syscall_emul.hh revision 12593:79d55cbe84aa
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/generic/tlb.hh"
97#include "arch/utility.hh"
98#include "base/intmath.hh"
99#include "base/loader/object_file.hh"
100#include "base/logging.hh"
101#include "base/trace.hh"
102#include "base/types.hh"
103#include "config/the_isa.hh"
104#include "cpu/base.hh"
105#include "cpu/thread_context.hh"
106#include "mem/page_table.hh"
107#include "params/Process.hh"
108#include "sim/emul_driver.hh"
109#include "sim/futex_map.hh"
110#include "sim/process.hh"
111#include "sim/syscall_debug_macros.hh"
112#include "sim/syscall_desc.hh"
113#include "sim/syscall_emul_buf.hh"
114#include "sim/syscall_return.hh"
115
116//////////////////////////////////////////////////////////////////////
117//
118// The following emulation functions are generic enough that they
119// don't need to be recompiled for different emulated OS's.  They are
120// defined in sim/syscall_emul.cc.
121//
122//////////////////////////////////////////////////////////////////////
123
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
127                                Process *p, ThreadContext *tc);
128
129/// Handler for unimplemented syscalls that we never intend to
130/// implement (signal handling, etc.) and should not affect the correct
131/// behavior of the program.  Print a warning only if the appropriate
132/// trace flag is enabled.  Return success to the target program.
133SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
134                         Process *p, ThreadContext *tc);
135
136// Target fallocateFunc() handler.
137SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
138                            Process *p, ThreadContext *tc);
139
140/// Target exit() handler: terminate current context.
141SyscallReturn exitFunc(SyscallDesc *desc, int num,
142                       Process *p, ThreadContext *tc);
143
144/// Target exit_group() handler: terminate simulation. (exit all threads)
145SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
146                       Process *p, ThreadContext *tc);
147
148/// Target set_tid_address() handler.
149SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
150                                Process *p, ThreadContext *tc);
151
152/// Target getpagesize() handler.
153SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
154                              Process *p, ThreadContext *tc);
155
156/// Target brk() handler: set brk address.
157SyscallReturn brkFunc(SyscallDesc *desc, int num,
158                      Process *p, ThreadContext *tc);
159
160/// Target close() handler.
161SyscallReturn closeFunc(SyscallDesc *desc, int num,
162                        Process *p, ThreadContext *tc);
163
164// Target read() handler.
165SyscallReturn readFunc(SyscallDesc *desc, int num,
166                       Process *p, ThreadContext *tc);
167
168/// Target write() handler.
169SyscallReturn writeFunc(SyscallDesc *desc, int num,
170                        Process *p, ThreadContext *tc);
171
172/// Target lseek() handler.
173SyscallReturn lseekFunc(SyscallDesc *desc, int num,
174                        Process *p, ThreadContext *tc);
175
176/// Target _llseek() handler.
177SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
178                          Process *p, ThreadContext *tc);
179
180/// Target munmap() handler.
181SyscallReturn munmapFunc(SyscallDesc *desc, int num,
182                         Process *p, ThreadContext *tc);
183
184/// Target gethostname() handler.
185SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
186                              Process *p, ThreadContext *tc);
187
188/// Target getcwd() handler.
189SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
190                         Process *p, ThreadContext *tc);
191
192/// Target readlink() handler.
193SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
194                           Process *p, ThreadContext *tc,
195                           int index = 0);
196SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
197                           Process *p, ThreadContext *tc);
198
199/// Target unlink() handler.
200SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
201                           Process *p, ThreadContext *tc,
202                           int index);
203SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
204                         Process *p, ThreadContext *tc);
205
206/// Target mkdir() handler.
207SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
208                        Process *p, ThreadContext *tc);
209
210/// Target rename() handler.
211SyscallReturn renameFunc(SyscallDesc *desc, int num,
212                         Process *p, ThreadContext *tc);
213
214
215/// Target truncate() handler.
216SyscallReturn truncateFunc(SyscallDesc *desc, int num,
217                           Process *p, ThreadContext *tc);
218
219
220/// Target ftruncate() handler.
221SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
222                            Process *p, ThreadContext *tc);
223
224
225/// Target truncate64() handler.
226SyscallReturn truncate64Func(SyscallDesc *desc, int num,
227                             Process *p, ThreadContext *tc);
228
229/// Target ftruncate64() handler.
230SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
231                              Process *p, ThreadContext *tc);
232
233
234/// Target umask() handler.
235SyscallReturn umaskFunc(SyscallDesc *desc, int num,
236                        Process *p, ThreadContext *tc);
237
238/// Target gettid() handler.
239SyscallReturn gettidFunc(SyscallDesc *desc, int num,
240                         Process *p, ThreadContext *tc);
241
242/// Target chown() handler.
243SyscallReturn chownFunc(SyscallDesc *desc, int num,
244                        Process *p, ThreadContext *tc);
245
246/// Target setpgid() handler.
247SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
248                          Process *p, ThreadContext *tc);
249
250/// Target fchown() handler.
251SyscallReturn fchownFunc(SyscallDesc *desc, int num,
252                         Process *p, ThreadContext *tc);
253
254/// Target dup() handler.
255SyscallReturn dupFunc(SyscallDesc *desc, int num,
256                      Process *process, ThreadContext *tc);
257
258/// Target dup2() handler.
259SyscallReturn dup2Func(SyscallDesc *desc, int num,
260                       Process *process, ThreadContext *tc);
261
262/// Target fcntl() handler.
263SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
264                        Process *process, ThreadContext *tc);
265
266/// Target fcntl64() handler.
267SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
268                          Process *process, ThreadContext *tc);
269
270/// Target setuid() handler.
271SyscallReturn setuidFunc(SyscallDesc *desc, int num,
272                         Process *p, ThreadContext *tc);
273
274/// Target pipe() handler.
275SyscallReturn pipeFunc(SyscallDesc *desc, int num,
276                       Process *p, ThreadContext *tc);
277
278/// Internal pipe() handler.
279SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
280                       ThreadContext *tc, bool pseudoPipe);
281
282/// Target getpid() handler.
283SyscallReturn getpidFunc(SyscallDesc *desc, int num,
284                         Process *p, ThreadContext *tc);
285
286/// Target getuid() handler.
287SyscallReturn getuidFunc(SyscallDesc *desc, int num,
288                         Process *p, ThreadContext *tc);
289
290/// Target getgid() handler.
291SyscallReturn getgidFunc(SyscallDesc *desc, int num,
292                         Process *p, ThreadContext *tc);
293
294/// Target getppid() handler.
295SyscallReturn getppidFunc(SyscallDesc *desc, int num,
296                          Process *p, ThreadContext *tc);
297
298/// Target geteuid() handler.
299SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
300                          Process *p, ThreadContext *tc);
301
302/// Target getegid() handler.
303SyscallReturn getegidFunc(SyscallDesc *desc, int num,
304                          Process *p, ThreadContext *tc);
305
306/// Target access() handler
307SyscallReturn accessFunc(SyscallDesc *desc, int num,
308                         Process *p, ThreadContext *tc);
309SyscallReturn accessFunc(SyscallDesc *desc, int num,
310                         Process *p, ThreadContext *tc,
311                         int index);
312
313/// Futex system call
314/// Implemented by Daniel Sanchez
315/// Used by printf's in multi-threaded apps
316template <class OS>
317SyscallReturn
318futexFunc(SyscallDesc *desc, int callnum, Process *process,
319          ThreadContext *tc)
320{
321    using namespace std;
322
323    int index = 0;
324    Addr uaddr = process->getSyscallArg(tc, index);
325    int op = process->getSyscallArg(tc, index);
326    int val = process->getSyscallArg(tc, index);
327
328    /*
329     * Unsupported option that does not affect the correctness of the
330     * application. This is a performance optimization utilized by Linux.
