syscall_emul.hh revision 12032
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
49     defined(__FreeBSD__) || defined(__CYGWIN__) ||     \
50     defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
57     defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) ||      \
64     defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/utility.hh"
97#include "base/intmath.hh"
98#include "base/loader/object_file.hh"
99#include "base/misc.hh"
100#include "base/trace.hh"
101#include "base/types.hh"
102#include "config/the_isa.hh"
103#include "cpu/base.hh"
104#include "cpu/thread_context.hh"
105#include "mem/page_table.hh"
106#include "params/Process.hh"
107#include "sim/emul_driver.hh"
108#include "sim/futex_map.hh"
109#include "sim/process.hh"
110#include "sim/syscall_debug_macros.hh"
111#include "sim/syscall_desc.hh"
112#include "sim/syscall_emul_buf.hh"
113#include "sim/syscall_return.hh"
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's.  They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123
124/// Handler for unimplemented syscalls that we haven't thought about.
125SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
126                                Process *p, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program.  Print a warning only if the appropriate
131/// trace flag is enabled.  Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
133                         Process *p, ThreadContext *tc);
134
135// Target fallocateFunc() handler.
136SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
137                            Process *p, ThreadContext *tc);
138
139/// Target exit() handler: terminate current context.
140SyscallReturn exitFunc(SyscallDesc *desc, int num,
141                       Process *p, ThreadContext *tc);
142
143/// Target exit_group() handler: terminate simulation. (exit all threads)
144SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
145                       Process *p, ThreadContext *tc);
146
147/// Target set_tid_address() handler.
148SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
149                                Process *p, ThreadContext *tc);
150
151/// Target getpagesize() handler.
152SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
153                              Process *p, ThreadContext *tc);
154
155/// Target brk() handler: set brk address.
156SyscallReturn brkFunc(SyscallDesc *desc, int num,
157                      Process *p, ThreadContext *tc);
158
159/// Target close() handler.
160SyscallReturn closeFunc(SyscallDesc *desc, int num,
161                        Process *p, ThreadContext *tc);
162
163// Target read() handler.
164SyscallReturn readFunc(SyscallDesc *desc, int num,
165                       Process *p, ThreadContext *tc);
166
167/// Target write() handler.
168SyscallReturn writeFunc(SyscallDesc *desc, int num,
169                        Process *p, ThreadContext *tc);
170
171/// Target lseek() handler.
172SyscallReturn lseekFunc(SyscallDesc *desc, int num,
173                        Process *p, ThreadContext *tc);
174
175/// Target _llseek() handler.
176SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
177                          Process *p, ThreadContext *tc);
178
179/// Target munmap() handler.
180SyscallReturn munmapFunc(SyscallDesc *desc, int num,
181                         Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185                              Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189                         Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193                           Process *p, ThreadContext *tc,
194                           int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196                           Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200                           Process *p, ThreadContext *tc,
201                           int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203                         Process *p, ThreadContext *tc);
204
205/// Target mkdir() handler.
206SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
207                        Process *p, ThreadContext *tc);
208
209/// Target rename() handler.
210SyscallReturn renameFunc(SyscallDesc *desc, int num,
211                         Process *p, ThreadContext *tc);
212
213
214/// Target truncate() handler.
215SyscallReturn truncateFunc(SyscallDesc *desc, int num,
216                           Process *p, ThreadContext *tc);
217
218
219/// Target ftruncate() handler.
220SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
221                            Process *p, ThreadContext *tc);
222
223
224/// Target truncate64() handler.
225SyscallReturn truncate64Func(SyscallDesc *desc, int num,
226                             Process *p, ThreadContext *tc);
227
228/// Target ftruncate64() handler.
229SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
230                              Process *p, ThreadContext *tc);
231
232
233/// Target umask() handler.
234SyscallReturn umaskFunc(SyscallDesc *desc, int num,
235                        Process *p, ThreadContext *tc);
236
237/// Target gettid() handler.
238SyscallReturn gettidFunc(SyscallDesc *desc, int num,
239                         Process *p, ThreadContext *tc);
240
241/// Target chown() handler.
242SyscallReturn chownFunc(SyscallDesc *desc, int num,
243                        Process *p, ThreadContext *tc);
244
245/// Target setpgid() handler.
246SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
247                          Process *p, ThreadContext *tc);
248
249/// Target fchown() handler.
250SyscallReturn fchownFunc(SyscallDesc *desc, int num,
251                         Process *p, ThreadContext *tc);
252
253/// Target dup() handler.
254SyscallReturn dupFunc(SyscallDesc *desc, int num,
255                      Process *process, ThreadContext *tc);
256
257/// Target dup2() handler.
258SyscallReturn dup2Func(SyscallDesc *desc, int num,
259                       Process *process, ThreadContext *tc);
260
261/// Target fcntl() handler.
262SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
263                        Process *process, ThreadContext *tc);
264
265/// Target fcntl64() handler.
266SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
267                          Process *process, ThreadContext *tc);
268
269/// Target setuid() handler.
270SyscallReturn setuidFunc(SyscallDesc *desc, int num,
271                         Process *p, ThreadContext *tc);
272
273/// Target pipe() handler.
274SyscallReturn pipeFunc(SyscallDesc *desc, int num,
275                       Process *p, ThreadContext *tc);
276
277/// Internal pipe() handler.
278SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
279                       ThreadContext *tc, bool pseudoPipe);
280
281/// Target getpid() handler.
282SyscallReturn getpidFunc(SyscallDesc *desc, int num,
283                         Process *p, ThreadContext *tc);
284
285/// Target getuid() handler.
286SyscallReturn getuidFunc(SyscallDesc *desc, int num,
287                         Process *p, ThreadContext *tc);
288
289/// Target getgid() handler.
290SyscallReturn getgidFunc(SyscallDesc *desc, int num,
291                         Process *p, ThreadContext *tc);
292
293/// Target getppid() handler.
294SyscallReturn getppidFunc(SyscallDesc *desc, int num,
295                          Process *p, ThreadContext *tc);
296
297/// Target geteuid() handler.
298SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
299                          Process *p, ThreadContext *tc);
300
301/// Target getegid() handler.
302SyscallReturn getegidFunc(SyscallDesc *desc, int num,
303                          Process *p, ThreadContext *tc);
304
305/// Target access() handler
306SyscallReturn accessFunc(SyscallDesc *desc, int num,
307                         Process *p, ThreadContext *tc);
308SyscallReturn accessFunc(SyscallDesc *desc, int num,
309                         Process *p, ThreadContext *tc,
310                         int index);
311
312/// Futex system call
313/// Implemented by Daniel Sanchez
314/// Used by printf's in multi-threaded apps
315template <class OS>
316SyscallReturn
317futexFunc(SyscallDesc *desc, int callnum, Process *process,
318          ThreadContext *tc)
319{
320    using namespace std;
321
322    int index = 0;
323    Addr uaddr = process->getSyscallArg(tc, index);
324    int op = process->getSyscallArg(tc, index);
325    int val = process->getSyscallArg(tc, index);
326
327    /*
328     * Unsupported option that does not affect the correctness of the
329     * application. This is a performance optimization utilized by Linux.
330     */
331    op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
332
333    FutexMap &futex_map = tc->getSystemPtr()->futexMap;
334
335    if (OS::TGT_FUTEX_WAIT == op) {
336        // Ensure futex system call accessed atomically.
