syscall_emul.hh revision 11911
1/* 2 * Copyright (c) 2012-2013, 2015 ARM Limited 3 * Copyright (c) 2015 Advanced Micro Devices, Inc. 4 * All rights reserved 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2003-2005 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Steve Reinhardt 42 * Kevin Lim 43 */ 44 45#ifndef __SIM_SYSCALL_EMUL_HH__ 46#define __SIM_SYSCALL_EMUL_HH__ 47 48#define NO_STAT64 (defined(__APPLE__) || defined(__OpenBSD__) || \ 49 defined(__FreeBSD__) || defined(__CYGWIN__) || \ 50 defined(__NetBSD__)) 51 52#define NO_STATFS (defined(__APPLE__) || defined(__OpenBSD__) || \ 53 defined(__FreeBSD__) || defined(__NetBSD__)) 54 55#define NO_FALLOCATE (defined(__APPLE__) || defined(__OpenBSD__) || \ 56 defined(__FreeBSD__) || defined(__NetBSD__)) 57 58/// 59/// @file syscall_emul.hh 60/// 61/// This file defines objects used to emulate syscalls from the target 62/// application on the host machine. 63 64#ifdef __CYGWIN32__ 65#include <sys/fcntl.h> 66 67#endif 68#include <fcntl.h> 69#include <sys/mman.h> 70#include <sys/stat.h> 71#if (NO_STATFS == 0) 72#include <sys/statfs.h> 73#else 74#include <sys/mount.h> 75#endif 76#include <sys/time.h> 77#include <sys/uio.h> 78#include <unistd.h> 79 80#include <cerrno> 81#include <memory> 82#include <string> 83 84#include "arch/utility.hh" 85#include "base/intmath.hh" 86#include "base/loader/object_file.hh" 87#include "base/misc.hh" 88#include "base/trace.hh" 89#include "base/types.hh" 90#include "config/the_isa.hh" 91#include "cpu/base.hh" 92#include "cpu/thread_context.hh" 93#include "mem/page_table.hh" 94#include "params/Process.hh" 95#include "sim/emul_driver.hh" 96#include "sim/futex_map.hh" 97#include "sim/process.hh" 98#include "sim/syscall_debug_macros.hh" 99#include "sim/syscall_desc.hh" 100#include "sim/syscall_emul_buf.hh" 101#include "sim/syscall_return.hh" 102 103////////////////////////////////////////////////////////////////////// 104// 105// The following emulation functions are generic enough that they 106// don't need to be recompiled for different emulated OS's. They are 107// defined in sim/syscall_emul.cc. 108// 109////////////////////////////////////////////////////////////////////// 110 111 112/// Handler for unimplemented syscalls that we haven't thought about. 113SyscallReturn unimplementedFunc(SyscallDesc *desc, int num, 114 Process *p, ThreadContext *tc); 115 116/// Handler for unimplemented syscalls that we never intend to 117/// implement (signal handling, etc.) and should not affect the correct 118/// behavior of the program. Print a warning only if the appropriate 119/// trace flag is enabled. Return success to the target program. 120SyscallReturn ignoreFunc(SyscallDesc *desc, int num, 121 Process *p, ThreadContext *tc); 122 123// Target fallocateFunc() handler. 124SyscallReturn fallocateFunc(SyscallDesc *desc, int num, 125 Process *p, ThreadContext *tc); 126 127/// Target exit() handler: terminate current context. 128SyscallReturn exitFunc(SyscallDesc *desc, int num, 129 Process *p, ThreadContext *tc); 130 131/// Target exit_group() handler: terminate simulation. (exit all threads) 132SyscallReturn exitGroupFunc(SyscallDesc *desc, int num, 133 Process *p, ThreadContext *tc); 134 135/// Target set_tid_address() handler. 136SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num, 137 Process *p, ThreadContext *tc); 138 139/// Target getpagesize() handler. 140SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num, 141 Process *p, ThreadContext *tc); 142 143/// Target brk() handler: set brk address. 144SyscallReturn brkFunc(SyscallDesc *desc, int num, 145 Process *p, ThreadContext *tc); 146 147/// Target close() handler. 148SyscallReturn closeFunc(SyscallDesc *desc, int num, 149 Process *p, ThreadContext *tc); 150 151// Target read() handler. 152SyscallReturn readFunc(SyscallDesc *desc, int num, 153 Process *p, ThreadContext *tc); 154 155/// Target write() handler. 156SyscallReturn writeFunc(SyscallDesc *desc, int num, 157 Process *p, ThreadContext *tc); 158 159/// Target lseek() handler. 160SyscallReturn lseekFunc(SyscallDesc *desc, int num, 161 Process *p, ThreadContext *tc); 162 163/// Target _llseek() handler. 164SyscallReturn _llseekFunc(SyscallDesc *desc, int num, 165 Process *p, ThreadContext *tc); 166 167/// Target munmap() handler. 168SyscallReturn munmapFunc(SyscallDesc *desc, int num, 169 Process *p, ThreadContext *tc); 170 171/// Target gethostname() handler. 172SyscallReturn gethostnameFunc(SyscallDesc *desc, int num, 173 Process *p, ThreadContext *tc); 174 175/// Target getcwd() handler. 176SyscallReturn getcwdFunc(SyscallDesc *desc, int num, 177 Process *p, ThreadContext *tc); 178 179/// Target readlink() handler. 180SyscallReturn readlinkFunc(SyscallDesc *desc, int num, 181 Process *p, ThreadContext *tc, 182 int index = 0); 183SyscallReturn readlinkFunc(SyscallDesc *desc, int num, 184 Process *p, ThreadContext *tc); 185 186/// Target unlink() handler. 187SyscallReturn unlinkHelper(SyscallDesc *desc, int num, 188 Process *p, ThreadContext *tc, 189 int index); 190SyscallReturn unlinkFunc(SyscallDesc *desc, int num, 191 Process *p, ThreadContext *tc); 192 193/// Target mkdir() handler. 194SyscallReturn mkdirFunc(SyscallDesc *desc, int num, 195 Process *p, ThreadContext *tc); 196 197/// Target rename() handler. 198SyscallReturn renameFunc(SyscallDesc *desc, int num, 199 Process *p, ThreadContext *tc); 200 201 202/// Target truncate() handler. 203SyscallReturn truncateFunc(SyscallDesc *desc, int num, 204 Process *p, ThreadContext *tc); 205 206 207/// Target ftruncate() handler. 208SyscallReturn ftruncateFunc(SyscallDesc *desc, int num, 209 Process *p, ThreadContext *tc); 210 211 212/// Target truncate64() handler. 213SyscallReturn truncate64Func(SyscallDesc *desc, int num, 214 Process *p, ThreadContext *tc); 215 216/// Target ftruncate64() handler. 217SyscallReturn ftruncate64Func(SyscallDesc *desc, int num, 218 Process *p, ThreadContext *tc); 219 220 221/// Target umask() handler. 222SyscallReturn umaskFunc(SyscallDesc *desc, int num, 223 Process *p, ThreadContext *tc); 224 225/// Target gettid() handler. 226SyscallReturn gettidFunc(SyscallDesc *desc, int num, 227 Process *p, ThreadContext *tc); 228 229/// Target chown() handler. 230SyscallReturn chownFunc(SyscallDesc *desc, int num, 231 Process *p, ThreadContext *tc); 232 233/// Target setpgid() handler. 234SyscallReturn setpgidFunc(SyscallDesc *desc, int num, 235 Process *p, ThreadContext *tc); 236 237/// Target fchown() handler. 238SyscallReturn fchownFunc(SyscallDesc *desc, int num, 239 Process *p, ThreadContext *tc); 240 241/// Target dup() handler. 242SyscallReturn dupFunc(SyscallDesc *desc, int num, 243 Process *process, ThreadContext *tc); 244 245/// Target dup2() handler. 246SyscallReturn dup2Func(SyscallDesc *desc, int num, 247 Process *process, ThreadContext *tc); 248 249/// Target fcntl() handler. 250SyscallReturn fcntlFunc(SyscallDesc *desc, int num, 251 Process *process, ThreadContext *tc); 252 253/// Target fcntl64() handler. 254SyscallReturn fcntl64Func(SyscallDesc *desc, int num, 255 Process *process, ThreadContext *tc); 256 257/// Target setuid() handler. 258SyscallReturn setuidFunc(SyscallDesc *desc, int num, 259 Process *p, ThreadContext *tc); 260 261/// Target pipe() handler. 