331     */
332    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
333
334    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
335
336    if (OS::TGT_FUTEX_WAIT == op) {
337        // Ensure futex system call accessed atomically.
338        BufferArg buf(uaddr, sizeof(int));
339        buf.copyIn(tc->getMemProxy());
340        int mem_val = *(int*)buf.bufferPtr();
341
342        /*
343         * The value in memory at uaddr is not equal with the expected val
344         * (a different thread must have changed it before the system call was
345         * invoked). In this case, we need to throw an error.
346         */
347        if (val != mem_val)
348            return -OS::TGT_EWOULDBLOCK;
349
350        futex_map.suspend(uaddr, process->tgid(), tc);
351
352        return 0;
353    } else if (OS::TGT_FUTEX_WAKE == op) {
354        return futex_map.wakeup(uaddr, process->tgid(), val);
355    }
356
357    warn("futex: op %d not implemented; ignoring.", op);
358    return -ENOSYS;
359}
360
361
362/// Pseudo Funcs  - These functions use a different return convension,
363/// returning a second value in a register other than the normal return register
364SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
365                             Process *process, ThreadContext *tc);
366
367/// Target getpidPseudo() handler.
368SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
369                               Process *p, ThreadContext *tc);
370
371/// Target getuidPseudo() handler.
372SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
373                               Process *p, ThreadContext *tc);
374
375/// Target getgidPseudo() handler.
376SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
377                               Process *p, ThreadContext *tc);
378
379
380/// A readable name for 1,000,000, for converting microseconds to seconds.
381const int one_million = 1000000;
382/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
383const int one_billion = 1000000000;
384
385/// Approximate seconds since the epoch (1/1/1970).  About a billion,
386/// by my reckoning.  We want to keep this a constant (not use the
387/// real-world time) to keep simulations repeatable.
388const unsigned seconds_since_epoch = 1000000000;
389
390/// Helper function to convert current elapsed time to seconds and
391/// microseconds.
392template <class T1, class T2>
393void
394getElapsedTimeMicro(T1 &sec, T2 &usec)
395{
396    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
397    sec = elapsed_usecs / one_million;
398    usec = elapsed_usecs % one_million;
399}
400
401/// Helper function to convert current elapsed time to seconds and
402/// nanoseconds.
403template <class T1, class T2>
404void
405getElapsedTimeNano(T1 &sec, T2 &nsec)
406{
407    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
408    sec = elapsed_nsecs / one_billion;
409    nsec = elapsed_nsecs % one_billion;
410}
411
412//////////////////////////////////////////////////////////////////////
413//
414// The following emulation functions are generic, but need to be
415// templated to account for differences in types, constants, etc.
416//
417//////////////////////////////////////////////////////////////////////
418
419    typedef struct statfs hst_statfs;
420#if NO_STAT64
421    typedef struct stat hst_stat;
422    typedef struct stat hst_stat64;
423#else
424    typedef struct stat hst_stat;
425    typedef struct stat64 hst_stat64;
426#endif
427
428//// Helper function to convert a host stat buffer to a target stat
429//// buffer.  Also copies the target buffer out to the simulated
430//// memory space.  Used by stat(), fstat(), and lstat().
431
432template <typename target_stat, typename host_stat>
433void
434convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
435{
436    using namespace TheISA;
437
438    if (fakeTTY)
439        tgt->st_dev = 0xA;
440    else
441        tgt->st_dev = host->st_dev;
442    tgt->st_dev = TheISA::htog(tgt->st_dev);
443    tgt->st_ino = host->st_ino;
444    tgt->st_ino = TheISA::htog(tgt->st_ino);
445    tgt->st_mode = host->st_mode;
446    if (fakeTTY) {
447        // Claim to be a character device
448        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
449        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
450    }
451    tgt->st_mode = TheISA::htog(tgt->st_mode);
452    tgt->st_nlink = host->st_nlink;
453    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
454    tgt->st_uid = host->st_uid;
455    tgt->st_uid = TheISA::htog(tgt->st_uid);
456    tgt->st_gid = host->st_gid;
457    tgt->st_gid = TheISA::htog(tgt->st_gid);
458    if (fakeTTY)
459        tgt->st_rdev = 0x880d;
460    else
461        tgt->st_rdev = host->st_rdev;
462    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
463    tgt->st_size = host->st_size;
464    tgt->st_size = TheISA::htog(tgt->st_size);
465    tgt->st_atimeX = host->st_atime;
466    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
467    tgt->st_mtimeX = host->st_mtime;
468    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
469    tgt->st_ctimeX = host->st_ctime;
470    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
471    // Force the block size to be 8KB. This helps to ensure buffered io works
472    // consistently across different hosts.
473    tgt->st_blksize = 0x2000;
474    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
475    tgt->st_blocks = host->st_blocks;
476    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
477}
478
479// Same for stat64
480
481template <typename target_stat, typename host_stat64>
482void
483convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
484{
485    using namespace TheISA;
486
487    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
488#if defined(STAT_HAVE_NSEC)
489    tgt->st_atime_nsec = host->st_atime_nsec;
490    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
491    tgt->st_mtime_nsec = host->st_mtime_nsec;
492    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
493    tgt->st_ctime_nsec = host->st_ctime_nsec;
494    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
495#else
496    tgt->st_atime_nsec = 0;
497    tgt->st_mtime_nsec = 0;
498    tgt->st_ctime_nsec = 0;
499#endif
500}
501
502// Here are a couple of convenience functions
503template<class OS>
504void
505copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
506               hst_stat *host, bool fakeTTY = false)
507{
508    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
509    tgt_stat_buf tgt(addr);
510    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
511    tgt.copyOut(mem);
512}
513
514template<class OS>
515void
516copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
517                 hst_stat64 *host, bool fakeTTY = false)
518{
519    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
520    tgt_stat_buf tgt(addr);
521    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
522    tgt.copyOut(mem);
523}
524
525template <class OS>
526void
527copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
528                 hst_statfs *host)
529{
530    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
531
532    tgt->f_type = TheISA::htog(host->f_type);
533#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
534    tgt->f_bsize = TheISA::htog(host->f_iosize);
535#else
536    tgt->f_bsize = TheISA::htog(host->f_bsize);
537#endif
538    tgt->f_blocks = TheISA::htog(host->f_blocks);
539    tgt->f_bfree = TheISA::htog(host->f_bfree);
540    tgt->f_bavail = TheISA::htog(host->f_bavail);
541    tgt->f_files = TheISA::htog(host->f_files);
542    tgt->f_ffree = TheISA::htog(host->f_ffree);
543    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
544#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
545    tgt->f_namelen = TheISA::htog(host->f_namemax);
546    tgt->f_frsize = TheISA::htog(host->f_bsize);
547#elif defined(__APPLE__)
548    tgt->f_namelen = 0;
549    tgt->f_frsize = 0;
550#else
551    tgt->f_namelen = TheISA::htog(host->f_namelen);
552    tgt->f_frsize = TheISA::htog(host->f_frsize);
553#endif
554#if defined(__linux__)
555    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
556#else
557    /*
558     * The fields are different sizes per OS. Don't bother with
559     * f_spare or f_reserved on non-Linux for now.
560     */
561    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
562#endif
563
564    tgt.copyOut(mem);
565}
566
567/// Target ioctl() handler.  For the most part, programs call ioctl()
568/// only to find out if their stdout is a tty, to determine whether to
569/// do line or block buffering.  We always claim that output fds are
570/// not TTYs to provide repeatable results.
