat64Func(SyscallDesc *desc, int callnum, Process *process,
1027           ThreadContext *tc)
1028{
1029    std::string path;
1030
1031    int index = 0;
1032    if (!tc->getMemProxy().tryReadString(path,
1033                process->getSyscallArg(tc, index)))
1034        return -EFAULT;
1035    Addr bufPtr = process->getSyscallArg(tc, index);
1036
1037    // Adjust path for current working directory
1038    path = process->fullPath(path);
1039
1040#if NO_STAT64
1041    struct stat  hostBuf;
1042    int result = stat(path.c_str(), &hostBuf);
1043#else
1044    struct stat64 hostBuf;
1045    int result = stat64(path.c_str(), &hostBuf);
1046#endif
1047
1048    if (result < 0)
1049        return -errno;
1050
1051    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1052
1053    return 0;
1054}
1055
1056
1057/// Target fstatat64() handler.
1058template <class OS>
1059SyscallReturn
1060fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1061              ThreadContext *tc)
1062{
1063    int index = 0;
1064    int dirfd = process->getSyscallArg(tc, index);
1065    if (dirfd != OS::TGT_AT_FDCWD)
1066        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1067
1068    std::string path;
1069    if (!tc->getMemProxy().tryReadString(path,
1070                process->getSyscallArg(tc, index)))
1071        return -EFAULT;
1072    Addr bufPtr = process->getSyscallArg(tc, index);
1073
1074    // Adjust path for current working directory
1075    path = process->fullPath(path);
1076
1077#if NO_STAT64
1078    struct stat  hostBuf;
1079    int result = stat(path.c_str(), &hostBuf);
1080#else
1081    struct stat64 hostBuf;
1082    int result = stat64(path.c_str(), &hostBuf);
1083#endif
1084
1085    if (result < 0)
1086        return -errno;
1087
1088    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1089
1090    return 0;
1091}
1092
1093
1094/// Target fstat64() handler.
1095template <class OS>
1096SyscallReturn
1097fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1098{
1099    int index = 0;
1100    int tgt_fd = p->getSyscallArg(tc, index);
1101    Addr bufPtr = p->getSyscallArg(tc, index);
1102
1103    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1104    if (!ffdp)
1105        return -EBADF;
1106    int sim_fd = ffdp->getSimFD();
1107
1108#if NO_STAT64
1109    struct stat  hostBuf;
1110    int result = fstat(sim_fd, &hostBuf);
1111#else
1112    struct stat64  hostBuf;
1113    int result = fstat64(sim_fd, &hostBuf);
1114#endif
1115
1116    if (result < 0)
1117        return -errno;
1118
1119    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1120
1121    return 0;
1122}
1123
1124
1125/// Target lstat() handler.
1126template <class OS>
1127SyscallReturn
1128lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1129          ThreadContext *tc)
1130{
1131    std::string path;
1132
1133    int index = 0;
1134    if (!tc->getMemProxy().tryReadString(path,
1135                process->getSyscallArg(tc, index))) {
1136        return -EFAULT;
1137    }
1138    Addr bufPtr = process->getSyscallArg(tc, index);
1139
1140    // Adjust path for current working directory
1141    path = process->fullPath(path);
1142
1143    struct stat hostBuf;
1144    int result = lstat(path.c_str(), &hostBuf);
1145
1146    if (result < 0)
1147        return -errno;
1148
1149    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1150
1151    return 0;
1152}
1153
1154/// Target lstat64() handler.
1155template <class OS>
1156SyscallReturn
1157lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1158            ThreadContext *tc)
1159{
1160    std::string path;
1161
1162    int index = 0;
1163    if (!tc->getMemProxy().tryReadString(path,
1164                process->getSyscallArg(tc, index))) {
1165        return -EFAULT;
1166    }
1167    Addr bufPtr = process->getSyscallArg(tc, index);
1168
1169    // Adjust path for current working directory
1170    path = process->fullPath(path);
1171
1172#if NO_STAT64
1173    struct stat hostBuf;
1174    int result = lstat(path.c_str(), &hostBuf);
1175#else
1176    struct stat64 hostBuf;
1177    int result = lstat64(path.c_str(), &hostBuf);
1178#endif
1179
1180    if (result < 0)
1181        return -errno;
1182
1183    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1184
1185    return 0;
1186}
1187
1188/// Target fstat() handler.