262SyscallReturn pipeFunc(SyscallDesc *desc, int num, 263 Process *p, ThreadContext *tc); 264 265/// Internal pipe() handler. 266SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p, 267 ThreadContext *tc, bool pseudoPipe); 268 269/// Target getpid() handler. 270SyscallReturn getpidFunc(SyscallDesc *desc, int num, 271 Process *p, ThreadContext *tc); 272 273/// Target getuid() handler. 274SyscallReturn getuidFunc(SyscallDesc *desc, int num, 275 Process *p, ThreadContext *tc); 276 277/// Target getgid() handler. 278SyscallReturn getgidFunc(SyscallDesc *desc, int num, 279 Process *p, ThreadContext *tc); 280 281/// Target getppid() handler. 282SyscallReturn getppidFunc(SyscallDesc *desc, int num, 283 Process *p, ThreadContext *tc); 284 285/// Target geteuid() handler. 286SyscallReturn geteuidFunc(SyscallDesc *desc, int num, 287 Process *p, ThreadContext *tc); 288 289/// Target getegid() handler. 290SyscallReturn getegidFunc(SyscallDesc *desc, int num, 291 Process *p, ThreadContext *tc); 292 293/// Target access() handler 294SyscallReturn accessFunc(SyscallDesc *desc, int num, 295 Process *p, ThreadContext *tc); 296SyscallReturn accessFunc(SyscallDesc *desc, int num, 297 Process *p, ThreadContext *tc, 298 int index); 299 300/// Futex system call 301/// Implemented by Daniel Sanchez 302/// Used by printf's in multi-threaded apps 303template <class OS> 304SyscallReturn 305futexFunc(SyscallDesc *desc, int callnum, Process *process, 306 ThreadContext *tc) 307{ 308 using namespace std; 309 310 int index = 0; 311 Addr uaddr = process->getSyscallArg(tc, index); 312 int op = process->getSyscallArg(tc, index); 313 int val = process->getSyscallArg(tc, index); 314 315 /* 316 * Unsupported option that does not affect the correctness of the 317 * application. This is a performance optimization utilized by Linux. 318 */ 319 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG; 320 321 FutexMap &futex_map = tc->getSystemPtr()->futexMap; 322 323 if (OS::TGT_FUTEX_WAIT == op) { 324 // Ensure futex system call accessed atomically. 325 BufferArg buf(uaddr, sizeof(int)); 326 buf.copyIn(tc->getMemProxy()); 327 int mem_val = *(int*)buf.bufferPtr(); 328 329 /* 330 * The value in memory at uaddr is not equal with the expected val 331 * (a different thread must have changed it before the system call was 332 * invoked). In this case, we need to throw an error. 333 */ 334 if (val != mem_val) 335 return -OS::TGT_EWOULDBLOCK; 336 337 futex_map.suspend(uaddr, process->tgid(), tc); 338 339 return 0; 340 } else if (OS::TGT_FUTEX_WAKE == op) { 341 return futex_map.wakeup(uaddr, process->tgid(), val); 342 } 343 344 warn("futex: op %d not implemented; ignoring.", op); 345 return -ENOSYS; 346} 347 348 349/// Pseudo Funcs - These functions use a different return convension, 350/// returning a second value in a register other than the normal return register 351SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num, 352 Process *process, ThreadContext *tc); 353 354/// Target getpidPseudo() handler. 355SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num, 356 Process *p, ThreadContext *tc); 357 358/// Target getuidPseudo() handler. 359SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num, 360 Process *p, ThreadContext *tc); 361 362/// Target getgidPseudo() handler. 363SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num, 364 Process *p, ThreadContext *tc); 365 366 367/// A readable name for 1,000,000, for converting microseconds to seconds. 368const int one_million = 1000000; 369/// A readable name for 1,000,000,000, for converting nanoseconds to seconds. 370const int one_billion = 1000000000; 371 372/// Approximate seconds since the epoch (1/1/1970). About a billion, 373/// by my reckoning. We want to keep this a constant (not use the 374/// real-world time) to keep simulations repeatable. 375const unsigned seconds_since_epoch = 1000000000; 376 377/// Helper function to convert current elapsed time to seconds and 378/// microseconds. 379template <class T1, class T2> 380void 381getElapsedTimeMicro(T1 &sec, T2 &usec) 382{ 383 uint64_t elapsed_usecs = curTick() / SimClock::Int::us; 384 sec = elapsed_usecs / one_million; 385 usec = elapsed_usecs % one_million; 386} 387 388/// Helper function to convert current elapsed time to seconds and 389/// nanoseconds. 390template <class T1, class T2> 391void 392getElapsedTimeNano(T1 &sec, T2 &nsec) 393{ 394 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns; 395 sec = elapsed_nsecs / one_billion; 396 nsec = elapsed_nsecs % one_billion; 397} 398 399////////////////////////////////////////////////////////////////////// 400// 401// The following emulation functions are generic, but need to be 402// templated to account for differences in types, constants, etc. 403// 404////////////////////////////////////////////////////////////////////// 405 406 typedef struct statfs hst_statfs; 407#if NO_STAT64 408 typedef struct stat hst_stat; 409 typedef struct stat hst_stat64; 410#else 411 typedef struct stat hst_stat; 412 typedef struct stat64 hst_stat64; 413#endif 414 415//// Helper function to convert a host stat buffer to a target stat 416//// buffer. Also copies the target buffer out to the simulated 417//// memory space. Used by stat(), fstat(), and lstat(). 418 419template <typename target_stat, typename host_stat> 420static void 421convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false) 422{ 423 using namespace TheISA; 424 425 if (fakeTTY) 426 tgt->st_dev = 0xA; 427 else 428 tgt->st_dev = host->st_dev; 429 tgt->st_dev = TheISA::htog(tgt->st_dev); 430 tgt->st_ino = host->st_ino; 431 tgt->st_ino = TheISA::htog(tgt->st_ino); 432 tgt->st_mode = host->st_mode; 433 if (fakeTTY) { 434 // Claim to be a character device 435 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT 436 tgt->st_mode |= S_IFCHR; // Set S_IFCHR 437 } 438 tgt->st_mode = TheISA::htog(tgt->st_mode); 439 tgt->st_nlink = host->st_nlink; 440 tgt->st_nlink = TheISA::htog(tgt->st_nlink); 441 tgt->st_uid = host->st_uid; 442 tgt->st_uid = TheISA::htog(tgt->st_uid); 443 tgt->st_gid = host->st_gid; 444 tgt->st_gid = TheISA::htog(tgt->st_gid); 445 if (fakeTTY) 446 tgt->st_rdev = 0x880d; 447 else 448 tgt->st_rdev = host->st_rdev; 449 tgt->st_rdev = TheISA::htog(tgt->st_rdev); 450 tgt->st_size = host->st_size; 451 tgt->st_size = TheISA::htog(tgt->st_size); 452 tgt->st_atimeX = host->st_atime; 453 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX); 454 tgt->st_mtimeX = host->st_mtime; 455 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX); 456 tgt->st_ctimeX = host->st_ctime; 457 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX); 458 // Force the block size to be 8KB. This helps to ensure buffered io works 459 // consistently across different hosts. 