571template <class OS>
572SyscallReturn
573ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
574{
575    int index = 0;
576    int tgt_fd = p->getSyscallArg(tc, index);
577    unsigned req = p->getSyscallArg(tc, index);
578
579    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
580
581    if (OS::isTtyReq(req))
582        return -ENOTTY;
583
584    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
585    if (!dfdp)
586        return -EBADF;
587
588    /**
589     * If the driver is valid, issue the ioctl through it. Otherwise,
590     * there's an implicit assumption that the device is a TTY type and we
591     * return that we do not have a valid TTY.
592     */
593    EmulatedDriver *emul_driver = dfdp->getDriver();
594    if (emul_driver)
595        return emul_driver->ioctl(p, tc, req);
596
597    /**
598     * For lack of a better return code, return ENOTTY. Ideally, we should
599     * return something better here, but at least we issue the warning.
600     */
601    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
602         tgt_fd, req, tc->pcState());
603    return -ENOTTY;
604}
605
606template <class OS>
607SyscallReturn
608openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
609         bool isopenat)
610{
611    int index = 0;
612    int tgt_dirfd = -1;
613
614    /**
615     * If using the openat variant, read in the target directory file
616     * descriptor from the simulated process.
617     */
618    if (isopenat)
619        tgt_dirfd = p->getSyscallArg(tc, index);
620
621    /**
622     * Retrieve the simulated process' memory proxy and then read in the path
623     * string from that memory space into the host's working memory space.
624     */
625    std::string path;
626    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
627        return -EFAULT;
628
629#ifdef __CYGWIN32__
630    int host_flags = O_BINARY;
631#else
632    int host_flags = 0;
633#endif
634    /**
635     * Translate target flags into host flags. Flags exist which are not
636     * ported between architectures which can cause check failures.
637     */
638    int tgt_flags = p->getSyscallArg(tc, index);
639    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
640        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
641            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
642            host_flags |= OS::openFlagTable[i].hostFlag;
643        }
644    }
645    if (tgt_flags) {
646        warn("open%s: cannot decode flags 0x%x",
647             isopenat ? "at" : "", tgt_flags);
648    }
649#ifdef __CYGWIN32__
650    host_flags |= O_BINARY;
651#endif
652
653    int mode = p->getSyscallArg(tc, index);
654
655    /**
656     * If the simulated process called open or openat with AT_FDCWD specified,
657     * take the current working directory value which was passed into the
658     * process class as a Python parameter and append the current path to
659     * create a full path.
660     * Otherwise, openat with a valid target directory file descriptor has
661     * been called. If the path option, which was passed in as a parameter,
662     * is not absolute, retrieve the directory file descriptor's path and
663     * prepend it to the path passed in as a parameter.
664     * In every case, we should have a full path (which is relevant to the
665     * host) to work with after this block has been passed.
666     */
667    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
668        path = p->fullPath(path);
669    } else if (!startswith(path, "/")) {
670        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
671        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
672        if (!ffdp)
673            return -EBADF;
674        path.insert(0, ffdp->getFileName());
675    }
676
677    /**
678     * Since this is an emulated environment, we create pseudo file
679     * descriptors for device requests that have been registered with
680     * the process class through Python; this allows us to create a file
681     * descriptor for subsequent ioctl or mmap calls.
682     */
683    if (startswith(path, "/dev/")) {
684        std::string filename = path.substr(strlen("/dev/"));
685        EmulatedDriver *drv = p->findDriver(filename);
686        if (drv) {
687            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
688                            "driver open with path[%s]\n",
689                            isopenat ? "at" : "", path.c_str());
690            return drv->open(p, tc, mode, host_flags);
691        }
692        /**
693         * Fall through here for pass through to host devices, such
694         * as /dev/zero
695         */
696    }
697
698    /**
699     * Some special paths and files cannot be called on the host and need
700     * to be handled as special cases inside the simulator.
701     * If the full path that was created above does not match any of the
702     * special cases, pass it through to the open call on the host to let
703     * the host open the file on our behalf.
704     * If the host cannot open the file, return the host's error code back
705     * through the system call to the simulated process.
706     */
707    int sim_fd = -1;
708    std::vector<std::string> special_paths =
709            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
710    for (auto entry : special_paths) {
711        if (startswith(path, entry))
712            sim_fd = OS::openSpecialFile(path, p, tc);
713    }
714    if (sim_fd == -1) {
715        sim_fd = open(path.c_str(), host_flags, mode);
716    }
717    if (sim_fd == -1) {
718        int local = -errno;
719        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
720                        isopenat ? "at" : "", path.c_str());
721        return local;
722    }
723
724    /**
725     * The file was opened successfully and needs to be recorded in the
726     * process' file descriptor array so that it can be retrieved later.
727     * The target file descriptor that is chosen will be the lowest unused
728     * file descriptor.
729     * Return the indirect target file descriptor back to the simulated
730     * process to act as a handle for the opened file.
731     */
732    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
733    int tgt_fd = p->fds->allocFD(ffdp);
734    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
735                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
736    return tgt_fd;
737}
738
739/// Target open() handler.
740template <class OS>
741SyscallReturn
742openFunc(SyscallDesc *desc, int callnum, Process *process,
743         ThreadContext *tc)
744{
745    return openImpl<OS>(desc, callnum, process, tc, false);
746}
747
748/// Target openat() handler.
749template <class OS>
750SyscallReturn
751openatFunc(SyscallDesc *desc, int callnum, Process *process,
752           ThreadContext *tc)
753{
754    return openImpl<OS>(desc, callnum, process, tc, true);
755}
756
757/// Target unlinkat() handler.
758template <class OS>
759SyscallReturn
760unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
761             ThreadContext *tc)
762{
763    int index = 0;
764    int dirfd = process->getSyscallArg(tc, index);
765    if (dirfd != OS::TGT_AT_FDCWD)
766        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
767
768    return unlinkHelper(desc, callnum, process, tc, 1);
769}
770
771/// Target facessat() handler
772template <class OS>
773SyscallReturn
774faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
775              ThreadContext *tc)
776{
777    int index = 0;
778    int dirfd = process->getSyscallArg(tc, index);
779    if (dirfd != OS::TGT_AT_FDCWD)
780        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
781    return accessFunc(desc, callnum, process, tc, 1);
782}
783
784/// Target readlinkat() handler
785template <class OS>
786SyscallReturn
787readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
788               ThreadContext *tc)
789{
790    int index = 0;
791    int dirfd = process->getSyscallArg(tc, index);
792    if (dirfd != OS::TGT_AT_FDCWD)
793        warn("openat: first argument not AT_FDCWD; unlikely to work");
794    return readlinkFunc(desc, callnum, process, tc, 1);
795}
796
797/// Target renameat() handler.
798template <class OS>
799SyscallReturn
800renameatFunc(SyscallDesc *desc, int callnum, Process *process,
801             ThreadContext *tc)
802{
803    int index = 0;
804
805    int olddirfd = process->getSyscallArg(tc, index);
806    if (olddirfd != OS::TGT_AT_FDCWD)
807        warn("renameat: first argument not AT_FDCWD; unlikely to work");
808
809    std::string old_name;
810
811    if (!tc->getMemProxy().tryReadString(old_name,
812                                         process->getSyscallArg(tc, index)))
813        return -EFAULT;
814
815    int newdirfd = process->getSyscallArg(tc, index);
816    if (newdirfd != OS::TGT_AT_FDCWD)
817        warn("renameat: third argument not AT_FDCWD; unlikely to work");
818
819    std::string new_name;
820
821    if (!tc->getMemProxy().tryReadString(new_name,
822                                         process->getSyscallArg(tc, index)))
823        return -EFAULT;
824
825    // Adjust path for current working directory
826    old_name = process->fullPath(old_name);
827    new_name = process->fullPath(new_name);
828
829    int result = rename(old_name.c_str(), new_name.c_str());
830    return (result == -1) ? -errno : result;
831}
832
833/// Target sysinfo() handler.