1189template <class OS>
1190SyscallReturn
1191fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1192{
1193    int index = 0;
1194    int tgt_fd = p->getSyscallArg(tc, index);
1195    Addr bufPtr = p->getSyscallArg(tc, index);
1196
1197    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1198
1199    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1200    if (!ffdp)
1201        return -EBADF;
1202    int sim_fd = ffdp->getSimFD();
1203
1204    struct stat hostBuf;
1205    int result = fstat(sim_fd, &hostBuf);
1206
1207    if (result < 0)
1208        return -errno;
1209
1210    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1211
1212    return 0;
1213}
1214
1215
1216/// Target statfs() handler.
1217template <class OS>
1218SyscallReturn
1219statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1220           ThreadContext *tc)
1221{
1222#if NO_STATFS
1223    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1224#else
1225    std::string path;
1226
1227    int index = 0;
1228    if (!tc->getMemProxy().tryReadString(path,
1229                process->getSyscallArg(tc, index))) {
1230        return -EFAULT;
1231    }
1232    Addr bufPtr = process->getSyscallArg(tc, index);
1233
1234    // Adjust path for current working directory
1235    path = process->fullPath(path);
1236
1237    struct statfs hostBuf;
1238    int result = statfs(path.c_str(), &hostBuf);
1239
1240    if (result < 0)
1241        return -errno;
1242
1243    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1244#endif
1245    return 0;
1246}
1247
1248template <class OS>
1249SyscallReturn
1250cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1251{
1252    int index = 0;
1253
1254    TheISA::IntReg flags = p->getSyscallArg(tc, index);
1255    TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1256    Addr ptidPtr = p->getSyscallArg(tc, index);
1257
1258#if THE_ISA == RISCV_ISA
1259    /**
1260     * Linux kernel 4.15 sets CLONE_BACKWARDS flag for RISC-V.
1261     * The flag defines the list of clone() arguments in the following
1262     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1263     */
1264    Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1265    Addr ctidPtr = p->getSyscallArg(tc, index);
1266#else
1267    Addr ctidPtr = p->getSyscallArg(tc, index);
1268    Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1269#endif
1270
1271    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1272        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1273        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1274        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1275        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1276        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1277        return -EINVAL;
1278
1279    ThreadContext *ctc;
1280    if (!(ctc = p->findFreeContext()))
1281        fatal("clone: no spare thread context in system");
1282
1283    /**
1284     * Note that ProcessParams is generated by swig and there are no other
1285     * examples of how to create anything but this default constructor. The
1286     * fields are manually initialized instead of passing parameters to the
1287     * constructor.