460 tgt->st_blksize = 0x2000; 461 tgt->st_blksize = TheISA::htog(tgt->st_blksize); 462 tgt->st_blocks = host->st_blocks; 463 tgt->st_blocks = TheISA::htog(tgt->st_blocks); 464} 465 466// Same for stat64 467 468template <typename target_stat, typename host_stat64> 469static void 470convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false) 471{ 472 using namespace TheISA; 473 474 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY); 475#if defined(STAT_HAVE_NSEC) 476 tgt->st_atime_nsec = host->st_atime_nsec; 477 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec); 478 tgt->st_mtime_nsec = host->st_mtime_nsec; 479 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec); 480 tgt->st_ctime_nsec = host->st_ctime_nsec; 481 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec); 482#else 483 tgt->st_atime_nsec = 0; 484 tgt->st_mtime_nsec = 0; 485 tgt->st_ctime_nsec = 0; 486#endif 487} 488 489// Here are a couple of convenience functions 490template<class OS> 491static void 492copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr, 493 hst_stat *host, bool fakeTTY = false) 494{ 495 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf; 496 tgt_stat_buf tgt(addr); 497 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY); 498 tgt.copyOut(mem); 499} 500 501template<class OS> 502static void 503copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr, 504 hst_stat64 *host, bool fakeTTY = false) 505{ 506 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf; 507 tgt_stat_buf tgt(addr); 508 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY); 509 tgt.copyOut(mem); 510} 511 512template <class OS> 513static void 514copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr, 515 hst_statfs *host) 516{ 517 TypedBufferArg<typename OS::tgt_statfs> tgt(addr); 518 519 tgt->f_type = TheISA::htog(host->f_type); 520#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) 521 tgt->f_bsize = TheISA::htog(host->f_iosize); 522#else 523 tgt->f_bsize = TheISA::htog(host->f_bsize); 524#endif 525 tgt->f_blocks = TheISA::htog(host->f_blocks); 526 tgt->f_bfree = TheISA::htog(host->f_bfree); 527 tgt->f_bavail = TheISA::htog(host->f_bavail); 528 tgt->f_files = TheISA::htog(host->f_files); 529 tgt->f_ffree = TheISA::htog(host->f_ffree); 530 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid)); 531#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) 532 tgt->f_namelen = TheISA::htog(host->f_namemax); 533 tgt->f_frsize = TheISA::htog(host->f_bsize); 534#elif defined(__APPLE__) 535 tgt->f_namelen = 0; 536 tgt->f_frsize = 0; 537#else 538 tgt->f_namelen = TheISA::htog(host->f_namelen); 539 tgt->f_frsize = TheISA::htog(host->f_frsize); 540#endif 541#if defined(__linux__) 542 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare)); 543#else 544 /* 545 * The fields are different sizes per OS. Don't bother with 546 * f_spare or f_reserved on non-Linux for now. 547 */ 548 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare)); 549#endif 550 551 tgt.copyOut(mem); 552} 553 554/// Target ioctl() handler. For the most part, programs call ioctl() 555/// only to find out if their stdout is a tty, to determine whether to 556/// do line or block buffering. We always claim that output fds are 557/// not TTYs to provide repeatable results. 558template <class OS> 559SyscallReturn 560ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 561{ 562 int index = 0; 563 int tgt_fd = p->getSyscallArg(tc, index); 564 unsigned req = p->getSyscallArg(tc, index); 565 566 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req); 567 568 if (OS::isTtyReq(req)) 569 return -ENOTTY; 570 571 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]); 572 if (!dfdp) 573 return -EBADF; 574 575 /** 576 * If the driver is valid, issue the ioctl through it. Otherwise, 577 * there's an implicit assumption that the device is a TTY type and we 578 * return that we do not have a valid TTY. 579 */ 580 EmulatedDriver *emul_driver = dfdp->getDriver(); 581 if (emul_driver) 582 return emul_driver->ioctl(p, tc, req); 583 584 /** 585 * For lack of a better return code, return ENOTTY. Ideally, we should 586 * return something better here, but at least we issue the warning. 587 */ 588 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n", 589 tgt_fd, req, tc->pcState()); 590 return -ENOTTY; 591} 592 593template <class OS> 594SyscallReturn 595openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc, 596 bool isopenat) 597{ 598 int index = 0; 599 int tgt_dirfd = -1; 600 601 /** 602 * If using the openat variant, read in the target directory file 603 * descriptor from the simulated process. 604 */ 605 if (isopenat) 606 tgt_dirfd = p->getSyscallArg(tc, index); 607 608 /** 609 * Retrieve the simulated process' memory proxy and then read in the path 610 * string from that memory space into the host's working memory space. 611 */ 612 std::string path; 613 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index))) 614 return -EFAULT; 615 616#ifdef __CYGWIN32__ 617 int host_flags = O_BINARY; 618#else 619 int host_flags = 0; 620#endif 621 /** 622 * Translate target flags into host flags. Flags exist which are not 623 * ported between architectures which can cause check failures. 624 */ 625 int tgt_flags = p->getSyscallArg(tc, index); 626 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) { 627 if (tgt_flags & OS::openFlagTable[i].tgtFlag) { 628 tgt_flags &= ~OS::openFlagTable[i].tgtFlag; 629 host_flags |= OS::openFlagTable[i].hostFlag; 630 } 631 } 632 if (tgt_flags) { 633 warn("open%s: cannot decode flags 0x%x", 634 isopenat ? "at" : "", tgt_flags); 635 } 636#ifdef __CYGWIN32__ 637 host_flags |= O_BINARY; 638#endif 639 640 int mode = p->getSyscallArg(tc, index); 641 642 /** 643 * If the simulated process called open or openat with AT_FDCWD specified, 644 * take the current working directory value which was passed into the 645 * process class as a Python parameter and append the current path to 646 * create a full path. 647 * Otherwise, openat with a valid target directory file descriptor has 648 * been called. If the path option, which was passed in as a parameter, 649 * is not absolute, retrieve the directory file descriptor's path and 650 * prepend it to the path passed in as a parameter. 651 * In every case, we should have a full path (which is relevant to the 652 * host) to work with after this block has been passed. 653 */ 654 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) { 655 path = p->fullPath(path); 656 } else if (!startswith(path, "/")) { 657 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]); 658 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep); 659 if (!ffdp) 660 return -EBADF; 661 path.insert(0, ffdp->getFileName()); 662 } 663 664 /** 665 * Since this is an emulated environment, we create pseudo file 666 * descriptors for device requests that have been registered with 667 * the process class through Python; this allows us to create a file 668 * descriptor for subsequent ioctl or mmap calls. 669 */ 670 if (startswith(path, "/dev/")) { 671 std::string filename = path.substr(strlen("/dev/")); 672 EmulatedDriver *drv = p->findDriver(filename); 673 if (drv) { 674 DPRINTF_SYSCALL(Verbose, "open%s: passing call to " 675 "driver open with path[%s]\n", 676 isopenat ? "at" : "", path.c_str()); 677 return drv->open(p, tc, mode, host_flags); 678 } 679 /** 680 * Fall through here for pass through to host devices, such 681 * as /dev/zero 682 */ 683 } 684 685 /** 686 * Some special paths and files cannot be called on the host and need 687 * to be handled as special cases inside the simulator. 688 * If the full path that was created above does not match any of the 689 * special cases, pass it through to the open call on the host to let 690 * the host open the file on our behalf. 691 * If the host cannot open the file, return the host's error code back 692 * through the system call to the simulated process. 