337        BufferArg buf(uaddr, sizeof(int));
338        buf.copyIn(tc->getMemProxy());
339        int mem_val = *(int*)buf.bufferPtr();
340
341        /*
342         * The value in memory at uaddr is not equal with the expected val
343         * (a different thread must have changed it before the system call was
344         * invoked). In this case, we need to throw an error.
345         */
346        if (val != mem_val)
347            return -OS::TGT_EWOULDBLOCK;
348
349        futex_map.suspend(uaddr, process->tgid(), tc);
350
351        return 0;
352    } else if (OS::TGT_FUTEX_WAKE == op) {
353        return futex_map.wakeup(uaddr, process->tgid(), val);
354    }
355
356    warn("futex: op %d not implemented; ignoring.", op);
357    return -ENOSYS;
358}
359
360
361/// Pseudo Funcs  - These functions use a different return convension,
362/// returning a second value in a register other than the normal return register
363SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
364                             Process *process, ThreadContext *tc);
365
366/// Target getpidPseudo() handler.
367SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
368                               Process *p, ThreadContext *tc);
369
370/// Target getuidPseudo() handler.
371SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
372                               Process *p, ThreadContext *tc);
373
374/// Target getgidPseudo() handler.
375SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
376                               Process *p, ThreadContext *tc);
377
378
379/// A readable name for 1,000,000, for converting microseconds to seconds.
380const int one_million = 1000000;
381/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
382const int one_billion = 1000000000;
383
384/// Approximate seconds since the epoch (1/1/1970).  About a billion,
385/// by my reckoning.  We want to keep this a constant (not use the
386/// real-world time) to keep simulations repeatable.
387const unsigned seconds_since_epoch = 1000000000;
388
389/// Helper function to convert current elapsed time to seconds and
390/// microseconds.
391template <class T1, class T2>
392void
393getElapsedTimeMicro(T1 &sec, T2 &usec)
394{
395    uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
396    sec = elapsed_usecs / one_million;
397    usec = elapsed_usecs % one_million;
398}
399
400/// Helper function to convert current elapsed time to seconds and
401/// nanoseconds.
402template <class T1, class T2>
403void
404getElapsedTimeNano(T1 &sec, T2 &nsec)
405{
406    uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
407    sec = elapsed_nsecs / one_billion;
408    nsec = elapsed_nsecs % one_billion;
409}
410
411//////////////////////////////////////////////////////////////////////
412//
413// The following emulation functions are generic, but need to be
414// templated to account for differences in types, constants, etc.
415//
416//////////////////////////////////////////////////////////////////////
417
418    typedef struct statfs hst_statfs;
419#if NO_STAT64
420    typedef struct stat hst_stat;
421    typedef struct stat hst_stat64;
422#else
423    typedef struct stat hst_stat;
424    typedef struct stat64 hst_stat64;
425#endif
426
427//// Helper function to convert a host stat buffer to a target stat
428//// buffer.  Also copies the target buffer out to the simulated
429//// memory space.  Used by stat(), fstat(), and lstat().
430
431template <typename target_stat, typename host_stat>
432void
433convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
434{
435    using namespace TheISA;
436
437    if (fakeTTY)
438        tgt->st_dev = 0xA;
439    else
440        tgt->st_dev = host->st_dev;
441    tgt->st_dev = TheISA::htog(tgt->st_dev);
442    tgt->st_ino = host->st_ino;
443    tgt->st_ino = TheISA::htog(tgt->st_ino);
444    tgt->st_mode = host->st_mode;
445    if (fakeTTY) {
446        // Claim to be a character device
447        tgt->st_mode &= ~S_IFMT;    // Clear S_IFMT
448        tgt->st_mode |= S_IFCHR;    // Set S_IFCHR
449    }
450    tgt->st_mode = TheISA::htog(tgt->st_mode);
451    tgt->st_nlink = host->st_nlink;
452    tgt->st_nlink = TheISA::htog(tgt->st_nlink);
453    tgt->st_uid = host->st_uid;
454    tgt->st_uid = TheISA::htog(tgt->st_uid);
455    tgt->st_gid = host->st_gid;
456    tgt->st_gid = TheISA::htog(tgt->st_gid);
457    if (fakeTTY)
458        tgt->st_rdev = 0x880d;
459    else
460        tgt->st_rdev = host->st_rdev;
461    tgt->st_rdev = TheISA::htog(tgt->st_rdev);
462    tgt->st_size = host->st_size;
463    tgt->st_size = TheISA::htog(tgt->st_size);
464    tgt->st_atimeX = host->st_atime;
465    tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
466    tgt->st_mtimeX = host->st_mtime;
467    tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
468    tgt->st_ctimeX = host->st_ctime;
469    tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
470    // Force the block size to be 8KB. This helps to ensure buffered io works
471    // consistently across different hosts.
472    tgt->st_blksize = 0x2000;
473    tgt->st_blksize = TheISA::htog(tgt->st_blksize);
474    tgt->st_blocks = host->st_blocks;
475    tgt->st_blocks = TheISA::htog(tgt->st_blocks);
476}
477
478// Same for stat64
479
480template <typename target_stat, typename host_stat64>
481void
482convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
483{
484    using namespace TheISA;
485
486    convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
487#if defined(STAT_HAVE_NSEC)
488    tgt->st_atime_nsec = host->st_atime_nsec;
489    tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
490    tgt->st_mtime_nsec = host->st_mtime_nsec;
491    tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
492    tgt->st_ctime_nsec = host->st_ctime_nsec;
493    tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
494#else
495    tgt->st_atime_nsec = 0;
496    tgt->st_mtime_nsec = 0;
497    tgt->st_ctime_nsec = 0;
498#endif
499}
500
501// Here are a couple of convenience functions
502template<class OS>
503void
504copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
505               hst_stat *host, bool fakeTTY = false)
506{
507    typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
508    tgt_stat_buf tgt(addr);
509    convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
510    tgt.copyOut(mem);
511}
512
513template<class OS>
514void
515copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
516                 hst_stat64 *host, bool fakeTTY = false)
517{
518    typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
519    tgt_stat_buf tgt(addr);
520    convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
521    tgt.copyOut(mem);
522}
523
524template <class OS>
525void
526copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
527                 hst_statfs *host)
528{
529    TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
530
531    tgt->f_type = TheISA::htog(host->f_type);
532#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
533    tgt->f_bsize = TheISA::htog(host->f_iosize);
534#else
535    tgt->f_bsize = TheISA::htog(host->f_bsize);
536#endif
537    tgt->f_blocks = TheISA::htog(host->f_blocks);
538    tgt->f_bfree = TheISA::htog(host->f_bfree);
539    tgt->f_bavail = TheISA::htog(host->f_bavail);
540    tgt->f_files = TheISA::htog(host->f_files);
541    tgt->f_ffree = TheISA::htog(host->f_ffree);
542    memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
543#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
544    tgt->f_namelen = TheISA::htog(host->f_namemax);
545    tgt->f_frsize = TheISA::htog(host->f_bsize);
546#elif defined(__APPLE__)
547    tgt->f_namelen = 0;
548    tgt->f_frsize = 0;
549#else
550    tgt->f_namelen = TheISA::htog(host->f_namelen);
551    tgt->f_frsize = TheISA::htog(host->f_frsize);
552#endif
553#if defined(__linux__)
554    memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
555#else
556    /*
557     * The fields are different sizes per OS. Don't bother with
558     * f_spare or f_reserved on non-Linux for now.