1288     */
1289    ProcessParams *pp = new ProcessParams();
1290    pp->executable.assign(*(new std::string(p->progName())));
1291    pp->cmd.push_back(*(new std::string(p->progName())));
1292    pp->system = p->system;
1293    pp->cwd.assign(p->getcwd());
1294    pp->input.assign("stdin");
1295    pp->output.assign("stdout");
1296    pp->errout.assign("stderr");
1297    pp->uid = p->uid();
1298    pp->euid = p->euid();
1299    pp->gid = p->gid();
1300    pp->egid = p->egid();
1301
1302    /* Find the first free PID that's less than the maximum */
1303    std::set<int> const& pids = p->system->PIDs;
1304    int temp_pid = *pids.begin();
1305    do {
1306        temp_pid++;
1307    } while (pids.find(temp_pid) != pids.end());
1308    if (temp_pid >= System::maxPID)
1309        fatal("temp_pid is too large: %d", temp_pid);
1310
1311    pp->pid = temp_pid;
1312    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1313    Process *cp = pp->create();
1314    delete pp;
1315
1316    Process *owner = ctc->getProcessPtr();
1317    ctc->setProcessPtr(cp);
1318    cp->assignThreadContext(ctc->contextId());
1319    owner->revokeThreadContext(ctc->contextId());
1320
1321    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1322        BufferArg ptidBuf(ptidPtr, sizeof(long));
1323        long *ptid = (long *)ptidBuf.bufferPtr();
1324        *ptid = cp->pid();
1325        ptidBuf.copyOut(tc->getMemProxy());
1326    }
1327
1328    cp->initState();
1329    p->clone(tc, ctc, cp, flags);
1330
1331    if (flags & OS::TGT_CLONE_THREAD) {
1332        delete cp->sigchld;
1333        cp->sigchld = p->sigchld;
1334    } else if (flags & OS::TGT_SIGCHLD) {
1335        *cp->sigchld = true;
1336    }
1337
1338    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1339        BufferArg ctidBuf(ctidPtr, sizeof(long));
1340        long *ctid = (long *)ctidBuf.bufferPtr();
1341        *ctid = cp->pid();
1342        ctidBuf.copyOut(ctc->getMemProxy());
1343    }
1344
1345    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1346        cp->childClearTID = (uint64_t)ctidPtr;
1347
1348    ctc->clearArchRegs();
1349
1350#if THE_ISA == ALPHA_ISA
1351    TheISA::copyMiscRegs(tc, ctc);
1352#elif THE_ISA == SPARC_ISA
1353    TheISA::copyRegs(tc, ctc);
1354    ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1355    ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1356    ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1357    ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1358    ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1359    ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1360    ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1361    ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1362    for (int y = 8; y < 32; y++)
1363        ctc->setIntReg(y, tc->readIntReg(y));
1364#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA or THE_ISA == RISCV_ISA
1365    TheISA::copyRegs(tc, ctc);
1366#endif
1367
1368#if THE_ISA == X86_ISA
1369    if (flags & OS::TGT_CLONE_SETTLS) {
1370        ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1371        ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1372    }
1373#endif
1374
1375    if (newStack)
1376        ctc->setIntReg(TheISA::StackPointerReg, newStack);
1377
1378    cp->setSyscallReturn(ctc, 0);
1379
1380#if THE_ISA == ALPHA_ISA
1381    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1382#elif THE_ISA == SPARC_ISA
1383    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1384    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1385#endif
1386
1387    ctc->pcState(tc->nextInstAddr());
1388    ctc->activate();
1389
1390    return cp->pid();
1391}
1392
1393/// Target fstatfs() handler.
1394template <class OS>
1395SyscallReturn
1396fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1397{
1398    int index = 0;
1399    int tgt_fd = p->getSyscallArg(tc, index);
1400    Addr bufPtr = p->getSyscallArg(tc, index);
1401
1402    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1403    if (!ffdp)
1404        return -EBADF;
1405    int sim_fd = ffdp->getSimFD();
1406
1407    struct statfs hostBuf;
1408    int result = fstatfs(sim_fd, &hostBuf);
1409
1410    if (result < 0)
1411        return -errno;
1412
1413    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1414
1415    return 0;
1416}
1417
1418
1419/// Target writev() handler.
1420template <class OS>
1421SyscallReturn
1422writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1423{
1424    int index = 0;
1425    int tgt_fd = p->getSyscallArg(tc, index);
1426
1427    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1428    if (!hbfdp)
1429        return -EBADF;
1430    int sim_fd = hbfdp->getSimFD();
1431
1432    SETranslatingPortProxy &prox = tc->getMemProxy();
1433    uint64_t tiov_base = p->getSyscallArg(tc, index);
1434    size_t count = p->getSyscallArg(tc, index);
1435    struct iovec hiov[count];
1436    for (size_t i = 0; i < count; ++i) {
1437        typename OS::tgt_iovec tiov;
1438
1439        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1440                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1441        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1442        hiov[i].iov_base = new char [hiov[i].iov_len];
1443        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1444                      hiov[i].iov_len);
1445    }
1446
1447    int result = writev(sim_fd, hiov, count);
1448
1449    for (size_t i = 0; i < count; ++i)
1450        delete [] (char *)hiov[i].iov_base;
1451
1452    if (result < 0)
1453        return -errno;
1454
1455    return result;
1456}
1457
1458/// Real mmap handler.