693 */ 694 int sim_fd = -1; 695 std::vector<std::string> special_paths = 696 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" }; 697 for (auto entry : special_paths) { 698 if (startswith(path, entry)) 699 sim_fd = OS::openSpecialFile(path, p, tc); 700 } 701 if (sim_fd == -1) { 702 sim_fd = open(path.c_str(), host_flags, mode); 703 } 704 if (sim_fd == -1) { 705 int local = -errno; 706 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n", 707 isopenat ? "at" : "", path.c_str()); 708 return local; 709 } 710 711 /** 712 * The file was opened successfully and needs to be recorded in the 713 * process' file descriptor array so that it can be retrieved later. 714 * The target file descriptor that is chosen will be the lowest unused 715 * file descriptor. 716 * Return the indirect target file descriptor back to the simulated 717 * process to act as a handle for the opened file. 718 */ 719 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0); 720 int tgt_fd = p->fds->allocFD(ffdp); 721 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n", 722 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str()); 723 return tgt_fd; 724} 725 726/// Target open() handler. 727template <class OS> 728SyscallReturn 729openFunc(SyscallDesc *desc, int callnum, Process *process, 730 ThreadContext *tc) 731{ 732 return openImpl<OS>(desc, callnum, process, tc, false); 733} 734 735/// Target openat() handler. 736template <class OS> 737SyscallReturn 738openatFunc(SyscallDesc *desc, int callnum, Process *process, 739 ThreadContext *tc) 740{ 741 return openImpl<OS>(desc, callnum, process, tc, true); 742} 743 744/// Target unlinkat() handler. 745template <class OS> 746SyscallReturn 747unlinkatFunc(SyscallDesc *desc, int callnum, Process *process, 748 ThreadContext *tc) 749{ 750 int index = 0; 751 int dirfd = process->getSyscallArg(tc, index); 752 if (dirfd != OS::TGT_AT_FDCWD) 753 warn("unlinkat: first argument not AT_FDCWD; unlikely to work"); 754 755 return unlinkHelper(desc, callnum, process, tc, 1); 756} 757 758/// Target facessat() handler 759template <class OS> 760SyscallReturn 761faccessatFunc(SyscallDesc *desc, int callnum, Process *process, 762 ThreadContext *tc) 763{ 764 int index = 0; 765 int dirfd = process->getSyscallArg(tc, index); 766 if (dirfd != OS::TGT_AT_FDCWD) 767 warn("faccessat: first argument not AT_FDCWD; unlikely to work"); 768 return accessFunc(desc, callnum, process, tc, 1); 769} 770 771/// Target readlinkat() handler 772template <class OS> 773SyscallReturn 774readlinkatFunc(SyscallDesc *desc, int callnum, Process *process, 775 ThreadContext *tc) 776{ 777 int index = 0; 778 int dirfd = process->getSyscallArg(tc, index); 779 if (dirfd != OS::TGT_AT_FDCWD) 780 warn("openat: first argument not AT_FDCWD; unlikely to work"); 781 return readlinkFunc(desc, callnum, process, tc, 1); 782} 783 784/// Target renameat() handler. 785template <class OS> 786SyscallReturn 787renameatFunc(SyscallDesc *desc, int callnum, Process *process, 788 ThreadContext *tc) 789{ 790 int index = 0; 791 792 int olddirfd = process->getSyscallArg(tc, index); 793 if (olddirfd != OS::TGT_AT_FDCWD) 794 warn("renameat: first argument not AT_FDCWD; unlikely to work"); 795 796 std::string old_name; 797 798 if (!tc->getMemProxy().tryReadString(old_name, 799 process->getSyscallArg(tc, index))) 800 return -EFAULT; 801 802 int newdirfd = process->getSyscallArg(tc, index); 803 if (newdirfd != OS::TGT_AT_FDCWD) 804 warn("renameat: third argument not AT_FDCWD; unlikely to work"); 805 806 std::string new_name; 807 808 if (!tc->getMemProxy().tryReadString(new_name, 809 process->getSyscallArg(tc, index))) 810 return -EFAULT; 811 812 // Adjust path for current working directory 813 old_name = process->fullPath(old_name); 814 new_name = process->fullPath(new_name); 815 816 int result = rename(old_name.c_str(), new_name.c_str()); 817 return (result == -1) ? -errno : result; 818} 819 820/// Target sysinfo() handler. 821template <class OS> 822SyscallReturn 823sysinfoFunc(SyscallDesc *desc, int callnum, Process *process, 824 ThreadContext *tc) 825{ 826 827 int index = 0; 828 TypedBufferArg<typename OS::tgt_sysinfo> 829 sysinfo(process->getSyscallArg(tc, index)); 830 831 sysinfo->uptime = seconds_since_epoch; 832 sysinfo->totalram = process->system->memSize(); 833 sysinfo->mem_unit = 1; 834 835 sysinfo.copyOut(tc->getMemProxy()); 836 837 return 0; 838} 839 840/// Target chmod() handler. 841template <class OS> 842SyscallReturn 843chmodFunc(SyscallDesc *desc, int callnum, Process *process, 844 ThreadContext *tc) 845{ 846 std::string path; 847 848 int index = 0; 849 if (!tc->getMemProxy().tryReadString(path, 850 process->getSyscallArg(tc, index))) { 851 return -EFAULT; 852 } 853 854 uint32_t mode = process->getSyscallArg(tc, index); 855 mode_t hostMode = 0; 856 857 // XXX translate mode flags via OS::something??? 858 hostMode = mode; 859 860 // Adjust path for current working directory 861 path = process->fullPath(path); 862 863 // do the chmod 864 int result = chmod(path.c_str(), hostMode); 865 if (result < 0) 866 return -errno; 867 868 return 0; 869} 870 871 872/// Target fchmod() handler. 873template <class OS> 874SyscallReturn 875fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 876{ 877 int index = 0; 878 int tgt_fd = p->getSyscallArg(tc, index); 879 uint32_t mode = p->getSyscallArg(tc, index); 880 881 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]); 882 if (!ffdp) 883 return -EBADF; 884 int sim_fd = ffdp->getSimFD(); 885 886 mode_t hostMode = mode; 887 888 int result = fchmod(sim_fd, hostMode); 889 890 return (result < 0) ? -errno : 0; 891} 892 893/// Target mremap() handler. 894template <class OS> 895SyscallReturn 896mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc) 897{ 898 int index = 0; 899 Addr start = process->getSyscallArg(tc, index); 900 uint64_t old_length = process->getSyscallArg(tc, index); 901 uint64_t new_length = process->getSyscallArg(tc, index); 902 uint64_t flags = process->getSyscallArg(tc, index); 903 uint64_t provided_address = 0; 904 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED; 905 906 if (use_provided_address) 907 provided_address = process->getSyscallArg(tc, index); 908 909 if ((start % TheISA::PageBytes != 0) || 910 (provided_address % TheISA::PageBytes != 0)) { 911 warn("mremap failing: arguments not page aligned"); 912 return -EINVAL; 913 } 914 915 new_length = roundUp(new_length, TheISA::PageBytes); 916 917 if (new_length > old_length) { 918 std::shared_ptr<MemState> mem_state = process->memState; 919 Addr mmap_end = mem_state->getMmapEnd(); 920 921 if ((start + old_length) == mmap_end && 922 (!use_provided_address || provided_address == start)) { 923 uint64_t diff = new_length - old_length; 924 process->allocateMem(mmap_end, diff); 925 mem_state->setMmapEnd(mmap_end + diff); 926 return start; 927 } else { 928 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) { 929 warn("can't remap here and MREMAP_MAYMOVE flag not set\n"); 930 return -ENOMEM; 931 } else { 932 uint64_t new_start = use_provided_address ? 