559     */
560    memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
561#endif
562
563    tgt.copyOut(mem);
564}
565
566/// Target ioctl() handler.  For the most part, programs call ioctl()
567/// only to find out if their stdout is a tty, to determine whether to
568/// do line or block buffering.  We always claim that output fds are
569/// not TTYs to provide repeatable results.
570template <class OS>
571SyscallReturn
572ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
573{
574    int index = 0;
575    int tgt_fd = p->getSyscallArg(tc, index);
576    unsigned req = p->getSyscallArg(tc, index);
577
578    DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
579
580    if (OS::isTtyReq(req))
581        return -ENOTTY;
582
583    auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
584    if (!dfdp)
585        return -EBADF;
586
587    /**
588     * If the driver is valid, issue the ioctl through it. Otherwise,
589     * there's an implicit assumption that the device is a TTY type and we
590     * return that we do not have a valid TTY.
591     */
592    EmulatedDriver *emul_driver = dfdp->getDriver();
593    if (emul_driver)
594        return emul_driver->ioctl(p, tc, req);
595
596    /**
597     * For lack of a better return code, return ENOTTY. Ideally, we should
598     * return something better here, but at least we issue the warning.
599     */
600    warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
601         tgt_fd, req, tc->pcState());
602    return -ENOTTY;
603}
604
605template <class OS>
606SyscallReturn
607openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
608         bool isopenat)
609{
610    int index = 0;
611    int tgt_dirfd = -1;
612
613    /**
614     * If using the openat variant, read in the target directory file
615     * descriptor from the simulated process.
616     */
617    if (isopenat)
618        tgt_dirfd = p->getSyscallArg(tc, index);
619
620    /**
621     * Retrieve the simulated process' memory proxy and then read in the path
622     * string from that memory space into the host's working memory space.
623     */
624    std::string path;
625    if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
626        return -EFAULT;
627
628#ifdef __CYGWIN32__
629    int host_flags = O_BINARY;
630#else
631    int host_flags = 0;
632#endif
633    /**
634     * Translate target flags into host flags. Flags exist which are not
635     * ported between architectures which can cause check failures.
636     */
637    int tgt_flags = p->getSyscallArg(tc, index);
638    for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
639        if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
640            tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
641            host_flags |= OS::openFlagTable[i].hostFlag;
642        }
643    }
644    if (tgt_flags) {
645        warn("open%s: cannot decode flags 0x%x",
646             isopenat ? "at" : "", tgt_flags);
647    }
648#ifdef __CYGWIN32__
649    host_flags |= O_BINARY;
650#endif
651
652    int mode = p->getSyscallArg(tc, index);
653
654    /**
655     * If the simulated process called open or openat with AT_FDCWD specified,
656     * take the current working directory value which was passed into the
657     * process class as a Python parameter and append the current path to
658     * create a full path.
659     * Otherwise, openat with a valid target directory file descriptor has
660     * been called. If the path option, which was passed in as a parameter,
661     * is not absolute, retrieve the directory file descriptor's path and
662     * prepend it to the path passed in as a parameter.
663     * In every case, we should have a full path (which is relevant to the
664     * host) to work with after this block has been passed.
665     */
666    if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
667        path = p->fullPath(path);
668    } else if (!startswith(path, "/")) {
669        std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
670        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
671        if (!ffdp)
672            return -EBADF;
673        path.insert(0, ffdp->getFileName());
674    }
675
676    /**
677     * Since this is an emulated environment, we create pseudo file
678     * descriptors for device requests that have been registered with
679     * the process class through Python; this allows us to create a file
680     * descriptor for subsequent ioctl or mmap calls.
681     */
682    if (startswith(path, "/dev/")) {
683        std::string filename = path.substr(strlen("/dev/"));
684        EmulatedDriver *drv = p->findDriver(filename);
685        if (drv) {
686            DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
687                            "driver open with path[%s]\n",
688                            isopenat ? "at" : "", path.c_str());
689            return drv->open(p, tc, mode, host_flags);
690        }
691        /**
692         * Fall through here for pass through to host devices, such
693         * as /dev/zero
694         */
695    }
696
697    /**
698     * Some special paths and files cannot be called on the host and need
699     * to be handled as special cases inside the simulator.
700     * If the full path that was created above does not match any of the
701     * special cases, pass it through to the open call on the host to let
702     * the host open the file on our behalf.
703     * If the host cannot open the file, return the host's error code back
704     * through the system call to the simulated process.
705     */
706    int sim_fd = -1;
707    std::vector<std::string> special_paths =
708            { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
709    for (auto entry : special_paths) {
710        if (startswith(path, entry))
711            sim_fd = OS::openSpecialFile(path, p, tc);
712    }
713    if (sim_fd == -1) {
714        sim_fd = open(path.c_str(), host_flags, mode);
715    }
716    if (sim_fd == -1) {
717        int local = -errno;
718        DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
719                        isopenat ? "at" : "", path.c_str());
720        return local;
721    }
722
723    /**
724     * The file was opened successfully and needs to be recorded in the
725     * process' file descriptor array so that it can be retrieved later.
726     * The target file descriptor that is chosen will be the lowest unused
727     * file descriptor.
728     * Return the indirect target file descriptor back to the simulated
729     * process to act as a handle for the opened file.
730     */
731    auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
732    int tgt_fd = p->fds->allocFD(ffdp);
733    DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
734                    isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
735    return tgt_fd;
736}
737
738/// Target open() handler.
739template <class OS>
740SyscallReturn
741openFunc(SyscallDesc *desc, int callnum, Process *process,
742         ThreadContext *tc)
743{
744    return openImpl<OS>(desc, callnum, process, tc, false);
745}
746
747/// Target openat() handler.
748template <class OS>
749SyscallReturn
750openatFunc(SyscallDesc *desc, int callnum, Process *process,
751           ThreadContext *tc)
752{
753    return openImpl<OS>(desc, callnum, process, tc, true);
754}
755
756/// Target unlinkat() handler.
757template <class OS>
758SyscallReturn
759unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
760             ThreadContext *tc)
761{
762    int index = 0;
763    int dirfd = process->getSyscallArg(tc, index);
764    if (dirfd != OS::TGT_AT_FDCWD)
765        warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
766
767    return unlinkHelper(desc, callnum, process, tc, 1);
768}
769
770/// Target facessat() handler
771template <class OS>
772SyscallReturn
773faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
774              ThreadContext *tc)
775{
776    int index = 0;
777    int dirfd = process->getSyscallArg(tc, index);
778    if (dirfd != OS::TGT_AT_FDCWD)
779        warn("faccessat: first argument not AT_FDCWD; unlikely to work");
780    return accessFunc(desc, callnum, process, tc, 1);
781}
782
783/// Target readlinkat() handler
784template <class OS>
785SyscallReturn
786readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
787               ThreadContext *tc)
788{
789    int index = 0;
790    int dirfd = process->getSyscallArg(tc, index);
791    if (dirfd != OS::TGT_AT_FDCWD)
792        warn("openat: first argument not AT_FDCWD; unlikely to work");
793    return readlinkFunc(desc, callnum, process, tc, 1);
794}
795
796/// Target renameat() handler.