1459template <class OS>
1460SyscallReturn
1461mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1462         bool is_mmap2)
1463{
1464    int index = 0;
1465    Addr start = p->getSyscallArg(tc, index);
1466    uint64_t length = p->getSyscallArg(tc, index);
1467    int prot = p->getSyscallArg(tc, index);
1468    int tgt_flags = p->getSyscallArg(tc, index);
1469    int tgt_fd = p->getSyscallArg(tc, index);
1470    int offset = p->getSyscallArg(tc, index);
1471
1472    if (is_mmap2)
1473        offset *= TheISA::PageBytes;
1474
1475    if (start & (TheISA::PageBytes - 1) ||
1476        offset & (TheISA::PageBytes - 1) ||
1477        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1478         tgt_flags & OS::TGT_MAP_SHARED) ||
1479        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1480         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1481        !length) {
1482        return -EINVAL;
1483    }
1484
1485    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1486        // With shared mmaps, there are two cases to consider:
1487        // 1) anonymous: writes should modify the mapping and this should be
1488        // visible to observers who share the mapping. Currently, it's
1489        // difficult to update the shared mapping because there's no
1490        // structure which maintains information about the which virtual
1491        // memory areas are shared. If that structure existed, it would be
1492        // possible to make the translations point to the same frames.
1493        // 2) file-backed: writes should modify the mapping and the file
1494        // which is backed by the mapping. The shared mapping problem is the
1495        // same as what was mentioned about the anonymous mappings. For
1496        // file-backed mappings, the writes to the file are difficult
1497        // because it requires syncing what the mapping holds with the file
1498        // that resides on the host system. So, any write on a real system
1499        // would cause the change to be propagated to the file mapping at
1500        // some point in the future (the inode is tracked along with the
1501        // mapping). This isn't guaranteed to always happen, but it usually
1502        // works well enough. The guarantee is provided by the msync system
1503        // call. We could force the change through with shared mappings with
1504        // a call to msync, but that again would require more information
1505        // than we currently maintain.
1506        warn("mmap: writing to shared mmap region is currently "
1507             "unsupported. The write succeeds on the target, but it "
1508             "will not be propagated to the host or shared mappings");
1509    }
1510
1511    length = roundUp(length, TheISA::PageBytes);
1512
1513    int sim_fd = -1;
1514    uint8_t *pmap = nullptr;
1515    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1516        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1517
1518        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1519        if (dfdp) {
1520            EmulatedDriver *emul_driver = dfdp->getDriver();
1521            return emul_driver->mmap(p, tc, start, length, prot,
1522                                     tgt_flags, tgt_fd, offset);
1523        }
1524
1525        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1526        if (!ffdp)
1527            return -EBADF;
1528        sim_fd = ffdp->getSimFD();
1529
1530        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1531                                    sim_fd, offset);
1532
1533        if (pmap == (decltype(pmap))-1) {
1534            warn("mmap: failed to map file into host address space");
1535            return -errno;
1536        }
1537    }
1538
1539    // Extend global mmap region if necessary. Note that we ignore the
1540    // start address unless MAP_FIXED is specified.
1541    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1542        std::shared_ptr<MemState> mem_state = p->memState;
1543        Addr mmap_end = mem_state->getMmapEnd();
1544
1545        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1546        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1547
1548        mem_state->setMmapEnd(mmap_end);
1549    }
1550
1551    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1552                    start, start + length - 1);
1553
1554    // We only allow mappings to overwrite existing mappings if
1555    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1556    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1557    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1558    if (clobber) {
1559        for (auto tc : p->system->threadContexts) {
1560            // If we might be overwriting old mappings, we need to
1561            // invalidate potentially stale mappings out of the TLBs.
1562            tc->getDTBPtr()->flushAll();
1563            tc->getITBPtr()->flushAll();
1564        }
1565    }
1566
1567    // Allocate physical memory and map it in. If the page table is already
1568    // mapped and clobber is not set, the simulator will issue throw a
1569    // fatal and bail out of the simulation.