933 provided_address : mmap_end; 934 process->pTable->remap(start, old_length, new_start); 935 warn("mremapping to new vaddr %08p-%08p, adding %d\n", 936 new_start, new_start + new_length, 937 new_length - old_length); 938 // add on the remaining unallocated pages 939 process->allocateMem(new_start + old_length, 940 new_length - old_length, 941 use_provided_address /* clobber */); 942 if (!use_provided_address) 943 mem_state->setMmapEnd(mmap_end + new_length); 944 if (use_provided_address && 945 new_start + new_length > mem_state->getMmapEnd()) { 946 // something fishy going on here, at least notify the user 947 // @todo: increase mmap_end? 948 warn("mmap region limit exceeded with MREMAP_FIXED\n"); 949 } 950 warn("returning %08p as start\n", new_start); 951 return new_start; 952 } 953 } 954 } else { 955 if (use_provided_address && provided_address != start) 956 process->pTable->remap(start, new_length, provided_address); 957 process->pTable->unmap(start + new_length, old_length - new_length); 958 return use_provided_address ? provided_address : start; 959 } 960} 961 962/// Target stat() handler. 963template <class OS> 964SyscallReturn 965statFunc(SyscallDesc *desc, int callnum, Process *process, 966 ThreadContext *tc) 967{ 968 std::string path; 969 970 int index = 0; 971 if (!tc->getMemProxy().tryReadString(path, 972 process->getSyscallArg(tc, index))) { 973 return -EFAULT; 974 } 975 Addr bufPtr = process->getSyscallArg(tc, index); 976 977 // Adjust path for current working directory 978 path = process->fullPath(path); 979 980 struct stat hostBuf; 981 int result = stat(path.c_str(), &hostBuf); 982 983 if (result < 0) 984 return -errno; 985 986 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 987 988 return 0; 989} 990 991 992/// Target stat64() handler. 993template <class OS> 994SyscallReturn 995stat64Func(SyscallDesc *desc, int callnum, Process *process, 996 ThreadContext *tc) 997{ 998 std::string path; 999 1000 int index = 0; 1001 if (!tc->getMemProxy().tryReadString(path, 1002 process->getSyscallArg(tc, index))) 1003 return -EFAULT; 1004 Addr bufPtr = process->getSyscallArg(tc, index); 1005 1006 // Adjust path for current working directory 1007 path = process->fullPath(path); 1008 1009#if NO_STAT64 1010 struct stat hostBuf; 1011 int result = stat(path.c_str(), &hostBuf); 1012#else 1013 struct stat64 hostBuf; 1014 int result = stat64(path.c_str(), &hostBuf); 1015#endif 1016 1017 if (result < 0) 1018 return -errno; 1019 1020 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 1021 1022 return 0; 1023} 1024 1025 1026/// Target fstatat64() handler. 1027template <class OS> 1028SyscallReturn 1029fstatat64Func(SyscallDesc *desc, int callnum, Process *process, 1030 ThreadContext *tc) 1031{ 1032 int index = 0; 1033 int dirfd = process->getSyscallArg(tc, index); 1034 if (dirfd != OS::TGT_AT_FDCWD) 1035 warn("fstatat64: first argument not AT_FDCWD; unlikely to work"); 1036 1037 std::string path; 1038 if (!tc->getMemProxy().tryReadString(path, 1039 process->getSyscallArg(tc, index))) 1040 return -EFAULT; 1041 Addr bufPtr = process->getSyscallArg(tc, index); 1042 1043 // Adjust path for current working directory 1044 path = process->fullPath(path); 1045 1046#if NO_STAT64 1047 struct stat hostBuf; 1048 int result = stat(path.c_str(), &hostBuf); 1049#else 1050 struct stat64 hostBuf; 1051 int result = stat64(path.c_str(), &hostBuf); 1052#endif 1053 1054 if (result < 0) 1055 return -errno; 1056 1057 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 1058 1059 return 0; 1060} 1061 1062 1063/// Target fstat64() handler. 1064template <class OS> 1065SyscallReturn 1066fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 1067{ 1068 int index = 0; 1069 int tgt_fd = p->getSyscallArg(tc, index); 1070 Addr bufPtr = p->getSyscallArg(tc, index); 1071 1072 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]); 1073 if (!ffdp) 1074 return -EBADF; 1075 int sim_fd = ffdp->getSimFD(); 1076 1077#if NO_STAT64 1078 struct stat hostBuf; 1079 int result = fstat(sim_fd, &hostBuf); 1080#else 1081 struct stat64 hostBuf; 1082 int result = fstat64(sim_fd, &hostBuf); 1083#endif 1084 1085 if (result < 0) 1086 return -errno; 1087 1088 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1)); 1089 1090 return 0; 1091} 1092 1093 1094/// Target lstat() handler. 1095template <class OS> 1096SyscallReturn 1097lstatFunc(SyscallDesc *desc, int callnum, Process *process, 1098 ThreadContext *tc) 1099{ 1100 std::string path; 1101 1102 int index = 0; 1103 if (!tc->getMemProxy().tryReadString(path, 1104 process->getSyscallArg(tc, index))) { 1105 return -EFAULT; 1106 } 1107 Addr bufPtr = process->getSyscallArg(tc, index); 1108 1109 // Adjust path for current working directory 1110 path = process->fullPath(path); 1111 1112 struct stat hostBuf; 1113 int result = lstat(path.c_str(), &hostBuf); 1114 1115 if (result < 0) 1116 return -errno; 1117 1118 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 1119 1120 return 0; 1121} 1122 1123/// Target lstat64() handler. 1124template <class OS> 1125SyscallReturn 1126lstat64Func(SyscallDesc *desc, int callnum, Process *process, 1127 ThreadContext *tc) 1128{ 1129 std::string path; 1130 1131 int index = 0; 1132 if (!tc->getMemProxy().tryReadString(path, 1133 process->getSyscallArg(tc, index))) { 1134 return -EFAULT; 1135 } 1136 Addr bufPtr = process->getSyscallArg(tc, index); 1137 1138 // Adjust path for current working directory 1139 path = process->fullPath(path); 1140 1141#if NO_STAT64 1142 struct stat hostBuf; 1143 int result = lstat(path.c_str(), &hostBuf); 1144#else 1145 struct stat64 hostBuf; 1146 int result = lstat64(path.c_str(), &hostBuf); 1147#endif 1148 1149 if (result < 0) 1150 return -errno; 1151 1152 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 1153 1154 return 0; 1155} 1156 1157/// Target fstat() handler. 1158template <class OS> 1159SyscallReturn 1160fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 1161{ 1162 int index = 0; 1163 int tgt_fd = p->getSyscallArg(tc, index); 1164 Addr bufPtr = p->getSyscallArg(tc, index); 1165 1166 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd); 1167 1168 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]); 1169 if (!ffdp) 1170 return -EBADF; 1171 int sim_fd = ffdp->getSimFD(); 1172 1173 struct stat hostBuf; 1174 int result = fstat(sim_fd, &hostBuf); 1175 1176 if (result < 0) 1177 return -errno; 1178 1179 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1)); 1180 1181 return 0; 1182} 1183 1184 1185/// Target statfs() handler. 1186template <class OS> 1187SyscallReturn 1188statfsFunc(SyscallDesc *desc, int callnum, Process *process, 1189 ThreadContext *tc) 1190{ 1191#if NO_STATFS 1192 warn("Host OS cannot support calls to statfs. Ignoring syscall"); 1193#else 1194 std::string path; 1195 1196 int index = 0; 1197 if (!tc->getMemProxy().tryReadString(path, 1198 process->getSyscallArg(tc, index))) { 1199 return -EFAULT; 1200 } 1201 Addr bufPtr = process->getSyscallArg(tc, index); 1202 1203 // Adjust path for current working directory 1204 path = process->fullPath(path); 1205 1206 struct statfs hostBuf; 1207 int result = statfs(path.c_str(), &hostBuf); 1208 1209 if (result < 0) 1210 return -errno; 1211 1212 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 1213#endif 1214 return 0; 1215} 1216 1217template <class OS> 1218SyscallReturn 1219cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 1220{ 1221 int index = 0; 1222 TheISA::IntReg flags = p->getSyscallArg(tc, index); 1223 TheISA::IntReg newStack = p->getSyscallArg(tc, index); 1224 Addr ptidPtr = p->getSyscallArg(tc, index); 1225 Addr ctidPtr = p->getSyscallArg(tc, index); 1226 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index); 1227 1228 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) || 1229 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) || 1230 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) || 1231 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) || 1232 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) || 1233 ((flags & OS::TGT_CLONE_VM) && !