797template <class OS>
798SyscallReturn
799renameatFunc(SyscallDesc *desc, int callnum, Process *process,
800             ThreadContext *tc)
801{
802    int index = 0;
803
804    int olddirfd = process->getSyscallArg(tc, index);
805    if (olddirfd != OS::TGT_AT_FDCWD)
806        warn("renameat: first argument not AT_FDCWD; unlikely to work");
807
808    std::string old_name;
809
810    if (!tc->getMemProxy().tryReadString(old_name,
811                                         process->getSyscallArg(tc, index)))
812        return -EFAULT;
813
814    int newdirfd = process->getSyscallArg(tc, index);
815    if (newdirfd != OS::TGT_AT_FDCWD)
816        warn("renameat: third argument not AT_FDCWD; unlikely to work");
817
818    std::string new_name;
819
820    if (!tc->getMemProxy().tryReadString(new_name,
821                                         process->getSyscallArg(tc, index)))
822        return -EFAULT;
823
824    // Adjust path for current working directory
825    old_name = process->fullPath(old_name);
826    new_name = process->fullPath(new_name);
827
828    int result = rename(old_name.c_str(), new_name.c_str());
829    return (result == -1) ? -errno : result;
830}
831
832/// Target sysinfo() handler.
833template <class OS>
834SyscallReturn
835sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
836            ThreadContext *tc)
837{
838
839    int index = 0;
840    TypedBufferArg<typename OS::tgt_sysinfo>
841        sysinfo(process->getSyscallArg(tc, index));
842
843    sysinfo->uptime = seconds_since_epoch;
844    sysinfo->totalram = process->system->memSize();
845    sysinfo->mem_unit = 1;
846
847    sysinfo.copyOut(tc->getMemProxy());
848
849    return 0;
850}
851
852/// Target chmod() handler.
853template <class OS>
854SyscallReturn
855chmodFunc(SyscallDesc *desc, int callnum, Process *process,
856          ThreadContext *tc)
857{
858    std::string path;
859
860    int index = 0;
861    if (!tc->getMemProxy().tryReadString(path,
862                process->getSyscallArg(tc, index))) {
863        return -EFAULT;
864    }
865
866    uint32_t mode = process->getSyscallArg(tc, index);
867    mode_t hostMode = 0;
868
869    // XXX translate mode flags via OS::something???
870    hostMode = mode;
871
872    // Adjust path for current working directory
873    path = process->fullPath(path);
874
875    // do the chmod
876    int result = chmod(path.c_str(), hostMode);
877    if (result < 0)
878        return -errno;
879
880    return 0;
881}
882
883
884/// Target fchmod() handler.
885template <class OS>
886SyscallReturn
887fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
888{
889    int index = 0;
890    int tgt_fd = p->getSyscallArg(tc, index);
891    uint32_t mode = p->getSyscallArg(tc, index);
892
893    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
894    if (!ffdp)
895        return -EBADF;
896    int sim_fd = ffdp->getSimFD();
897
898    mode_t hostMode = mode;
899
900    int result = fchmod(sim_fd, hostMode);
901
902    return (result < 0) ? -errno : 0;
903}
904
905/// Target mremap() handler.
906template <class OS>
907SyscallReturn
908mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
909{
910    int index = 0;
911    Addr start = process->getSyscallArg(tc, index);
912    uint64_t old_length = process->getSyscallArg(tc, index);
913    uint64_t new_length = process->getSyscallArg(tc, index);
914    uint64_t flags = process->getSyscallArg(tc, index);
915    uint64_t provided_address = 0;
916    bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
917
918    if (use_provided_address)
919        provided_address = process->getSyscallArg(tc, index);
920
921    if ((start % TheISA::PageBytes != 0) ||
922        (provided_address % TheISA::PageBytes != 0)) {
923        warn("mremap failing: arguments not page aligned");
924        return -EINVAL;
925    }
926
927    new_length = roundUp(new_length, TheISA::PageBytes);
928
929    if (new_length > old_length) {
930        std::shared_ptr<MemState> mem_state = process->memState;
931        Addr mmap_end = mem_state->getMmapEnd();
932
933        if ((start + old_length) == mmap_end &&
934            (!use_provided_address || provided_address == start)) {
935            uint64_t diff = new_length - old_length;
936            process->allocateMem(mmap_end, diff);
937            mem_state->setMmapEnd(mmap_end + diff);
938            return start;
939        } else {
940            if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
941                warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
942                return -ENOMEM;
943            } else {
944                uint64_t new_start = use_provided_address ?
945                    provided_address : mmap_end;
946                process->pTable->remap(start, old_length, new_start);
947                warn("mremapping to new vaddr %08p-%08p, adding %d\n",
948                     new_start, new_start + new_length,
949                     new_length - old_length);
950                // add on the remaining unallocated pages
951                process->allocateMem(new_start + old_length,
952                                     new_length - old_length,
953                                     use_provided_address /* clobber */);
954                if (!use_provided_address)
955                    mem_state->setMmapEnd(mmap_end + new_length);
956                if (use_provided_address &&
957                    new_start + new_length > mem_state->getMmapEnd()) {
958                    // something fishy going on here, at least notify the user
959                    // @todo: increase mmap_end?
960                    warn("mmap region limit exceeded with MREMAP_FIXED\n");
961                }
962                warn("returning %08p as start\n", new_start);
963                return new_start;
964            }
965        }
966    } else {
967        if (use_provided_address && provided_address != start)
968            process->pTable->remap(start, new_length, provided_address);
969        process->pTable->unmap(start + new_length, old_length - new_length);
970        return use_provided_address ? provided_address : start;
971    }
972}
973
974/// Target stat() handler.
975template <class OS>
976SyscallReturn
977statFunc(SyscallDesc *desc, int callnum, Process *process,
978         ThreadContext *tc)
979{
980    std::string path;
981
982    int index = 0;
983    if (!tc->getMemProxy().tryReadString(path,
984                process->getSyscallArg(tc, index))) {
985        return -EFAULT;
986    }
987    Addr bufPtr = process->getSyscallArg(tc, index);
988
989    // Adjust path for current working directory
990    path = process->fullPath(path);
991
992    struct stat hostBuf;
993    int result = stat(path.c_str(), &hostBuf);
994
995    if (result < 0)
996        return -errno;
997
998    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
999
1000    return 0;
1001}
1002
1003
1004/// Target stat64() handler.
1005template <class OS>
1006SyscallReturn
1007stat64Func(SyscallDesc *desc, int callnum, Process *process,
1008           ThreadContext *tc)
1009{
1010    std::string path;
1011
1012    int index = 0;
1013    if (!tc->getMemProxy().tryReadString(path,
1014                process->getSyscallArg(tc, index)))
1015        return -EFAULT;
1016    Addr bufPtr = process->getSyscallArg(tc, index);
1017
1018    // Adjust path for current working directory
1019    path = process->fullPath(path);
1020
1021#if NO_STAT64
1022    struct stat  hostBuf;
1023    int result = stat(path.c_str(), &hostBuf);
1024#else
1025    struct stat64 hostBuf;
1026    int result = stat64(path.c_str(), &hostBuf);
1027#endif
1028
1029    if (result < 0)
1030        return -errno;
1031
1032    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1033
1034    return 0;
1035}
1036
1037
1038/// Target fstatat64() handler.
1039template <class OS>
1040SyscallReturn
1041fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1042              ThreadContext *tc)
1043{
1044    int index = 0;
1045    int dirfd = process->getSyscallArg(tc, index);
1046    if (dirfd != OS::TGT_AT_FDCWD)
1047        warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1048
1049    std::string path;
1050    if (!tc->getMemProxy().tryReadString(path,
1051                process->getSyscallArg(tc, index)))
1052        return -EFAULT;
1053    Addr bufPtr = process->getSyscallArg(tc, index);
1054
1055    // Adjust path for current working directory
1056    path = process->fullPath(path);
1057
1058#if NO_STAT64
1059    struct stat  hostBuf;
1060    int result = stat(path.c_str(), &hostBuf);
1061#else
1062    struct stat64 hostBuf;
1063    int result = stat64(path.c_str(), &hostBuf);
1064#endif
1065
1066    if (result < 0)
1067        return -errno;
1068
1069    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1070
1071    return 0;
1072}
1073
1074
1075/// Target fstat64() handler.