1570    p->allocateMem(start, length, clobber);
1571
1572    // Transfer content into target address space.
1573    SETranslatingPortProxy &tp = tc->getMemProxy();
1574    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1575        // In general, we should zero the mapped area for anonymous mappings,
1576        // with something like:
1577        //     tp.memsetBlob(start, 0, length);
1578        // However, given that we don't support sparse mappings, and
1579        // some applications can map a couple of gigabytes of space
1580        // (intending sparse usage), that can get painfully expensive.
1581        // Fortunately, since we don't properly implement munmap either,
1582        // there's no danger of remapping used memory, so for now all
1583        // newly mapped memory should already be zeroed so we can skip it.
1584    } else {
1585        // It is possible to mmap an area larger than a file, however
1586        // accessing unmapped portions the system triggers a "Bus error"
1587        // on the host. We must know when to stop copying the file from
1588        // the host into the target address space.
1589        struct stat file_stat;
1590        if (fstat(sim_fd, &file_stat) > 0)
1591            fatal("mmap: cannot stat file");
1592
1593        // Copy the portion of the file that is resident. This requires
1594        // checking both the mmap size and the filesize that we are
1595        // trying to mmap into this space; the mmap size also depends
1596        // on the specified offset into the file.
1597        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1598                                 length);
1599        tp.writeBlob(start, pmap, size);
1600
1601        // Cleanup the mmap region before exiting this function.
1602        munmap(pmap, length);
1603
1604        // Maintain the symbol table for dynamic executables.
1605        // The loader will call mmap to map the images into its address
1606        // space and we intercept that here. We can verify that we are
1607        // executing inside the loader by checking the program counter value.
1608        // XXX: with multiprogrammed workloads or multi-node configurations,
1609        // this will not work since there is a single global symbol table.
1610        ObjectFile *interpreter = p->getInterpreter();
1611        if (interpreter) {
1612            Addr text_start = interpreter->textBase();
1613            Addr text_end = text_start + interpreter->textSize();
1614
1615            Addr pc = tc->pcState().pc();
1616
1617            if (pc >= text_start && pc < text_end) {
1618                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1619                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1620                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1621
1622                if (lib) {
1623                    lib->loadAllSymbols(debugSymbolTable,
1624                                        lib->textBase(), start);
1625                }
1626            }
1627        }
1628
1629        // Note that we do not zero out the remainder of the mapping. This
1630        // is done by a real system, but it probably will not affect
1631        // execution (hopefully).
1632    }
1633
1634    return start;
1635}
1636
1637template <class OS>
1638SyscallReturn
1639pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1640{
1641    int index = 0;
1642    int tgt_fd = p->getSyscallArg(tc, index);
1643    Addr bufPtr = p->getSyscallArg(tc, index);
1644    int nbytes = p->getSyscallArg(tc, index);
1645    int offset = p->getSyscallArg(tc, index);
1646
1647    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1648    if (!ffdp)
1649        return -EBADF;
1650    int sim_fd = ffdp->getSimFD();
1651
1652    BufferArg bufArg(bufPtr, nbytes);
1653    bufArg.copyIn(tc->getMemProxy());
1654
1655    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1656
1657    return (bytes_written == -1) ? -errno : bytes_written;
1658}
1659
1660/// Target mmap() handler.
1661template <class OS>
1662SyscallReturn
1663mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1664{
1665    return mmapImpl<OS>(desc, num, p, tc, false);
1666}
1667
1668/// Target mmap2() handler.
1669template <class OS>
1670SyscallReturn
1671mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1672{
1673    return mmapImpl<OS>(desc, num, p, tc, true);
1674}
1675
1676/// Target getrlimit() handler.