(newStack))) 1234 return -EINVAL; 1235 1236 ThreadContext *ctc; 1237 if (!(ctc = p->findFreeContext())) 1238 fatal("clone: no spare thread context in system"); 1239 1240 /** 1241 * Note that ProcessParams is generated by swig and there are no other 1242 * examples of how to create anything but this default constructor. The 1243 * fields are manually initialized instead of passing parameters to the 1244 * constructor. 1245 */ 1246 ProcessParams *pp = new ProcessParams(); 1247 pp->executable.assign(*(new std::string(p->progName()))); 1248 pp->cmd.push_back(*(new std::string(p->progName()))); 1249 pp->system = p->system; 1250 pp->cwd.assign(p->getcwd()); 1251 pp->input.assign("stdin"); 1252 pp->output.assign("stdout"); 1253 pp->errout.assign("stderr"); 1254 pp->uid = p->uid(); 1255 pp->euid = p->euid(); 1256 pp->gid = p->gid(); 1257 pp->egid = p->egid(); 1258 1259 /* Find the first free PID that's less than the maximum */ 1260 std::set<int> const& pids = p->system->PIDs; 1261 int temp_pid = *pids.begin(); 1262 do { 1263 temp_pid++; 1264 } while (pids.find(temp_pid) != pids.end()); 1265 if (temp_pid >= System::maxPID) 1266 fatal("temp_pid is too large: %d", temp_pid); 1267 1268 pp->pid = temp_pid; 1269 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid(); 1270 Process *cp = pp->create(); 1271 delete pp; 1272 1273 Process *owner = ctc->getProcessPtr(); 1274 ctc->setProcessPtr(cp); 1275 cp->assignThreadContext(ctc->contextId()); 1276 owner->revokeThreadContext(ctc->contextId()); 1277 1278 if (flags & OS::TGT_CLONE_PARENT_SETTID) { 1279 BufferArg ptidBuf(ptidPtr, sizeof(long)); 1280 long *ptid = (long *)ptidBuf.bufferPtr(); 1281 *ptid = cp->pid(); 1282 ptidBuf.copyOut(tc->getMemProxy()); 1283 } 1284 1285 cp->initState(); 1286 p->clone(tc, ctc, cp, flags); 1287 1288 if (flags & OS::TGT_CLONE_THREAD) { 1289 delete cp->sigchld; 1290 cp->sigchld = p->sigchld; 1291 } else if (flags & OS::TGT_SIGCHLD) { 1292 *cp->sigchld = true; 1293 } 1294 1295 if (flags & OS::TGT_CLONE_CHILD_SETTID) { 1296 BufferArg ctidBuf(ctidPtr, sizeof(long)); 1297 long *ctid = (long *)ctidBuf.bufferPtr(); 1298 *ctid = cp->pid(); 1299 ctidBuf.copyOut(ctc->getMemProxy()); 1300 } 1301 1302 if (flags & OS::TGT_CLONE_CHILD_CLEARTID) 1303 cp->childClearTID = (uint64_t)ctidPtr; 1304 1305 ctc->clearArchRegs(); 1306 1307#if THE_ISA == ALPHA_ISA 1308 TheISA::copyMiscRegs(tc, ctc); 1309#elif THE_ISA == SPARC_ISA 1310 TheISA::copyRegs(tc, ctc); 1311 ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0); 1312 ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0); 1313 ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2); 1314 ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows); 1315 ctc->setMiscReg(TheISA::MISCREG_CWP, 0); 1316 ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0); 1317 ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0); 1318 ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY); 1319 for (int y = 8; y < 32; y++) 1320 ctc->setIntReg(y, tc->readIntReg(y)); 1321#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA 1322 TheISA::copyRegs(tc, ctc); 1323#endif 1324 1325#if THE_ISA == X86_ISA 1326 if (flags & OS::TGT_CLONE_SETTLS) { 1327 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr); 1328 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr); 1329 } 1330#endif 1331 1332 if (newStack) 1333 ctc->setIntReg(TheISA::StackPointerReg, newStack); 1334 1335 cp->setSyscallReturn(ctc, 0); 1336 1337#if THE_ISA == ALPHA_ISA 1338 ctc->setIntReg(TheISA::SyscallSuccessReg, 0); 1339#elif THE_ISA == SPARC_ISA 1340 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0); 1341 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1); 1342#endif 1343 1344 ctc->pcState(tc->nextInstAddr()); 1345 ctc->activate(); 1346 1347 return cp->pid(); 1348} 1349 1350/// Target fstatfs() handler. 1351template <class OS> 1352SyscallReturn 1353fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 1354{ 1355 int index = 0; 1356 int tgt_fd = p->getSyscallArg(tc, index); 1357 Addr bufPtr = p->getSyscallArg(tc, index); 1358 1359 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]); 1360 if (!ffdp) 1361 return -EBADF; 1362 int sim_fd = ffdp->getSimFD(); 1363 1364 struct statfs hostBuf; 1365 int result = fstatfs(sim_fd, &hostBuf); 1366 1367 if (result < 0) 1368 return -errno; 1369 1370 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf); 1371 1372 return 0; 1373} 1374 1375 1376/// Target writev() handler. 1377template <class OS> 1378SyscallReturn 1379writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 1380{ 1381 int index = 0; 1382 int tgt_fd = p->getSyscallArg(tc, index); 1383 1384 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]); 1385 if (!hbfdp) 1386 return -EBADF; 1387 int sim_fd = hbfdp->getSimFD(); 1388 1389 SETranslatingPortProxy &prox = tc->getMemProxy(); 1390 uint64_t tiov_base = p->getSyscallArg(tc, index); 1391 size_t count = p->getSyscallArg(tc, index); 1392 struct iovec hiov[count]; 1393 for (size_t i = 0; i < count; ++i) { 1394 typename OS::tgt_iovec tiov; 1395 1396 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec), 1397 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec)); 1398 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len); 1399 hiov[i].iov_base = new char [hiov[i].iov_len]; 1400 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base, 1401 hiov[i].iov_len); 1402 } 1403 1404 int result = writev(sim_fd, hiov, count); 1405 1406 for (size_t i = 0; i < count; ++i) 1407 delete [] (char *)hiov[i].iov_base; 1408 1409 if (result < 0) 1410 return -errno; 1411 1412 return result; 1413} 1414 1415/// Real mmap handler. 1416template <class OS> 1417SyscallReturn 1418mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc, 1419 bool is_mmap2) 1420{ 1421 int index = 0; 1422 Addr start = p->getSyscallArg(tc, index); 1423 uint64_t length = p->getSyscallArg(tc, index); 1424 int prot = p->getSyscallArg(tc, index); 1425 int tgt_flags = p->getSyscallArg(tc, index); 1426 int tgt_fd = p->getSyscallArg(tc, index); 1427 int offset = p->getSyscallArg(tc, index); 1428 1429 if (is_mmap2) 1430 offset *= TheISA::PageBytes; 1431 1432 if (start & (TheISA::PageBytes - 1) || 1433 offset & (TheISA::PageBytes - 1) || 1434 (tgt_flags & OS::TGT_MAP_PRIVATE && 1435 tgt_flags & OS::TGT_MAP_SHARED) || 1436 (!(tgt_flags & OS::TGT_MAP_PRIVATE) && 1437 !(tgt_flags & OS::TGT_MAP_SHARED)) || 1438 !length) { 1439 return -EINVAL; 1440 } 1441 1442 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) { 1443 // With shared mmaps, there are two cases to consider: 1444 // 1) anonymous: writes should modify the mapping and this should be 1445 // visible to observers who share the mapping. Currently, it's 1446 // difficult to update the shared mapping because there's no 1447 // structure which maintains information about the which virtual 1448 // memory areas are shared. If that structure existed, it would be 1449 // possible to make the translations point to the same frames. 