834template <class OS>
835SyscallReturn
836sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
837            ThreadContext *tc)
838{
839
840    int index = 0;
841    TypedBufferArg<typename OS::tgt_sysinfo>
842        sysinfo(process->getSyscallArg(tc, index));
843
844    sysinfo->uptime = seconds_since_epoch;
845    sysinfo->totalram = process->system->memSize();
846    sysinfo->mem_unit = 1;
847
848    sysinfo.copyOut(tc->getMemProxy());
849
850    return 0;
851}
852
853/// Target chmod() handler.
854template <class OS>
855SyscallReturn
856chmodFunc(SyscallDesc *desc, int callnum, Process *process,
857          ThreadContext *tc)
858{
859    std::string path;
860
861    int index = 0;
862    if (!tc->getMemProxy().tryReadString(path,
863                process->getSyscallArg(tc, index))) {
864        return -EFAULT;
865    }
866
867    uint32_t mode = process->getSyscallArg(tc, index);
868    mode_t hostMode = 0;
869
870    // XXX translate mode flags via OS::something???
871    hostMode = mode;
872
873    // Adjust path for current working directory
874    path = process->fullPath(path);
875
876    // do the chmod
877    int result = chmod(path.c_str(), hostMode);
878    if (result < 0)
879        return -errno;
880
881    return 0;
882}
883
884
885/// Target fchmod() handler.
886template <class OS>
887SyscallReturn
888fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
889{
890    int index = 0;
891    int tgt_fd = p->getSyscallArg(tc, index);
892    uint32_t mode = p->getSyscallArg(tc, index);
893
894    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
895    if (!ffdp)
896        return -EBADF;
897    int sim_fd = ffdp->getSimFD();
898
899    mode_t hostMode = mode;
900
901    int result = fchmod(sim_fd, hostMode);
902
903    return (result < 0) ? -errno : 0;
904}
905
906/// Target mremap() handler.
907template <class OS>
908SyscallReturn
909mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
910{
911    int index = 0;
912    Addr start = process->getSyscallArg(tc, index);
913    uint64_t old_length = process->getSyscallArg(tc, index);
914    uint64_t new_length = process->getSyscallArg(tc, index);
915    uint64_t flags = process->getSyscallArg(tc, index);
916    uint64_t provided_address = 0;
917    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
918
919    if (use_provided_address)
920        provided_address = process->getSyscallArg(tc, index);
921
922    if ((start % TheISA::PageBytes != 0) ||
923        (provided_address % TheISA::PageBytes != 0)) {
924        warn("mremap failing: arguments not page aligned");
925        return -EINVAL;
926    }
927
928    new_length = roundUp(new_length, TheISA::PageBytes);
929
930    if (new_length > old_length) {
931        std::shared_ptr<MemState> mem_state = process->memState;
932        Addr mmap_end = mem_state->getMmapEnd();
933
934        if ((start + old_length) == mmap_end &&
935            (!use_provided_address || provided_address == start)) {
936            // This case cannot occur when growing downward, as
937            // start is greater than or equal to mmap_end.
938            uint64_t diff = new_length - old_length;
939            process->allocateMem(mmap_end, diff);
940            mem_state->setMmapEnd(mmap_end + diff);
941            return start;
942        } else {
943            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
944                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
945                return -ENOMEM;
946            } else {
947                uint64_t new_start = provided_address;
948                if (!use_provided_address) {
949                    new_start = process->mmapGrowsDown() ?
950                                mmap_end - new_length : mmap_end;
951                    mmap_end = process->mmapGrowsDown() ?
952                               new_start : mmap_end + new_length;
953                    mem_state->setMmapEnd(mmap_end);
954                }
955
956                process->pTable->remap(start, old_length, new_start);
957                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
958                     new_start, new_start + new_length,
959                     new_length - old_length);
960                // add on the remaining unallocated pages
961                process->allocateMem(new_start + old_length,
962                                     new_length - old_length,
963                                     use_provided_address /* clobber */);
964                if (use_provided_address &&
965                    ((new_start + new_length > mem_state->getMmapEnd() &&
966                      !process->mmapGrowsDown()) ||
967                    (new_start < mem_state->getMmapEnd() &&
968                      process->mmapGrowsDown()))) {
969                    // something fishy going on here, at least notify the user
970                    // @todo: increase mmap_end?
971                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
972                }
973                warn("returning %08p as start\n", new_start);
974                return new_start;
975            }
976        }
977    } else {
978        if (use_provided_address && provided_address != start)
979            process->pTable->remap(start, new_length, provided_address);
980        process->pTable->unmap(start + new_length, old_length - new_length);
981        return use_provided_address ? provided_address : start;
982    }
983}
984
985/// Target stat() handler.
986template <class OS>
987SyscallReturn
988statFunc(SyscallDesc *desc, int callnum, Process *process,
989         ThreadContext *tc)
990{
991    std::string path;
992
993    int index = 0;
994    if (!tc->getMemProxy().tryReadString(path,
995                process->getSyscallArg(tc, index))) {
996        return -EFAULT;
997    }
998    Addr bufPtr = process->getSyscallArg(tc, index);
999
1000    // Adjust path for current working directory
1001    path = process->fullPath(path);
1002
1003    struct stat hostBuf;
1004    int result = stat(path.c_str(), &hostBuf);
1005
1006    if (result < 0)
1007        return -errno;
1008
1009    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1010
1011    return 0;
1012}
1013
1014
1015/// Target stat64() handler.
1016template <class OS>
1017SyscallReturn
1018stat64Func(SyscallDesc *desc, int callnum, Process *process,
1019           ThreadContext *tc)
1020{
1021    std::string path;
1022
1023    int index = 0;
1024    if (!tc->getMemProxy().tryReadString(path,
1025                process->getSyscallArg(tc, index)))
1026        return -EFAULT;
1027    Addr bufPtr = process->getSyscallArg(tc, index);
1028
1029    // Adjust path for current working directory
1030    path = process->fullPath(path);
1031
1032#if NO_STAT64
1033    struct stat  hostBuf;
1034    int result = stat(path.c_str(), &hostBuf);
1035#else
1036    struct stat64 hostBuf;
1037    int result = stat64(path.c_str(), &hostBuf);
1038#endif
1039
1040    if (result < 0)
1041        return -errno;
1042
1043    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1044
1045    return 0;
1046}
1047
1048
1049/// Target fstatat64() handler.
1050template <class OS>
1051SyscallReturn
1052fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1053              ThreadContext *tc)
1054{
1055    int index = 0;
1056    int dirfd = process->getSyscallArg(tc, index);
1057    if (dirfd != OS::TGT_AT_FDCWD)
1058        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1059
1060    std::string path;
1061    if (!tc->getMemProxy().tryReadString(path,
1062                process->getSyscallArg(tc, index)))
1063        return -EFAULT;
1064    Addr bufPtr = process->getSyscallArg(tc, index);
1065
1066    // Adjust path for current working directory
1067    path = process->fullPath(path);
1068
1069#if NO_STAT64
1070    struct stat  hostBuf;
1071    int result = stat(path.c_str(), &hostBuf);
1072#else
1073    struct stat64 hostBuf;
1074    int result = stat64(path.c_str(), &hostBuf);
1075#endif
1076
1077    if (result < 0)
1078        return -errno;
1079
1080    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1081
1082    return 0;
1083}
1084
1085
1086/// Target fstat64() handler.