1076template <class OS>
1077SyscallReturn
1078fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1079{
1080    int index = 0;
1081    int tgt_fd = p->getSyscallArg(tc, index);
1082    Addr bufPtr = p->getSyscallArg(tc, index);
1083
1084    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1085    if (!ffdp)
1086        return -EBADF;
1087    int sim_fd = ffdp->getSimFD();
1088
1089#if NO_STAT64
1090    struct stat  hostBuf;
1091    int result = fstat(sim_fd, &hostBuf);
1092#else
1093    struct stat64  hostBuf;
1094    int result = fstat64(sim_fd, &hostBuf);
1095#endif
1096
1097    if (result < 0)
1098        return -errno;
1099
1100    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1101
1102    return 0;
1103}
1104
1105
1106/// Target lstat() handler.
1107template <class OS>
1108SyscallReturn
1109lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1110          ThreadContext *tc)
1111{
1112    std::string path;
1113
1114    int index = 0;
1115    if (!tc->getMemProxy().tryReadString(path,
1116                process->getSyscallArg(tc, index))) {
1117        return -EFAULT;
1118    }
1119    Addr bufPtr = process->getSyscallArg(tc, index);
1120
1121    // Adjust path for current working directory
1122    path = process->fullPath(path);
1123
1124    struct stat hostBuf;
1125    int result = lstat(path.c_str(), &hostBuf);
1126
1127    if (result < 0)
1128        return -errno;
1129
1130    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1131
1132    return 0;
1133}
1134
1135/// Target lstat64() handler.
1136template <class OS>
1137SyscallReturn
1138lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1139            ThreadContext *tc)
1140{
1141    std::string path;
1142
1143    int index = 0;
1144    if (!tc->getMemProxy().tryReadString(path,
1145                process->getSyscallArg(tc, index))) {
1146        return -EFAULT;
1147    }
1148    Addr bufPtr = process->getSyscallArg(tc, index);
1149
1150    // Adjust path for current working directory
1151    path = process->fullPath(path);
1152
1153#if NO_STAT64
1154    struct stat hostBuf;
1155    int result = lstat(path.c_str(), &hostBuf);
1156#else
1157    struct stat64 hostBuf;
1158    int result = lstat64(path.c_str(), &hostBuf);
1159#endif
1160
1161    if (result < 0)
1162        return -errno;
1163
1164    copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1165
1166    return 0;
1167}
1168
1169/// Target fstat() handler.
1170template <class OS>
1171SyscallReturn
1172fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1173{
1174    int index = 0;
1175    int tgt_fd = p->getSyscallArg(tc, index);
1176    Addr bufPtr = p->getSyscallArg(tc, index);
1177
1178    DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1179
1180    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1181    if (!ffdp)
1182        return -EBADF;
1183    int sim_fd = ffdp->getSimFD();
1184
1185    struct stat hostBuf;
1186    int result = fstat(sim_fd, &hostBuf);
1187
1188    if (result < 0)
1189        return -errno;
1190
1191    copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1192
1193    return 0;
1194}
1195
1196
1197/// Target statfs() handler.
1198template <class OS>
1199SyscallReturn
1200statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1201           ThreadContext *tc)
1202{
1203#if NO_STATFS
1204    warn("Host OS cannot support calls to statfs. Ignoring syscall");
1205#else
1206    std::string path;
1207
1208    int index = 0;
1209    if (!tc->getMemProxy().tryReadString(path,
1210                process->getSyscallArg(tc, index))) {
1211        return -EFAULT;
1212    }
1213    Addr bufPtr = process->getSyscallArg(tc, index);
1214
1215    // Adjust path for current working directory
1216    path = process->fullPath(path);
1217
1218    struct statfs hostBuf;
1219    int result = statfs(path.c_str(), &hostBuf);
1220
1221    if (result < 0)
1222        return -errno;
1223
1224    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1225#endif
1226    return 0;
1227}
1228
1229template <class OS>
1230SyscallReturn
1231cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1232{
1233    int index = 0;
1234    TheISA::IntReg flags = p->getSyscallArg(tc, index);
1235    TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1236    Addr ptidPtr = p->getSyscallArg(tc, index);
1237    Addr ctidPtr = p->getSyscallArg(tc, index);
1238    Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1239
1240    if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1241        ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1242        ((flags & OS::TGT_CLONE_FS)     &&  (flags & OS::TGT_CLONE_NEWNS)) ||
1243        ((flags & OS::TGT_CLONE_NEWIPC) &&  (flags & OS::TGT_CLONE_SYSVSEM)) ||
1244        ((flags & OS::TGT_CLONE_NEWPID) &&  (flags & OS::TGT_CLONE_THREAD)) ||
1245        ((flags & OS::TGT_CLONE_VM)     && !(newStack)))
1246        return -EINVAL;
1247
1248    ThreadContext *ctc;
1249    if (!(ctc = p->findFreeContext()))
1250        fatal("clone: no spare thread context in system");
1251
1252    /**
1253     * Note that ProcessParams is generated by swig and there are no other
1254     * examples of how to create anything but this default constructor. The
1255     * fields are manually initialized instead of passing parameters to the
1256     * constructor.
1257     */
1258    ProcessParams *pp = new ProcessParams();
1259    pp->executable.assign(*(new std::string(p->progName())));
1260    pp->cmd.push_back(*(new std::string(p->progName())));
1261    pp->system = p->system;
1262    pp->cwd.assign(p->getcwd());
1263    pp->input.assign("stdin");
1264    pp->output.assign("stdout");
1265    pp->errout.assign("stderr");
1266    pp->uid = p->uid();
1267    pp->euid = p->euid();
1268    pp->gid = p->gid();
1269    pp->egid = p->egid();
1270
1271    /* Find the first free PID that's less than the maximum */
1272    std::set<int> const& pids = p->system->PIDs;
1273    int temp_pid = *pids.begin();
1274    do {
1275        temp_pid++;
1276    } while (pids.find(temp_pid) != pids.end());
1277    if (temp_pid >= System::maxPID)
1278        fatal("temp_pid is too large: %d", temp_pid);
1279
1280    pp->pid = temp_pid;
1281    pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1282    Process *cp = pp->create();
1283    delete pp;
1284
1285    Process *owner = ctc->getProcessPtr();
1286    ctc->setProcessPtr(cp);
1287    cp->assignThreadContext(ctc->contextId());
1288    owner->revokeThreadContext(ctc->contextId());
1289
1290    if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1291        BufferArg ptidBuf(ptidPtr, sizeof(long));
1292        long *ptid = (long *)ptidBuf.bufferPtr();
1293        *ptid = cp->pid();
1294        ptidBuf.copyOut(tc->getMemProxy());
1295    }
1296
1297    cp->initState();
1298    p->clone(tc, ctc, cp, flags);
1299
1300    if (flags & OS::TGT_CLONE_THREAD) {
1301        delete cp->sigchld;
1302        cp->sigchld = p->sigchld;
1303    } else if (flags & OS::TGT_SIGCHLD) {
1304        *cp->sigchld = true;
1305    }
1306
1307    if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1308        BufferArg ctidBuf(ctidPtr, sizeof(long));
1309        long *ctid = (long *)ctidBuf.bufferPtr();
1310        *ctid = cp->pid();
1311        ctidBuf.copyOut(ctc->getMemProxy());
1312    }
1313
1314    if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1315        cp->childClearTID = (uint64_t)ctidPtr;
1316
1317    ctc->clearArchRegs();
1318
1319#if THE_ISA == ALPHA_ISA
1320    TheISA::copyMiscRegs(tc, ctc);
1321#elif THE_ISA == SPARC_ISA
1322    TheISA::copyRegs(tc, ctc);
1323    ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1324    ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1325    ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1326    ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1327    ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1328    ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1329    ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1330    ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1331    for (int y = 8; y < 32; y++)
1332        ctc->setIntReg(y, tc->readIntReg(y));
1333#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA
1334    TheISA::copyRegs(tc, ctc);
1335#endif
1336
1337#if THE_ISA == X86_ISA
1338    if (flags & OS::TGT_CLONE_SETTLS) {
1339        ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1340        ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1341    }
1342#endif
1343
1344    if (newStack)
1345        ctc->setIntReg(TheISA::StackPointerReg, newStack);
1346
1347    cp->setSyscallReturn(ctc, 0);
1348
1349#if THE_ISA == ALPHA_ISA
1350    ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1351#elif THE_ISA == SPARC_ISA
1352    tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1353    ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1354#endif
1355
1356    ctc->pcState(tc->nextInstAddr());
1357    ctc->activate();
1358
1359    return cp->pid();
1360}
1361
1362/// Target fstatfs() handler.