1450 // 2) file-backed: writes should modify the mapping and the file 1451 // which is backed by the mapping. The shared mapping problem is the 1452 // same as what was mentioned about the anonymous mappings. For 1453 // file-backed mappings, the writes to the file are difficult 1454 // because it requires syncing what the mapping holds with the file 1455 // that resides on the host system. So, any write on a real system 1456 // would cause the change to be propagated to the file mapping at 1457 // some point in the future (the inode is tracked along with the 1458 // mapping). This isn't guaranteed to always happen, but it usually 1459 // works well enough. The guarantee is provided by the msync system 1460 // call. We could force the change through with shared mappings with 1461 // a call to msync, but that again would require more information 1462 // than we currently maintain. 1463 warn("mmap: writing to shared mmap region is currently " 1464 "unsupported. The write succeeds on the target, but it " 1465 "will not be propagated to the host or shared mappings"); 1466 } 1467 1468 length = roundUp(length, TheISA::PageBytes); 1469 1470 int sim_fd = -1; 1471 uint8_t *pmap = nullptr; 1472 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) { 1473 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd]; 1474 1475 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep); 1476 if (dfdp) { 1477 EmulatedDriver *emul_driver = dfdp->getDriver(); 1478 return emul_driver->mmap(p, tc, start, length, prot, 1479 tgt_flags, tgt_fd, offset); 1480 } 1481 1482 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep); 1483 if (!ffdp) 1484 return -EBADF; 1485 sim_fd = ffdp->getSimFD(); 1486 1487 pmap = (decltype(pmap))mmap(NULL, length, PROT_READ, MAP_PRIVATE, 1488 sim_fd, offset); 1489 1490 if (pmap == (decltype(pmap))-1) { 1491 warn("mmap: failed to map file into host address space"); 1492 return -errno; 1493 } 1494 } 1495 1496 // Extend global mmap region if necessary. Note that we ignore the 1497 // start address unless MAP_FIXED is specified. 1498 if (!(tgt_flags & OS::TGT_MAP_FIXED)) { 1499 std::shared_ptr<MemState> mem_state = p->memState; 1500 Addr mmap_end = mem_state->getMmapEnd(); 1501 1502 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end; 1503 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length; 1504 1505 mem_state->setMmapEnd(mmap_end); 1506 } 1507 1508 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n", 1509 start, start + length - 1); 1510 1511 // We only allow mappings to overwrite existing mappings if 1512 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem 1513 // because we ignore the start hint if TGT_MAP_FIXED is not set. 1514 int clobber = tgt_flags & OS::TGT_MAP_FIXED; 1515 if (clobber) { 1516 for (auto tc : p->system->threadContexts) { 1517 // If we might be overwriting old mappings, we need to 1518 // invalidate potentially stale mappings out of the TLBs. 1519 tc->getDTBPtr()->flushAll(); 1520 tc->getITBPtr()->flushAll(); 1521 } 1522 } 1523 1524 // Allocate physical memory and map it in. If the page table is already 1525 // mapped and clobber is not set, the simulator will issue throw a 1526 // fatal and bail out of the simulation. 1527 p->allocateMem(start, length, clobber); 1528 1529 // Transfer content into target address space. 1530 SETranslatingPortProxy &tp = tc->getMemProxy(); 1531 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) { 1532 // In general, we should zero the mapped area for anonymous mappings, 1533 // with something like: 1534 // tp.memsetBlob(start, 0, length); 1535 // However, given that we don't support sparse mappings, and 1536 // some applications can map a couple of gigabytes of space 1537 // (intending sparse usage), that can get painfully expensive. 1538 // Fortunately, since we don't properly implement munmap either, 1539 // there's no danger of remapping used memory, so for now all 1540 // newly mapped memory should already be zeroed so we can skip it. 1541 } else { 1542 // It is possible to mmap an area larger than a file, however 1543 // accessing unmapped portions the system triggers a "Bus error" 1544 // on the host. We must know when to stop copying the file from 1545 // the host into the target address space. 1546 struct stat file_stat; 1547 if (fstat(sim_fd, &file_stat) > 0) 1548 fatal("mmap: cannot stat file"); 1549 1550 // Copy the portion of the file that is resident. This requires 1551 // checking both the mmap size and the filesize that we are 1552 // trying to mmap into this space; the mmap size also depends 1553 // on the specified offset into the file. 1554 uint64_t size = std::min((uint64_t)file_stat.st_size - offset, 1555 length); 1556 tp.writeBlob(start, pmap, size); 1557 1558 // Cleanup the mmap region before exiting this function. 1559 munmap(pmap, length); 1560 1561 // Maintain the symbol table for dynamic executables. 1562 // The loader will call mmap to map the images into its address 1563 // space and we intercept that here. We can verify that we are 1564 // executing inside the loader by checking the program counter value. 1565 // XXX: with multiprogrammed workloads or multi-node configurations, 1566 // this will not work since there is a single global symbol table. 1567 ObjectFile *interpreter = p->getInterpreter(); 1568 if (interpreter) { 1569 Addr text_start = interpreter->textBase(); 1570 Addr text_end = text_start + interpreter->textSize(); 1571 1572 Addr pc = tc->pcState().pc(); 1573 1574 if (pc >= text_start && pc < text_end) { 1575 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd]; 1576 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep); 1577 ObjectFile *lib = createObjectFile(ffdp->getFileName()); 1578 1579 if (lib) { 1580 lib->loadAllSymbols(debugSymbolTable, 1581 lib->textBase(), start); 1582 } 1583 } 1584 } 1585 1586 // Note that we do not zero out the remainder of the mapping. This 1587 // is done by a real system, but it probably will not affect 1588 // execution (hopefully). 1589 } 1590 1591 return start; 1592} 1593 1594template <class OS> 1595SyscallReturn 1596pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc) 1597{ 1598 int index = 0; 1599 int tgt_fd = p->getSyscallArg(tc, index); 1600 Addr bufPtr = p->getSyscallArg(tc, index); 1601 int nbytes = p->getSyscallArg(tc, index); 1602 int offset = p->getSyscallArg(tc, index); 1603 1604 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]); 1605 if (!ffdp) 1606 return -EBADF; 1607 int sim_fd = ffdp->getSimFD(); 1608 1609 BufferArg bufArg(bufPtr, nbytes); 1610 bufArg.copyIn(tc->getMemProxy()); 1611 1612 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset); 1613 1614 return (bytes_written == -1) ? -errno : bytes_written; 1615} 1616 1617/// Target mmap() handler. 1618template <class OS> 1619SyscallReturn 1620mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc) 1621{ 1622 return mmapImpl<OS>(desc, num, p, tc, false); 1623} 1624 1625/// Target mmap2() handler. 