1087template <class OS>
1088SyscallReturn
1089fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1090{
1091    int index = 0;
1092    int tgt_fd = p->getSyscallArg(tc, index);
1093    Addr bufPtr = p->getSyscallArg(tc, index);
1094
1095    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1096    if (!ffdp)
1097        return -EBADF;
1098    int sim_fd = ffdp->getSimFD();
1099
1100#if NO_STAT64
1101    struct stat  hostBuf;
1102    int result = fstat(sim_fd, &hostBuf);
1103#else
1104    struct stat64  hostBuf;
1105    int result = fstat64(sim_fd, &hostBuf);
1106#endif
1107
1108    if (result < 0)
1109        return -errno;
1110
1111    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1112
1113    return 0;
1114}
1115
1116
1117/// Target lstat() handler.
1118template <class OS>
1119SyscallReturn
1120lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1121          ThreadContext *tc)
1122{
1123    std::string path;
1124
1125    int index = 0;
1126    if (!tc->getMemProxy().tryReadString(path,
1127                process->getSyscallArg(tc, index))) {
1128        return -EFAULT;
1129    }
1130    Addr bufPtr = process->getSyscallArg(tc, index);
1131
1132    // Adjust path for current working directory
1133    path = process->fullPath(path);
1134
1135    struct stat hostBuf;
1136    int result = lstat(path.c_str(), &hostBuf);
1137
1138    if (result < 0)
1139        return -errno;
1140
1141    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1142
1143    return 0;
1144}
1145
1146/// Target lstat64() handler.
1147template <class OS>
1148SyscallReturn
1149lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1150            ThreadContext *tc)
1151{
1152    std::string path;
1153
1154    int index = 0;
1155    if (!tc->getMemProxy().tryReadString(path,
1156                process->getSyscallArg(tc, index))) {
1157        return -EFAULT;
1158    }
1159    Addr bufPtr = process->getSyscallArg(tc, index);
1160
1161    // Adjust path for current working directory
1162    path = process->fullPath(path);
1163
1164#if NO_STAT64
1165    struct stat hostBuf;
1166    int result = lstat(path.c_str(), &hostBuf);
1167#else
1168    struct stat64 hostBuf;
1169    int result = lstat64(path.c_str(), &hostBuf);
1170#endif
1171
1172    if (result < 0)
1173        return -errno;
1174
1175    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1176
1177    return 0;
1178}
1179
1180/// Target fstat() handler.
1181template <class OS>
1182SyscallReturn
1183fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1184{
1185    int index = 0;
1186    int tgt_fd = p->getSyscallArg(tc, index);
1187    Addr bufPtr = p->getSyscallArg(tc, index);
1188
1189    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1190
1191    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1192    if (!ffdp)
1193        return -EBADF;
1194    int sim_fd = ffdp->getSimFD();
1195
1196    struct stat hostBuf;
1197    int result = fstat(sim_fd, &hostBuf);
1198
1199    if (result < 0)
1200        return -errno;
1201
1202    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1203
1204    return 0;
1205}
1206
1207
1208/// Target statfs() handler.
1209template <class OS>
1210SyscallReturn
1211statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1212           ThreadContext *tc)
1213{
1214#if NO_STATFS
1215    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1216#else
1217    std::string path;
1218
1219    int index = 0;
1220    if (!tc->getMemProxy().tryReadString(path,
1221                process->getSyscallArg(tc, index))) {
1222        return -EFAULT;
1223    }
1224    Addr bufPtr = process->getSyscallArg(tc, index);
1225
1226    // Adjust path for current working directory
1227    path = process->fullPath(path);
1228
1229    struct statfs hostBuf;
1230    int result = statfs(path.c_str(), &hostBuf);
1231
1232    if (result < 0)
1233        return -errno;
1234
1235    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1236#endif
1237    return 0;
1238}
1239
1240template <class OS>
1241SyscallReturn
1242cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1243{
1244    int index = 0;
1245
1246    TheISA::IntReg flags = p->getSyscallArg(tc, index);
1247    TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1248    Addr ptidPtr = p->getSyscallArg(tc, index);
1249
1250#if THE_ISA == RISCV_ISA
1251    /**
1252     * Linux kernel 4.15 sets CLONE_BACKWARDS flag for RISC-V.
1253     * The flag defines the list of clone() arguments in the following
1254     * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1255     */
1256    Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1257    Addr ctidPtr = p->getSyscallArg(tc, index);
1258#else
1259    Addr ctidPtr = p->getSyscallArg(tc, index);
1260    Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1261#endif
1262
1263    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1264        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1265        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1266        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1267        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1268        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1269        return -EINVAL;
1270
1271    ThreadContext *ctc;
1272    if (!(ctc = p->findFreeContext()))
1273        fatal("clone: no spare thread context in system");
1274
1275    /**
1276     * Note that ProcessParams is generated by swig and there are no other
1277     * examples of how to create anything but this default constructor. The
1278     * fields are manually initialized instead of passing parameters to the
1279     * constructor.
1280     */
1281    ProcessParams *pp = new ProcessParams();
1282    pp->executable.assign(*(new std::string(p->progName())));
1283    pp->cmd.push_back(*(new std::string(p->progName())));
1284    pp->system = p->system;
1285    pp->cwd.assign(p->getcwd());
1286    pp->input.assign("stdin");
1287    pp->output.assign("stdout");
1288    pp->errout.assign("stderr");
1289    pp->uid = p->uid();
1290    pp->euid = p->euid();
1291    pp->gid = p->gid();
1292    pp->egid = p->egid();
1293
1294    /* Find the first free PID that's less than the maximum */
1295    std::set<int> const& pids = p->system->PIDs;
1296    int temp_pid = *pids.begin();
1297    do {
1298        temp_pid++;
1299    } while (pids.find(temp_pid) != pids.end());
1300    if (temp_pid >= System::maxPID)
1301        fatal("temp_pid is too large: %d", temp_pid);
1302
1303    pp->pid = temp_pid;
1304    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1305    Process *cp = pp->create();
1306    delete pp;
1307
1308    Process *owner = ctc->getProcessPtr();
1309    ctc->setProcessPtr(cp);
1310    cp->assignThreadContext(ctc->contextId());
1311    owner->revokeThreadContext(ctc->contextId());
1312
1313    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1314        BufferArg ptidBuf(ptidPtr, sizeof(long));
1315        long *ptid = (long *)ptidBuf.bufferPtr();
1316        *ptid = cp->pid();
1317        ptidBuf.copyOut(tc->getMemProxy());
1318    }
1319
1320    cp->initState();
1321    p->clone(tc, ctc, cp, flags);
1322
1323    if (flags & OS::TGT_CLONE_THREAD) {
1324        delete cp->sigchld;
1325        cp->sigchld = p->sigchld;
1326    } else if (flags & OS::TGT_SIGCHLD) {
1327        *cp->sigchld = true;
1328    }
1329
1330    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1331        BufferArg ctidBuf(ctidPtr, sizeof(long));
1332        long *ctid = (long *)ctidBuf.bufferPtr();
1333        *ctid = cp->pid();
1334        ctidBuf.copyOut(ctc->getMemProxy());
1335    }
1336
1337    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1338        cp->childClearTID = (uint64_t)ctidPtr;
1339
1340    ctc->clearArchRegs();
1341
1342#if THE_ISA == ALPHA_ISA
1343    TheISA::copyMiscRegs(tc, ctc);
1344#elif THE_ISA == SPARC_ISA
1345    TheISA::copyRegs(tc, ctc);
1346    ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1347    ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1348    ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1349    ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1350    ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1351    ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1352    ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1353    ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1354    for (int y = 8; y < 32; y++)
1355        ctc->setIntReg(y, tc->readIntReg(y));
1356#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA or THE_ISA == RISCV_ISA
1357    TheISA::copyRegs(tc, ctc);
1358#endif
1359
1360#if THE_ISA == X86_ISA
1361    if (flags & OS::TGT_CLONE_SETTLS) {
1362        ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1363        ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1364    }
1365#endif
1366
1367    if (newStack)
1368        ctc->setIntReg(TheISA::StackPointerReg, newStack);
1369
1370    cp->setSyscallReturn(ctc, 0);
1371
1372#if THE_ISA == ALPHA_ISA
1373    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1374#elif THE_ISA == SPARC_ISA
1375    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1376    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1377#endif
1378
1379    ctc->pcState(tc->nextInstAddr());
1380    ctc->activate();
1381
1382    return cp->pid();
1383}
1384
1385/// Target fstatfs() handler.