1677template <class OS>
1678SyscallReturn
1679getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1680              ThreadContext *tc)
1681{
1682    int index = 0;
1683    unsigned resource = process->getSyscallArg(tc, index);
1684    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1685
1686    switch (resource) {
1687      case OS::TGT_RLIMIT_STACK:
1688        // max stack size in bytes: make up a number (8MB for now)
1689        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1690        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1691        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1692        break;
1693
1694      case OS::TGT_RLIMIT_DATA:
1695        // max data segment size in bytes: make up a number
1696        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1697        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1698        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1699        break;
1700
1701      default:
1702        warn("getrlimit: unimplemented resource %d", resource);
1703        return -EINVAL;
1704        break;
1705    }
1706
1707    rlp.copyOut(tc->getMemProxy());
1708    return 0;
1709}
1710
1711template <class OS>
1712SyscallReturn
1713prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1714            ThreadContext *tc)
1715{
1716    int index = 0;
1717    if (process->getSyscallArg(tc, index) != 0)
1718    {
1719        warn("prlimit: ignoring rlimits for nonzero pid");
1720        return -EPERM;
1721    }
1722    int resource = process->getSyscallArg(tc, index);
1723    Addr n = process->getSyscallArg(tc, index);
1724    if (n != 0)
1725        warn("prlimit: ignoring new rlimit");
1726    Addr o = process->getSyscallArg(tc, index);
1727    if (o != 0)
1728    {
1729        TypedBufferArg<typename OS::rlimit> rlp(o);
1730        switch (resource) {
1731          case OS::TGT_RLIMIT_STACK:
1732            // max stack size in bytes: make up a number (8MB for now)
1733            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1734            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1735            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1736            break;
1737          case OS::TGT_RLIMIT_DATA:
1738            // max data segment size in bytes: make up a number
1739            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1740            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1741            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1742            break;
1743          default:
1744            warn("prlimit: unimplemented resource %d", resource);
1745            return -EINVAL;
1746            break;
1747        }
1748        rlp.copyOut(tc->getMemProxy());
1749    }
1750    return 0;
1751}
1752
1753/// Target clock_gettime() function.
1754template <class OS>
1755SyscallReturn
1756clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1757{
1758    int index = 1;
1759    //int clk_id = p->getSyscallArg(tc, index);
1760    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1761
1762    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1763    tp->tv_sec += seconds_since_epoch;
1764    tp->tv_sec = TheISA::htog(tp->tv_sec);
1765    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1766
1767    tp.copyOut(tc->getMemProxy());
1768
1769    return 0;
1770}
1771
1772/// Target clock_getres() function.
1773template <class OS>
1774SyscallReturn
1775clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1776{
1777    int index = 1;
1778    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1779
1780    // Set resolution at ns, which is what clock_gettime() returns
1781    tp->tv_sec = 0;
1782    tp->tv_nsec = 1;
1783
1784    tp.copyOut(tc->getMemProxy());
1785
1786    return 0;
1787}
1788
1789/// Target gettimeofday() handler.
1790template <class OS>
1791SyscallReturn
1792gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1793                 ThreadContext *tc)
1794{
1795    int index = 0;
1796    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1797
1798    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1799    tp->tv_sec += seconds_since_epoch;
1800    tp->tv_sec = TheISA::htog(tp->tv_sec);
1801    tp->tv_usec = TheISA::htog(tp->tv_usec);
1802
1803    tp.copyOut(tc->getMemProxy());
1804
1805    return 0;
1806}
1807
1808
1809/// Target utimes() handler.