1363template <class OS>
1364SyscallReturn
1365fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1366{
1367    int index = 0;
1368    int tgt_fd = p->getSyscallArg(tc, index);
1369    Addr bufPtr = p->getSyscallArg(tc, index);
1370
1371    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1372    if (!ffdp)
1373        return -EBADF;
1374    int sim_fd = ffdp->getSimFD();
1375
1376    struct statfs hostBuf;
1377    int result = fstatfs(sim_fd, &hostBuf);
1378
1379    if (result < 0)
1380        return -errno;
1381
1382    copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1383
1384    return 0;
1385}
1386
1387
1388/// Target writev() handler.
1389template <class OS>
1390SyscallReturn
1391writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1392{
1393    int index = 0;
1394    int tgt_fd = p->getSyscallArg(tc, index);
1395
1396    auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1397    if (!hbfdp)
1398        return -EBADF;
1399    int sim_fd = hbfdp->getSimFD();
1400
1401    SETranslatingPortProxy &prox = tc->getMemProxy();
1402    uint64_t tiov_base = p->getSyscallArg(tc, index);
1403    size_t count = p->getSyscallArg(tc, index);
1404    struct iovec hiov[count];
1405    for (size_t i = 0; i < count; ++i) {
1406        typename OS::tgt_iovec tiov;
1407
1408        prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1409                      (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1410        hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1411        hiov[i].iov_base = new char [hiov[i].iov_len];
1412        prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1413                      hiov[i].iov_len);
1414    }
1415
1416    int result = writev(sim_fd, hiov, count);
1417
1418    for (size_t i = 0; i < count; ++i)
1419        delete [] (char *)hiov[i].iov_base;
1420
1421    if (result < 0)
1422        return -errno;
1423
1424    return result;
1425}
1426
1427/// Real mmap handler.
1428template <class OS>
1429SyscallReturn
1430mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1431         bool is_mmap2)
1432{
1433    int index = 0;
1434    Addr start = p->getSyscallArg(tc, index);
1435    uint64_t length = p->getSyscallArg(tc, index);
1436    int prot = p->getSyscallArg(tc, index);
1437    int tgt_flags = p->getSyscallArg(tc, index);
1438    int tgt_fd = p->getSyscallArg(tc, index);
1439    int offset = p->getSyscallArg(tc, index);
1440
1441    if (is_mmap2)
1442        offset *= TheISA::PageBytes;
1443
1444    if (start & (TheISA::PageBytes - 1) ||
1445        offset & (TheISA::PageBytes - 1) ||
1446        (tgt_flags & OS::TGT_MAP_PRIVATE &&
1447         tgt_flags & OS::TGT_MAP_SHARED) ||
1448        (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1449         !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1450        !length) {
1451        return -EINVAL;
1452    }
1453
1454    if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1455        // With shared mmaps, there are two cases to consider:
1456        // 1) anonymous: writes should modify the mapping and this should be
1457        // visible to observers who share the mapping. Currently, it's
1458        // difficult to update the shared mapping because there's no
1459        // structure which maintains information about the which virtual
1460        // memory areas are shared. If that structure existed, it would be
1461        // possible to make the translations point to the same frames.
1462        // 2) file-backed: writes should modify the mapping and the file
1463        // which is backed by the mapping. The shared mapping problem is the
1464        // same as what was mentioned about the anonymous mappings. For
1465        // file-backed mappings, the writes to the file are difficult
1466        // because it requires syncing what the mapping holds with the file
1467        // that resides on the host system. So, any write on a real system
1468        // would cause the change to be propagated to the file mapping at
1469        // some point in the future (the inode is tracked along with the
1470        // mapping). This isn't guaranteed to always happen, but it usually
1471        // works well enough. The guarantee is provided by the msync system
1472        // call. We could force the change through with shared mappings with
1473        // a call to msync, but that again would require more information
1474        // than we currently maintain.
1475        warn("mmap: writing to shared mmap region is currently "
1476             "unsupported. The write succeeds on the target, but it "
1477             "will not be propagated to the host or shared mappings");
1478    }
1479
1480    length = roundUp(length, TheISA::PageBytes);
1481
1482    int sim_fd = -1;
1483    uint8_t *pmap = nullptr;
1484    if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1485        std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1486
1487        auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1488        if (dfdp) {
1489            EmulatedDriver *emul_driver = dfdp->getDriver();
1490            return emul_driver->mmap(p, tc, start, length, prot,
1491                                     tgt_flags, tgt_fd, offset);
1492        }
1493
1494        auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1495        if (!ffdp)
1496            return -EBADF;
1497        sim_fd = ffdp->getSimFD();
1498
1499        pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1500                                    sim_fd, offset);
1501
1502        if (pmap == (decltype(pmap))-1) {
1503            warn("mmap: failed to map file into host address space");
1504            return -errno;
1505        }
1506    }
1507
1508    // Extend global mmap region if necessary. Note that we ignore the
1509    // start address unless MAP_FIXED is specified.
1510    if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1511        std::shared_ptr<MemState> mem_state = p->memState;
1512        Addr mmap_end = mem_state->getMmapEnd();
1513
1514        start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1515        mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1516
1517        mem_state->setMmapEnd(mmap_end);
1518    }
1519
1520    DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1521                    start, start + length - 1);
1522
1523    // We only allow mappings to overwrite existing mappings if
1524    // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1525    // because we ignore the start hint if TGT_MAP_FIXED is not set.
1526    int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1527    if (clobber) {
1528        for (auto tc : p->system->threadContexts) {
1529            // If we might be overwriting old mappings, we need to
1530            // invalidate potentially stale mappings out of the TLBs.
1531            tc->getDTBPtr()->flushAll();
1532            tc->getITBPtr()->flushAll();
1533        }
1534    }
1535
1536    // Allocate physical memory and map it in. If the page table is already
1537    // mapped and clobber is not set, the simulator will issue throw a
1538    // fatal and bail out of the simulation.