1386template <class OS>
1387SyscallReturn
1388fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1389{
1390    int index = 0;
1391    int tgt_fd = p->getSyscallArg(tc, index);
1392    Addr bufPtr = p->getSyscallArg(tc, index);
1393
1394    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1395    if (!ffdp)
1396        return -EBADF;
1397    int sim_fd = ffdp->getSimFD();
1398
1399    struct statfs hostBuf;
1400    int result = fstatfs(sim_fd, &hostBuf);
1401
1402    if (result < 0)
1403        return -errno;
1404
1405    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1406
1407    return 0;
1408}
1409
1410
1411/// Target writev() handler.
1412template <class OS>
1413SyscallReturn
1414writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1415{
1416    int index = 0;
1417    int tgt_fd = p->getSyscallArg(tc, index);
1418
1419    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1420    if (!hbfdp)
1421        return -EBADF;
1422    int sim_fd = hbfdp->getSimFD();
1423
1424    SETranslatingPortProxy &prox = tc->getMemProxy();
1425    uint64_t tiov_base = p->getSyscallArg(tc, index);
1426    size_t count = p->getSyscallArg(tc, index);
1427    struct iovec hiov[count];
1428    for (size_t i = 0; i < count; ++i) {
1429        typename OS::tgt_iovec tiov;
1430
1431        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1432                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1433        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1434        hiov[i].iov_base = new char [hiov[i].iov_len];
1435        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1436                      hiov[i].iov_len);
1437    }
1438
1439    int result = writev(sim_fd, hiov, count);
1440
1441    for (size_t i = 0; i < count; ++i)
1442        delete [] (char *)hiov[i].iov_base;
1443
1444    if (result < 0)
1445        return -errno;
1446
1447    return result;
1448}
1449
1450/// Real mmap handler.
1451template <class OS>
1452SyscallReturn
1453mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1454         bool is_mmap2)
1455{
1456    int index = 0;
1457    Addr start = p->getSyscallArg(tc, index);
1458    uint64_t length = p->getSyscallArg(tc, index);
1459    int prot = p->getSyscallArg(tc, index);
1460    int tgt_flags = p->getSyscallArg(tc, index);
1461    int tgt_fd = p->getSyscallArg(tc, index);
1462    int offset = p->getSyscallArg(tc, index);
1463
1464    if (is_mmap2)
1465        offset *= TheISA::PageBytes;
1466
1467    if (start & (TheISA::PageBytes - 1) ||
1468        offset & (TheISA::PageBytes - 1) ||
1469        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1470         tgt_flags & OS::TGT_MAP_SHARED) ||
1471        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1472         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1473        !length) {
1474        return -EINVAL;
1475    }
1476
1477    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1478        // With shared mmaps, there are two cases to consider:
1479        // 1) anonymous: writes should modify the mapping and this should be
1480        // visible to observers who share the mapping. Currently, it's
1481        // difficult to update the shared mapping because there's no
1482        // structure which maintains information about the which virtual
1483        // memory areas are shared. If that structure existed, it would be
1484        // possible to make the translations point to the same frames.
1485        // 2) file-backed: writes should modify the mapping and the file
1486        // which is backed by the mapping. The shared mapping problem is the
1487        // same as what was mentioned about the anonymous mappings. For
1488        // file-backed mappings, the writes to the file are difficult
1489        // because it requires syncing what the mapping holds with the file
1490        // that resides on the host system. So, any write on a real system
1491        // would cause the change to be propagated to the file mapping at
1492        // some point in the future (the inode is tracked along with the
1493        // mapping). This isn't guaranteed to always happen, but it usually
1494        // works well enough. The guarantee is provided by the msync system
1495        // call. We could force the change through with shared mappings with
1496        // a call to msync, but that again would require more information
1497        // than we currently maintain.
1498        warn("mmap: writing to shared mmap region is currently "
1499             "unsupported. The write succeeds on the target, but it "
1500             "will not be propagated to the host or shared mappings");
1501    }
1502
1503    length = roundUp(length, TheISA::PageBytes);
1504
1505    int sim_fd = -1;
1506    uint8_t *pmap = nullptr;
1507    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1508        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1509
1510        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1511        if (dfdp) {
1512            EmulatedDriver *emul_driver = dfdp->getDriver();
1513            return emul_driver->mmap(p, tc, start, length, prot,
1514                                     tgt_flags, tgt_fd, offset);
1515        }
1516
1517        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1518        if (!ffdp)
1519            return -EBADF;
1520        sim_fd = ffdp->getSimFD();
1521
1522        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1523                                    sim_fd, offset);
1524
1525        if (pmap == (decltype(pmap))-1) {
1526            warn("mmap: failed to map file into host address space");
1527            return -errno;
1528        }
1529    }
1530
1531    // Extend global mmap region if necessary. Note that we ignore the
1532    // start address unless MAP_FIXED is specified.
1533    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1534        std::shared_ptr<MemState> mem_state = p->memState;
1535        Addr mmap_end = mem_state->getMmapEnd();
1536
1537        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1538        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1539
1540        mem_state->setMmapEnd(mmap_end);
1541    }
1542
1543    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1544                    start, start + length - 1);
1545
1546    // We only allow mappings to overwrite existing mappings if
1547    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1548    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1549    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1550    if (clobber) {
1551        for (auto tc : p->system->threadContexts) {
1552            // If we might be overwriting old mappings, we need to
1553            // invalidate potentially stale mappings out of the TLBs.
1554            tc->getDTBPtr()->flushAll();
1555            tc->getITBPtr()->flushAll();
1556        }
1557    }
1558
1559    // Allocate physical memory and map it in. If the page table is already
1560    // mapped and clobber is not set, the simulator will issue throw a
1561    // fatal and bail out of the simulation.
1562    p->allocateMem(start, length, clobber);
1563
1564    // Transfer content into target address space.
1565    SETranslatingPortProxy &tp = tc->getMemProxy();
1566    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1567        // In general, we should zero the mapped area for anonymous mappings,
1568        // with something like:
1569        //     tp.memsetBlob(start, 0, length);
1570        // However, given that we don't support sparse mappings, and
1571        // some applications can map a couple of gigabytes of space
1572        // (intending sparse usage), that can get painfully expensive.
1573        // Fortunately, since we don't properly implement munmap either,
1574        // there's no danger of remapping used memory, so for now all
1575        // newly mapped memory should already be zeroed so we can skip it.