1810template <class OS>
1811SyscallReturn
1812utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1813           ThreadContext *tc)
1814{
1815    std::string path;
1816
1817    int index = 0;
1818    if (!tc->getMemProxy().tryReadString(path,
1819                process->getSyscallArg(tc, index))) {
1820        return -EFAULT;
1821    }
1822
1823    TypedBufferArg<typename OS::timeval [2]>
1824        tp(process->getSyscallArg(tc, index));
1825    tp.copyIn(tc->getMemProxy());
1826
1827    struct timeval hostTimeval[2];
1828    for (int i = 0; i < 2; ++i) {
1829        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1830        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1831    }
1832
1833    // Adjust path for current working directory
1834    path = process->fullPath(path);
1835
1836    int result = utimes(path.c_str(), hostTimeval);
1837
1838    if (result < 0)
1839        return -errno;
1840
1841    return 0;
1842}
1843
1844template <class OS>
1845SyscallReturn
1846execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1847{
1848    desc->setFlags(0);
1849
1850    int index = 0;
1851    std::string path;
1852    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1853    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1854        return -EFAULT;
1855
1856    if (access(path.c_str(), F_OK) == -1)
1857        return -EACCES;
1858
1859    auto read_in = [](std::vector<std::string> & vect,
1860                      SETranslatingPortProxy & mem_proxy,
1861                      Addr mem_loc)
1862    {
1863        for (int inc = 0; ; inc++) {
1864            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1865            b.copyIn(mem_proxy);
1866
1867            if (!*(Addr*)b.bufferPtr())
1868                break;
1869
1870            vect.push_back(std::string());
1871            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1872        }
1873    };
1874
1875    /**
1876     * Note that ProcessParams is generated by swig and there are no other
1877     * examples of how to create anything but this default constructor. The
1878     * fields are manually initialized instead of passing parameters to the
1879     * constructor.
1880     */
1881    ProcessParams *pp = new ProcessParams();
1882    pp->executable = path;
1883    Addr argv_mem_loc = p->getSyscallArg(tc, index);
1884    read_in(pp->cmd, mem_proxy, argv_mem_loc);
1885    Addr envp_mem_loc = p->getSyscallArg(tc, index);
1886    read_in(pp->env, mem_proxy, envp_mem_loc);
1887    pp->uid = p->uid();
1888    pp->egid = p->egid();
1889    pp->euid = p->euid();
1890    pp->gid = p->gid();
1891    pp->ppid = p->ppid();
1892    pp->pid = p->pid();
1893    pp->input.assign("cin");
1894    pp->output.assign("cout");
1895    pp->errout.assign("cerr");
1896    pp->cwd.assign(p->getcwd());
1897    pp->system = p->system;
1898    /**
1899     * Prevent process object creation with identical PIDs (which will trip
1900     * a fatal check in Process constructor). The execve call is supposed to
1901     * take over the currently executing process' identity but replace
1902     * whatever it is doing with a new process image. Instead of hijacking
1903     * the process object in the simulator, we create a new process object
1904     * and bind to the previous process' thread below (hijacking the thread).
1905     */
1906    p->system->PIDs.erase(p->pid());
1907    Process *new_p = pp->create();
1908    delete pp;
1909
1910    /**
1911     * Work through the file descriptor array and close any files marked
1912     * close-on-exec.
1913     */
1914    new_p->fds = p->fds;
1915    for (int i = 0; i < new_p->fds->getSize(); i++) {
1916        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1917        if (fdep && fdep->getCOE())
1918            new_p->fds->closeFDEntry(i);
1919    }
1920
1921    *new_p->sigchld = true;
1922
1923    delete p;
1924    tc->clearArchRegs();
1925    tc->setProcessPtr(new_p);
1926    new_p->assignThreadContext(tc->contextId());
1927    new_p->initState();
1928    tc->activate();
1929    TheISA::PCState pcState = tc->pcState();
1930    tc->setNPC(pcState.instAddr());
1931
1932    desc->setFlags(SyscallDesc::SuppressReturnValue);
1933    return 0;
1934}
1935
1936/// Target getrusage() function.
1937template <class OS>
1938SyscallReturn
1939getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1940              ThreadContext *tc)
1941{
1942    int index = 0;
1943    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1944    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1945
1946    rup->ru_utime.tv_sec = 0;
1947    rup->ru_utime.tv_usec = 0;
1948    rup->ru_stime.tv_sec = 0;
1949    rup->ru_stime.tv_usec = 0;
1950    rup->ru_maxrss = 0;
1951    rup->ru_ixrss = 0;
1952    rup->ru_idrss = 0;
1953    rup->ru_isrss = 0;
1954    rup->ru_minflt = 0;
1955    rup->ru_majflt = 0;
1956    rup->ru_nswap = 0;
1957    rup->ru_inblock = 0;
1958    rup->ru_oublock = 0;
1959    rup->ru_msgsnd = 0;
1960    rup->ru_msgrcv = 0;
1961    rup->ru_nsignals = 0;
1962    rup->ru_nvcsw = 0;
1963    rup->ru_nivcsw = 0;
1964
1965    switch (who) {
1966      case OS::TGT_RUSAGE_SELF:
1967        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1968        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1969        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1970        break;
1971
1972      case OS::TGT_RUSAGE_CHILDREN:
1973        // do nothing.  We have no child processes, so they take no time.