1539    p->allocateMem(start, length, clobber);
1540
1541    // Transfer content into target address space.
1542    SETranslatingPortProxy &tp = tc->getMemProxy();
1543    if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1544        // In general, we should zero the mapped area for anonymous mappings,
1545        // with something like:
1546        //     tp.memsetBlob(start, 0, length);
1547        // However, given that we don't support sparse mappings, and
1548        // some applications can map a couple of gigabytes of space
1549        // (intending sparse usage), that can get painfully expensive.
1550        // Fortunately, since we don't properly implement munmap either,
1551        // there's no danger of remapping used memory, so for now all
1552        // newly mapped memory should already be zeroed so we can skip it.
1553    } else {
1554        // It is possible to mmap an area larger than a file, however
1555        // accessing unmapped portions the system triggers a "Bus error"
1556        // on the host. We must know when to stop copying the file from
1557        // the host into the target address space.
1558        struct stat file_stat;
1559        if (fstat(sim_fd, &file_stat) > 0)
1560            fatal("mmap: cannot stat file");
1561
1562        // Copy the portion of the file that is resident. This requires
1563        // checking both the mmap size and the filesize that we are
1564        // trying to mmap into this space; the mmap size also depends
1565        // on the specified offset into the file.
1566        uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1567                                 length);
1568        tp.writeBlob(start, pmap, size);
1569
1570        // Cleanup the mmap region before exiting this function.
1571        munmap(pmap, length);
1572
1573        // Maintain the symbol table for dynamic executables.
1574        // The loader will call mmap to map the images into its address
1575        // space and we intercept that here. We can verify that we are
1576        // executing inside the loader by checking the program counter value.
1577        // XXX: with multiprogrammed workloads or multi-node configurations,
1578        // this will not work since there is a single global symbol table.
1579        ObjectFile *interpreter = p->getInterpreter();
1580        if (interpreter) {
1581            Addr text_start = interpreter->textBase();
1582            Addr text_end = text_start + interpreter->textSize();
1583
1584            Addr pc = tc->pcState().pc();
1585
1586            if (pc >= text_start && pc < text_end) {
1587                std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1588                auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1589                ObjectFile *lib = createObjectFile(ffdp->getFileName());
1590
1591                if (lib) {
1592                    lib->loadAllSymbols(debugSymbolTable,
1593                                        lib->textBase(), start);
1594                }
1595            }
1596        }
1597
1598        // Note that we do not zero out the remainder of the mapping. This
1599        // is done by a real system, but it probably will not affect
1600        // execution (hopefully).
1601    }
1602
1603    return start;
1604}
1605
1606template <class OS>
1607SyscallReturn
1608pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1609{
1610    int index = 0;
1611    int tgt_fd = p->getSyscallArg(tc, index);
1612    Addr bufPtr = p->getSyscallArg(tc, index);
1613    int nbytes = p->getSyscallArg(tc, index);
1614    int offset = p->getSyscallArg(tc, index);
1615
1616    auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1617    if (!ffdp)
1618        return -EBADF;
1619    int sim_fd = ffdp->getSimFD();
1620
1621    BufferArg bufArg(bufPtr, nbytes);
1622    bufArg.copyIn(tc->getMemProxy());
1623
1624    int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1625
1626    return (bytes_written == -1) ? -errno : bytes_written;
1627}
1628
1629/// Target mmap() handler.
1630template <class OS>
1631SyscallReturn
1632mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1633{
1634    return mmapImpl<OS>(desc, num, p, tc, false);
1635}
1636
1637/// Target mmap2() handler.
1638template <class OS>
1639SyscallReturn
1640mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1641{
1642    return mmapImpl<OS>(desc, num, p, tc, true);
1643}
1644
1645/// Target getrlimit() handler.
1646template <class OS>
1647SyscallReturn
1648getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1649              ThreadContext *tc)
1650{
1651    int index = 0;
1652    unsigned resource = process->getSyscallArg(tc, index);
1653    TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1654
1655    switch (resource) {
1656      case OS::TGT_RLIMIT_STACK:
1657        // max stack size in bytes: make up a number (8MB for now)
1658        rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1659        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1660        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1661        break;
1662
1663      case OS::TGT_RLIMIT_DATA:
1664        // max data segment size in bytes: make up a number
1665        rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1666        rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1667        rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1668        break;
1669
1670      default:
1671        warn("getrlimit: unimplemented resource %d", resource);
1672        return -EINVAL;
1673        break;
1674    }
1675
1676    rlp.copyOut(tc->getMemProxy());
1677    return 0;
1678}
1679
1680/// Target clock_gettime() function.
1681template <class OS>
1682SyscallReturn
1683clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1684{
1685    int index = 1;
1686    //int clk_id = p->getSyscallArg(tc, index);
1687    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1688
1689    getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1690    tp->tv_sec += seconds_since_epoch;
1691    tp->tv_sec = TheISA::htog(tp->tv_sec);
1692    tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1693
1694    tp.copyOut(tc->getMemProxy());
1695
1696    return 0;
1697}
1698
1699/// Target clock_getres() function.
1700template <class OS>
1701SyscallReturn
1702clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1703{
1704    int index = 1;
1705    TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1706
1707    // Set resolution at ns, which is what clock_gettime() returns
1708    tp->tv_sec = 0;
1709    tp->tv_nsec = 1;
1710
1711    tp.copyOut(tc->getMemProxy());
1712
1713    return 0;
1714}
1715
1716/// Target gettimeofday() handler.
1717template <class OS>
1718SyscallReturn
1719gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1720                 ThreadContext *tc)
1721{
1722    int index = 0;
1723    TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1724
1725    getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1726    tp->tv_sec += seconds_since_epoch;
1727    tp->tv_sec = TheISA::htog(tp->tv_sec);
1728    tp->tv_usec = TheISA::htog(tp->tv_usec);
1729
1730    tp.copyOut(tc->getMemProxy());
1731
1732    return 0;
1733}
1734
1735
1736/// Target utimes() handler.
1737template <class OS>
1738SyscallReturn
1739utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1740           ThreadContext *tc)
1741{
1742    std::string path;
1743
1744    int index = 0;
1745    if (!tc->getMemProxy().tryReadString(path,
1746                process->getSyscallArg(tc, index))) {
1747        return -EFAULT;
1748    }
1749
1750    TypedBufferArg<typename OS::timeval [2]>
1751        tp(process->getSyscallArg(tc, index));
1752    tp.copyIn(tc->getMemProxy());
1753
1754    struct timeval hostTimeval[2];
1755    for (int i = 0; i < 2; ++i) {
1756        hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1757        hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1758    }
1759
1760    // Adjust path for current working directory
1761    path = process->fullPath(path);
1762
1763    int result = utimes(path.c_str(), hostTimeval);
1764
1765    if (result < 0)
1766        return -errno;
1767
1768    return 0;
1769}
1770
1771template <class OS>
1772SyscallReturn
1773execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1774{
1775    desc->setFlags(0);
1776
1777    int index = 0;
1778    std::string path;
1779    SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1780    if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1781        return -EFAULT;
1782
1783    if (access(path.c_str(), F_OK) == -1)
1784        return -EACCES;
1785
1786    auto read_in = [](std::vector<std::string> & vect,
1787                      SETranslatingPortProxy & mem_proxy,
1788                      Addr mem_loc)
1789    {
1790        for (int inc = 0; ; inc++) {
1791            BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1792            b.copyIn(mem_proxy);
1793
1794            if (!*(Addr*)b.bufferPtr())
1795                break;
1796
1797            vect.push_back(std::string());
1798            mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1799        }
1800    };
1801
1802    /**
1803     * Note that ProcessParams is generated by swig and there are no other
1804     * examples of how to create anything but this default constructor. The
1805     * fields are manually initialized instead of passing parameters to the
1806     * constructor.