1576    } else {
1577        // It is possible to mmap an area larger than a file, however
1578        // accessing unmapped portions the system triggers a "Bus error"
1579        // on the host. We must know when to stop copying the file from
1580        // the host into the target address space.
1581        struct stat file_stat;
1582        if (fstat(sim_fd, &file_stat) > 0)
1583            fatal("mmap: cannot stat file");
1584
1585        // Copy the portion of the file that is resident. This requires
1586        // checking both the mmap size and the filesize that we are
1587        // trying to mmap into this space; the mmap size also depends
1588        // on the specified offset into the file.
1589        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1590                                 length);
1591        tp.writeBlob(start, pmap, size);
1592
1593        // Cleanup the mmap region before exiting this function.
1594        munmap(pmap, length);
1595
1596        // Maintain the symbol table for dynamic executables.
1597        // The loader will call mmap to map the images into its address
1598        // space and we intercept that here. We can verify that we are
1599        // executing inside the loader by checking the program counter value.
1600        // XXX: with multiprogrammed workloads or multi-node configurations,
1601        // this will not work since there is a single global symbol table.
1602        ObjectFile *interpreter = p->getInterpreter();
1603        if (interpreter) {
1604            Addr text_start = interpreter->textBase();
1605            Addr text_end = text_start + interpreter->textSize();
1606
1607            Addr pc = tc->pcState().pc();
1608
1609            if (pc >= text_start && pc < text_end) {
1610                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1611                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1612                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1613
1614                if (lib) {
1615                    lib->loadAllSymbols(debugSymbolTable,
1616                                        lib->textBase(), start);
1617                }
1618            }
1619        }
1620
1621        // Note that we do not zero out the remainder of the mapping. This
1622        // is done by a real system, but it probably will not affect
1623        // execution (hopefully).
1624    }
1625
1626    return start;
1627}
1628
1629template <class OS>
1630SyscallReturn
1631pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1632{
1633    int index = 0;
1634    int tgt_fd = p->getSyscallArg(tc, index);
1635    Addr bufPtr = p->getSyscallArg(tc, index);
1636    int nbytes = p->getSyscallArg(tc, index);
1637    int offset = p->getSyscallArg(tc, index);
1638
1639    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1640    if (!ffdp)
1641        return -EBADF;
1642    int sim_fd = ffdp->getSimFD();
1643
1644    BufferArg bufArg(bufPtr, nbytes);
1645    bufArg.copyIn(tc->getMemProxy());
1646
1647    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1648
1649    return (bytes_written == -1) ? -errno : bytes_written;
1650}
1651
1652/// Target mmap() handler.
1653template <class OS>
1654SyscallReturn
1655mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1656{
1657    return mmapImpl<OS>(desc, num, p, tc, false);
1658}
1659
1660/// Target mmap2() handler.
1661template <class OS>
1662SyscallReturn
1663mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1664{
1665    return mmapImpl<OS>(desc, num, p, tc, true);
1666}
1667
1668/// Target getrlimit() handler.
1669template <class OS>
1670SyscallReturn
1671getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1672              ThreadContext *tc)
1673{
1674    int index = 0;
1675    unsigned resource = process->getSyscallArg(tc, index);
1676    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1677
1678    switch (resource) {
1679      case OS::TGT_RLIMIT_STACK:
1680        // max stack size in bytes: make up a number (8MB for now)
1681        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1682        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1683        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1684        break;
1685
1686      case OS::TGT_RLIMIT_DATA:
1687        // max data segment size in bytes: make up a number
1688        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1689        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1690        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1691        break;
1692
1693      default:
1694        warn("getrlimit: unimplemented resource %d", resource);
1695        return -EINVAL;
1696        break;
1697    }
1698
1699    rlp.copyOut(tc->getMemProxy());
1700    return 0;
1701}
1702
1703template <class OS>
1704SyscallReturn
1705prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1706            ThreadContext *tc)
1707{
1708    int index = 0;
1709    if (process->getSyscallArg(tc, index) != 0)
1710    {
1711        warn("prlimit: ignoring rlimits for nonzero pid");
1712        return -EPERM;
1713    }
1714    int resource = process->getSyscallArg(tc, index);
1715    Addr n = process->getSyscallArg(tc, index);
1716    if (n != 0)
1717        warn("prlimit: ignoring new rlimit");
1718    Addr o = process->getSyscallArg(tc, index);
1719    if (o != 0)
1720    {
1721        TypedBufferArg<typename OS::rlimit> rlp(o);
1722        switch (resource) {
1723          case OS::TGT_RLIMIT_STACK:
1724            // max stack size in bytes: make up a number (8MB for now)
1725            rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1726            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1727            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1728            break;
1729          case OS::TGT_RLIMIT_DATA:
1730            // max data segment size in bytes: make up a number
1731            rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1732            rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1733            rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1734            break;
1735          default:
1736            warn("prlimit: unimplemented resource %d", resource);
1737            return -EINVAL;
1738            break;
1739        }
1740        rlp.copyOut(tc->getMemProxy());
1741    }
1742    return 0;
1743}
1744
1745/// Target clock_gettime() function.
1746template <class OS>
1747SyscallReturn
1748clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1749{
1750    int index = 1;
1751    //int clk_id = p->getSyscallArg(tc, index);
1752    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1753
1754    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1755    tp->tv_sec += seconds_since_epoch;
1756    tp->tv_sec = TheISA::htog(tp->tv_sec);
1757    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1758
1759    tp.copyOut(tc->getMemProxy());
1760
1761    return 0;
1762}
1763
1764/// Target clock_getres() function.
1765template <class OS>
1766SyscallReturn
1767clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1768{
1769    int index = 1;
1770    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1771
1772    // Set resolution at ns, which is what clock_gettime() returns
1773    tp->tv_sec = 0;
1774    tp->tv_nsec = 1;
1775
1776    tp.copyOut(tc->getMemProxy());
1777
1778    return 0;
1779}
1780
1781/// Target gettimeofday() handler.
1782template <class OS>
1783SyscallReturn
1784gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1785                 ThreadContext *tc)
1786{
1787    int index = 0;
1788    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1789
1790    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1791    tp->tv_sec += seconds_since_epoch;
1792    tp->tv_sec = TheISA::htog(tp->tv_sec);
1793    tp->tv_usec = TheISA::htog(tp->tv_usec);
1794
1795    tp.copyOut(tc->getMemProxy());
1796
1797    return 0;
1798}
1799
1800
1801/// Target utimes() handler.
1802template <class OS>
1803SyscallReturn
1804utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1805           ThreadContext *tc)
1806{
1807    std::string path;
1808
1809    int index = 0;
1810    if (!tc->getMemProxy().tryReadString(path,
1811                process->getSyscallArg(tc, index))) {
1812        return -EFAULT;
1813    }
1814
1815    TypedBufferArg<typename OS::timeval [2]>
1816        tp(process->getSyscallArg(tc, index));
1817    tp.copyIn(tc->getMemProxy());
1818
1819    struct timeval hostTimeval[2];
1820    for (int i = 0; i < 2; ++i) {
1821        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1822        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1823    }
1824
1825    // Adjust path for current working directory
1826    path = process->fullPath(path);
1827
1828    int result = utimes(path.c_str(), hostTimeval);
1829
1830    if (result < 0)
1831        return -errno;
1832
1833    return 0;
1834}
1835
1836template <class OS>
1837SyscallReturn
1838execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1839{
1840    desc->setFlags(0);
1841
1842    int index = 0;
1843    std::string path;
1844    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1845    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1846        return -EFAULT;
1847
1848    if (access(path.c_str(), F_OK) == -1)
1849        return -EACCES;
1850
1851    auto read_in = [](std::vector<std::string> & vect,
1852                      SETranslatingPortProxy & mem_proxy,
1853                      Addr mem_loc)
1854    {
1855        for (int inc = 0; ; inc++) {
1856            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1857            b.copyIn(mem_proxy);
1858
1859            if (!*(Addr*)b.bufferPtr())
1860                break;
1861
1862            vect.push_back(std::string());
1863            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1864        }
1865    };
1866
1867    /**
1868     * Note that ProcessParams is generated by swig and there are no other
1869     * examples of how to create anything but this default constructor. The
1870     * fields are manually initialized instead of passing parameters to the
1871     * constructor.