1974        break;
1975
1976      default:
1977        // don't really handle THREAD or CHILDREN, but just warn and
1978        // plow ahead
1979        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
1980             who);
1981    }
1982
1983    rup.copyOut(tc->getMemProxy());
1984
1985    return 0;
1986}
1987
1988/// Target times() function.
1989template <class OS>
1990SyscallReturn
1991timesFunc(SyscallDesc *desc, int callnum, Process *process,
1992          ThreadContext *tc)
1993{
1994    int index = 0;
1995    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1996
1997    // Fill in the time structure (in clocks)
1998    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1999    bufp->tms_utime = clocks;
2000    bufp->tms_stime = 0;
2001    bufp->tms_cutime = 0;
2002    bufp->tms_cstime = 0;
2003
2004    // Convert to host endianness
2005    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2006
2007    // Write back
2008    bufp.copyOut(tc->getMemProxy());
2009
2010    // Return clock ticks since system boot
2011    return clocks;
2012}
2013
2014/// Target time() function.
2015template <class OS>
2016SyscallReturn
2017timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2018{
2019    typename OS::time_t sec, usec;
2020    getElapsedTimeMicro(sec, usec);
2021    sec += seconds_since_epoch;
2022
2023    int index = 0;
2024    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2025    if (taddr != 0) {
2026        typename OS::time_t t = sec;
2027        t = TheISA::htog(t);
2028        SETranslatingPortProxy &p = tc->getMemProxy();
2029        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2030    }
2031    return sec;
2032}
2033
2034template <class OS>
2035SyscallReturn
2036tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2037{
2038    int index = 0;
2039    int tgid = process->getSyscallArg(tc, index);
2040    int tid = process->getSyscallArg(tc, index);
2041    int sig = process->getSyscallArg(tc, index);
2042
2043    /**
2044     * This system call is intended to allow killing a specific thread
2045     * within an arbitrary thread group if sanctioned with permission checks.
2046     * It's usually true that threads share the termination signal as pointed
2047     * out by the pthread_kill man page and this seems to be the intended
2048     * usage. Due to this being an emulated environment, assume the following:
2049     * Threads are allowed to call tgkill because the EUID for all threads
2050     * should be the same. There is no signal handling mechanism for kernel
2051     * registration of signal handlers since signals are poorly supported in
2052     * emulation mode. Since signal handlers cannot be registered, all
2053     * threads within in a thread group must share the termination signal.
2054     * We never exhaust PIDs so there's no chance of finding the wrong one
2055     * due to PID rollover.
2056     */
2057
2058    System *sys = tc->getSystemPtr();
2059    Process *tgt_proc = nullptr;
2060    for (int i = 0; i < sys->numContexts(); i++) {
2061        Process *temp = sys->threadContexts[i]->getProcessPtr();
2062        if (temp->pid() == tid) {
2063            tgt_proc = temp;
2064            break;
2065        }
2066    }
2067
2068    if (sig != 0 || sig != OS::TGT_SIGABRT)
2069        return -EINVAL;
2070
2071    if (tgt_proc == nullptr)
2072        return -ESRCH;
2073
2074    if (tgid != -1 && tgt_proc->tgid() != tgid)
2075        return -ESRCH;
2076
2077    if (sig == OS::TGT_SIGABRT)
2078        exitGroupFunc(desc, 252, process, tc);
2079
2080    return 0;
2081}
2082
2083
2084#endif // __SIM_SYSCALL_EMUL_HH__
2085