1807     */
1808    ProcessParams *pp = new ProcessParams();
1809    pp->executable = path;
1810    Addr argv_mem_loc = p->getSyscallArg(tc, index);
1811    read_in(pp->cmd, mem_proxy, argv_mem_loc);
1812    Addr envp_mem_loc = p->getSyscallArg(tc, index);
1813    read_in(pp->env, mem_proxy, envp_mem_loc);
1814    pp->uid = p->uid();
1815    pp->egid = p->egid();
1816    pp->euid = p->euid();
1817    pp->gid = p->gid();
1818    pp->ppid = p->ppid();
1819    pp->pid = p->pid();
1820    pp->input.assign("cin");
1821    pp->output.assign("cout");
1822    pp->errout.assign("cerr");
1823    pp->cwd.assign(p->getcwd());
1824    pp->system = p->system;
1825    /**
1826     * Prevent process object creation with identical PIDs (which will trip
1827     * a fatal check in Process constructor). The execve call is supposed to
1828     * take over the currently executing process' identity but replace
1829     * whatever it is doing with a new process image. Instead of hijacking
1830     * the process object in the simulator, we create a new process object
1831     * and bind to the previous process' thread below (hijacking the thread).
1832     */
1833    p->system->PIDs.erase(p->pid());
1834    Process *new_p = pp->create();
1835    delete pp;
1836
1837    /**
1838     * Work through the file descriptor array and close any files marked
1839     * close-on-exec.
1840     */
1841    new_p->fds = p->fds;
1842    for (int i = 0; i < new_p->fds->getSize(); i++) {
1843        std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1844        if (fdep && fdep->getCOE())
1845            new_p->fds->closeFDEntry(i);
1846    }
1847
1848    *new_p->sigchld = true;
1849
1850    delete p;
1851    tc->clearArchRegs();
1852    tc->setProcessPtr(new_p);
1853    new_p->assignThreadContext(tc->contextId());
1854    new_p->initState();
1855    tc->activate();
1856    TheISA::PCState pcState = tc->pcState();
1857    tc->setNPC(pcState.instAddr());
1858
1859    desc->setFlags(SyscallDesc::SuppressReturnValue);
1860    return 0;
1861}
1862
1863/// Target getrusage() function.
1864template <class OS>
1865SyscallReturn
1866getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1867              ThreadContext *tc)
1868{
1869    int index = 0;
1870    int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1871    TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1872
1873    rup->ru_utime.tv_sec = 0;
1874    rup->ru_utime.tv_usec = 0;
1875    rup->ru_stime.tv_sec = 0;
1876    rup->ru_stime.tv_usec = 0;
1877    rup->ru_maxrss = 0;
1878    rup->ru_ixrss = 0;
1879    rup->ru_idrss = 0;
1880    rup->ru_isrss = 0;
1881    rup->ru_minflt = 0;
1882    rup->ru_majflt = 0;
1883    rup->ru_nswap = 0;
1884    rup->ru_inblock = 0;
1885    rup->ru_oublock = 0;
1886    rup->ru_msgsnd = 0;
1887    rup->ru_msgrcv = 0;
1888    rup->ru_nsignals = 0;
1889    rup->ru_nvcsw = 0;
1890    rup->ru_nivcsw = 0;
1891
1892    switch (who) {
1893      case OS::TGT_RUSAGE_SELF:
1894        getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1895        rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1896        rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1897        break;
1898
1899      case OS::TGT_RUSAGE_CHILDREN:
1900        // do nothing.  We have no child processes, so they take no time.
1901        break;
1902
1903      default:
1904        // don't really handle THREAD or CHILDREN, but just warn and
1905        // plow ahead
1906        warn("getrusage() only supports RUSAGE_SELF.  Parameter %d ignored.",
1907             who);
1908    }
1909
1910    rup.copyOut(tc->getMemProxy());
1911
1912    return 0;
1913}
1914
1915/// Target times() function.
1916template <class OS>
1917SyscallReturn
1918timesFunc(SyscallDesc *desc, int callnum, Process *process,
1919          ThreadContext *tc)
1920{
1921    int index = 0;
1922    TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1923
1924    // Fill in the time structure (in clocks)
1925    int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1926    bufp->tms_utime = clocks;
1927    bufp->tms_stime = 0;
1928    bufp->tms_cutime = 0;
1929    bufp->tms_cstime = 0;
1930
1931    // Convert to host endianness
1932    bufp->tms_utime = TheISA::htog(bufp->tms_utime);
1933
1934    // Write back
1935    bufp.copyOut(tc->getMemProxy());
1936
1937    // Return clock ticks since system boot
1938    return clocks;
1939}
1940
1941/// Target time() function.
1942template <class OS>
1943SyscallReturn
1944timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1945{
1946    typename OS::time_t sec, usec;
1947    getElapsedTimeMicro(sec, usec);
1948    sec += seconds_since_epoch;
1949
1950    int index = 0;
1951    Addr taddr = (Addr)process->getSyscallArg(tc, index);
1952    if (taddr != 0) {
1953        typename OS::time_t t = sec;
1954        t = TheISA::htog(t);
1955        SETranslatingPortProxy &p = tc->getMemProxy();
1956        p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
1957    }
1958    return sec;
1959}
1960
1961template <class OS>
1962SyscallReturn
1963tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
1964{
1965    int index = 0;
1966    int tgid = process->getSyscallArg(tc, index);
1967    int tid = process->getSyscallArg(tc, index);
1968    int sig = process->getSyscallArg(tc, index);
1969
1970    /**
1971     * This system call is intended to allow killing a specific thread
1972     * within an arbitrary thread group if sanctioned with permission checks.
1973     * It's usually true that threads share the termination signal as pointed
1974     * out by the pthread_kill man page and this seems to be the intended
1975     * usage. Due to this being an emulated environment, assume the following:
1976     * Threads are allowed to call tgkill because the EUID for all threads
1977     * should be the same. There is no signal handling mechanism for kernel
1978     * registration of signal handlers since signals are poorly supported in
1979     * emulation mode. Since signal handlers cannot be registered, all
1980     * threads within in a thread group must share the termination signal.
1981     * We never exhaust PIDs so there's no chance of finding the wrong one
1982     * due to PID rollover.
1983     */
1984
1985    System *sys = tc->getSystemPtr();
1986    Process *tgt_proc = nullptr;
1987    for (int i = 0; i < sys->numContexts(); i++) {
1988        Process *temp = sys->threadContexts[i]->getProcessPtr();
1989        if (temp->pid() == tid) {
1990            tgt_proc = temp;
1991            break;
1992        }
1993    }
1994
1995    if (sig != 0 || sig != OS::TGT_SIGABRT)
1996        return -EINVAL;
1997
1998    if (tgt_proc == nullptr)
1999        return -ESRCH;
2000
2001    if (tgid != -1 && tgt_proc->tgid() != tgid)
2002        return -ESRCH;
2003
2004    if (sig == OS::TGT_SIGABRT)
2005        exitGroupFunc(desc, 252, process, tc);
2006
2007    return 0;
2008}
2009
2010
2011#endif // __SIM_SYSCALL_EMUL_HH__
2012