1872     */
1873    ProcessParams *pp = new ProcessParams();
1874    pp->executable = path;
1875    Addr argv_mem_loc = p->getSyscallArg(tc, index);
1876    read_in(pp->cmd, mem_proxy, argv_mem_loc);
1877    Addr envp_mem_loc = p->getSyscallArg(tc, index);
1878    read_in(pp->env, mem_proxy, envp_mem_loc);
1879    pp->uid = p->uid();
1880    pp->egid = p->egid();
1881    pp->euid = p->euid();
1882    pp->gid = p->gid();
1883    pp->ppid = p->ppid();
1884    pp->pid = p->pid();
1885    pp->input.assign("cin");
1886    pp->output.assign("cout");
1887    pp->errout.assign("cerr");
1888    pp->cwd.assign(p->getcwd());
1889    pp->system = p->system;
1890    /**
1891     * Prevent process object creation with identical PIDs (which will trip
1892     * a fatal check in Process constructor). The execve call is supposed to
1893     * take over the currently executing process' identity but replace
1894     * whatever it is doing with a new process image. Instead of hijacking
1895     * the process object in the simulator, we create a new process object
1896     * and bind to the previous process' thread below (hijacking the thread).
1897     */
1898    p->system->PIDs.erase(p->pid());
1899    Process *new_p = pp->create();
1900    delete pp;
1901
1902    /**
1903     * Work through the file descriptor array and close any files marked
1904     * close-on-exec.
1905     */
1906    new_p->fds = p->fds;
1907    for (int i = 0; i < new_p->fds->getSize(); i++) {
1908        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1909        if (fdep && fdep->getCOE())
1910            new_p->fds->closeFDEntry(i);
1911    }
1912
1913    *new_p->sigchld = true;
1914
1915    delete p;
1916    tc->clearArchRegs();
1917    tc->setProcessPtr(new_p);
1918    new_p->assignThreadContext(tc->contextId());
1919    new_p->initState();
1920    tc->activate();
1921    TheISA::PCState pcState = tc->pcState();
1922    tc->setNPC(pcState.instAddr());
1923
1924    desc->setFlags(SyscallDesc::SuppressReturnValue);
1925    return 0;
1926}
1927
1928/// Target getrusage() function.
1929template <class OS>
1930SyscallReturn
1931getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1932              ThreadContext *tc)
1933{
1934    int index = 0;
1935    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1936    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1937
1938    rup->ru_utime.tv_sec = 0;
1939    rup->ru_utime.tv_usec = 0;
1940    rup->ru_stime.tv_sec = 0;
1941    rup->ru_stime.tv_usec = 0;
1942    rup->ru_maxrss = 0;
1943    rup->ru_ixrss = 0;
1944    rup->ru_idrss = 0;
1945    rup->ru_isrss = 0;
1946    rup->ru_minflt = 0;
1947    rup->ru_majflt = 0;
1948    rup->ru_nswap = 0;
1949    rup->ru_inblock = 0;
1950    rup->ru_oublock = 0;
1951    rup->ru_msgsnd = 0;
1952    rup->ru_msgrcv = 0;
1953    rup->ru_nsignals = 0;
1954    rup->ru_nvcsw = 0;
1955    rup->ru_nivcsw = 0;
1956
1957    switch (who) {
1958      case OS::TGT_RUSAGE_SELF:
1959        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1960        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1961        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1962        break;
1963
1964      case OS::TGT_RUSAGE_CHILDREN:
1965        // do nothing.  We have no child processes, so they take no time.
1966        break;
1967
1968      default:
1969        // don't really handle THREAD or CHILDREN, but just warn and
1970        // plow ahead
1971        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
1972             who);
1973    }
1974
1975    rup.copyOut(tc->getMemProxy());
1976
1977    return 0;
1978}
1979
1980/// Target times() function.
1981template <class OS>
1982SyscallReturn
1983timesFunc(SyscallDesc *desc, int callnum, Process *process,
1984          ThreadContext *tc)
1985{
1986    int index = 0;
1987    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1988
1989    // Fill in the time structure (in clocks)
1990    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1991    bufp->tms_utime = clocks;
1992    bufp->tms_stime = 0;
1993    bufp->tms_cutime = 0;
1994    bufp->tms_cstime = 0;
1995
1996    // Convert to host endianness
1997    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
1998
1999    // Write back
2000    bufp.copyOut(tc->getMemProxy());
2001
2002    // Return clock ticks since system boot
2003    return clocks;
2004}
2005
2006/// Target time() function.
2007template <class OS>
2008SyscallReturn
2009timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2010{
2011    typename OS::time_t sec, usec;
2012    getElapsedTimeMicro(sec, usec);
2013    sec += seconds_since_epoch;
2014
2015    int index = 0;
2016    Addr taddr = (Addr)process->getSyscallArg(tc, index);
2017    if (taddr != 0) {
2018        typename OS::time_t t = sec;
2019        t = TheISA::htog(t);
2020        SETranslatingPortProxy &p = tc->getMemProxy();
2021        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2022    }
2023    return sec;
2024}
2025
2026template <class OS>
2027SyscallReturn
2028tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2029{
2030    int index = 0;
2031    int tgid = process->getSyscallArg(tc, index);
2032    int tid = process->getSyscallArg(tc, index);
2033    int sig = process->getSyscallArg(tc, index);
2034
2035    /**
2036     * This system call is intended to allow killing a specific thread
2037     * within an arbitrary thread group if sanctioned with permission checks.
2038     * It's usually true that threads share the termination signal as pointed
2039     * out by the pthread_kill man page and this seems to be the intended
2040     * usage. Due to this being an emulated environment, assume the following:
2041     * Threads are allowed to call tgkill because the EUID for all threads
2042     * should be the same. There is no signal handling mechanism for kernel
2043     * registration of signal handlers since signals are poorly supported in
2044     * emulation mode. Since signal handlers cannot be registered, all
2045     * threads within in a thread group must share the termination signal.
2046     * We never exhaust PIDs so there's no chance of finding the wrong one
2047     * due to PID rollover.
2048     */
2049
2050    System *sys = tc->getSystemPtr();
2051    Process *tgt_proc = nullptr;
2052    for (int i = 0; i < sys->numContexts(); i++) {
2053        Process *temp = sys->threadContexts[i]->getProcessPtr();
2054        if (temp->pid() == tid) {
2055            tgt_proc = temp;
2056            break;
2057        }
2058    }
2059
2060    if (sig != 0 || sig != OS::TGT_SIGABRT)
2061        return -EINVAL;
2062
2063    if (tgt_proc == nullptr)
2064        return -ESRCH;
2065
2066    if (tgid != -1 && tgt_proc->tgid() != tgid)
2067        return -ESRCH;
2068
2069    if (sig == OS::TGT_SIGABRT)
2070        exitGroupFunc(desc, 252, process, tc);
2071
2072    return 0;
2073}
2074
2075
2076#endif // __SIM_SYSCALL_EMUL_HH__
2077