1626template <class OS> 1627SyscallReturn 1628mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc) 1629{ 1630 return mmapImpl<OS>(desc, num, p, tc, true); 1631} 1632 1633/// Target getrlimit() handler. 1634template <class OS> 1635SyscallReturn 1636getrlimitFunc(SyscallDesc *desc, int callnum, Process *process, 1637 ThreadContext *tc) 1638{ 1639 int index = 0; 1640 unsigned resource = process->getSyscallArg(tc, index); 1641 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index)); 1642 1643 switch (resource) { 1644 case OS::TGT_RLIMIT_STACK: 1645 // max stack size in bytes: make up a number (8MB for now) 1646 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024; 1647 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur); 1648 rlp->rlim_max = TheISA::htog(rlp->rlim_max); 1649 break; 1650 1651 case OS::TGT_RLIMIT_DATA: 1652 // max data segment size in bytes: make up a number 1653 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024; 1654 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur); 1655 rlp->rlim_max = TheISA::htog(rlp->rlim_max); 1656 break; 1657 1658 default: 1659 warn("getrlimit: unimplemented resource %d", resource); 1660 return -EINVAL; 1661 break; 1662 } 1663 1664 rlp.copyOut(tc->getMemProxy()); 1665 return 0; 1666} 1667 1668/// Target clock_gettime() function. 1669template <class OS> 1670SyscallReturn 1671clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc) 1672{ 1673 int index = 1; 1674 //int clk_id = p->getSyscallArg(tc, index); 1675 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index)); 1676 1677 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec); 1678 tp->tv_sec += seconds_since_epoch; 1679 tp->tv_sec = TheISA::htog(tp->tv_sec); 1680 tp->tv_nsec = TheISA::htog(tp->tv_nsec); 1681 1682 tp.copyOut(tc->getMemProxy()); 1683 1684 return 0; 1685} 1686 1687/// Target clock_getres() function. 1688template <class OS> 1689SyscallReturn 1690clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc) 1691{ 1692 int index = 1; 1693 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index)); 1694 1695 // Set resolution at ns, which is what clock_gettime() returns 1696 tp->tv_sec = 0; 1697 tp->tv_nsec = 1; 1698 1699 tp.copyOut(tc->getMemProxy()); 1700 1701 return 0; 1702} 1703 1704/// Target gettimeofday() handler. 1705template <class OS> 1706SyscallReturn 1707gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process, 1708 ThreadContext *tc) 1709{ 1710 int index = 0; 1711 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index)); 1712 1713 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec); 1714 tp->tv_sec += seconds_since_epoch; 1715 tp->tv_sec = TheISA::htog(tp->tv_sec); 1716 tp->tv_usec = TheISA::htog(tp->tv_usec); 1717 1718 tp.copyOut(tc->getMemProxy()); 1719 1720 return 0; 1721} 1722 1723 1724/// Target utimes() handler. 1725template <class OS> 1726SyscallReturn 1727utimesFunc(SyscallDesc *desc, int callnum, Process *process, 1728 ThreadContext *tc) 1729{ 1730 std::string path; 1731 1732 int index = 0; 1733 if (!tc->getMemProxy().tryReadString(path, 1734 process->getSyscallArg(tc, index))) { 1735 return -EFAULT; 1736 } 1737 1738 TypedBufferArg<typename OS::timeval [2]> 1739 tp(process->getSyscallArg(tc, index)); 1740 tp.copyIn(tc->getMemProxy()); 1741 1742 struct timeval hostTimeval[2]; 1743 for (int i = 0; i < 2; ++i) { 1744 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec); 1745 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec); 1746 } 1747 1748 // Adjust path for current working directory 1749 path = process->fullPath(path); 1750 1751 int result = utimes(path.c_str(), hostTimeval); 1752 1753 if (result < 0) 1754 return -errno; 1755 1756 return 0; 1757} 1758 1759template <class OS> 1760SyscallReturn 1761execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc) 1762{ 1763 desc->setFlags(0); 1764 1765 int index = 0; 1766 std::string path; 1767 SETranslatingPortProxy & mem_proxy = tc->getMemProxy(); 1768 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index))) 1769 return -EFAULT; 1770 1771 if (access(path.c_str(), F_OK) == -1) 1772 return -EACCES; 1773 1774 auto read_in = [](std::vector<std::string> & vect, 1775 SETranslatingPortProxy & mem_proxy, 1776 Addr mem_loc) 1777 { 1778 for (int inc = 0; ; inc++) { 1779 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr)); 1780 b.copyIn(mem_proxy); 1781 1782 if (!*(Addr*)b.bufferPtr()) 1783 break; 1784 1785 vect.push_back(std::string()); 1786 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr()); 1787 } 1788 }; 1789 1790 /** 1791 * Note that ProcessParams is generated by swig and there are no other 1792 * examples of how to create anything but this default constructor. The 1793 * fields are manually initialized instead of passing parameters to the 1794 * constructor. 1795 */ 1796 ProcessParams *pp = new ProcessParams(); 1797 pp->executable = path; 1798 Addr argv_mem_loc = p->getSyscallArg(tc, index); 1799 read_in(pp->cmd, mem_proxy, argv_mem_loc); 1800 Addr envp_mem_loc = p->getSyscallArg(tc, index); 1801 read_in(pp->env, mem_proxy, envp_mem_loc); 1802 pp->uid = p->uid(); 1803 pp->egid = p->egid(); 1804 pp->euid = p->euid(); 1805 pp->gid = p->gid(); 1806 pp->ppid = p->ppid(); 1807 pp->pid = p->pid(); 1808 pp->input.assign("cin"); 1809 pp->output.assign("cout"); 1810 pp->errout.assign("cerr"); 1811 pp->cwd.assign(p->getcwd()); 1812 pp->system = p->system; 1813 /** 1814 * Prevent process object creation with identical PIDs (which will trip 1815 * a fatal check in Process constructor). The execve call is supposed to 1816 * take over the currently executing process' identity but replace 1817 * whatever it is doing with a new process image. Instead of hijacking 1818 * the process object in the simulator, we create a new process object 1819 * and bind to the previous process' thread below (hijacking the thread). 1820 */ 1821 p->system->PIDs.erase(p->pid()); 1822 Process *new_p = pp->create(); 1823 delete pp; 1824 1825 /** 1826 * Work through the file descriptor array and close any files marked 1827 * close-on-exec. 1828 */ 1829 new_p->fds = p->fds; 1830 for (int i = 0; i < new_p->fds->getSize(); i++) { 1831 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i]; 1832 if (fdep && fdep->getCOE()) 1833 new_p->fds->closeFDEntry(i); 1834 } 1835 1836 *new_p->sigchld = true; 1837 1838 delete p; 1839 tc->clearArchRegs(); 1840 tc->setProcessPtr(new_p); 1841 new_p->assignThreadContext(tc->contextId()); 1842 new_p->initState(); 1843 tc->activate(); 1844 TheISA::PCState pcState = tc->pcState(); 1845 tc->setNPC(pcState.instAddr()); 1846 1847 desc->setFlags(SyscallDesc::SuppressReturnValue); 1848 return 0; 1849} 1850 1851/// Target getrusage() function. 1852template <class OS> 1853SyscallReturn 1854getrusageFunc(SyscallDesc *desc, int callnum, Process *process, 1855 ThreadContext *tc) 1856{ 1857 int index = 0; 1858 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN 1859 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index)); 1860 1861 rup->ru_utime.tv_sec = 0; 1862 rup->ru_utime.tv_usec = 0; 1863 rup->ru_stime.tv_sec = 0; 1864 rup->ru_stime.tv_usec = 0; 1865 rup->ru_maxrss = 0; 1866 rup->ru_ixrss = 0; 1867 rup->ru_idrss = 0; 1868 rup->ru_isrss = 0; 1869 rup->ru_minflt = 0; 1870 rup->ru_majflt = 0; 1871 rup->ru_nswap = 0; 1872 rup->ru_inblock = 0; 1873 rup->ru_oublock = 0; 1874 rup->ru_msgsnd = 0; 1875 rup->ru_msgrcv = 0; 1876 rup->ru_nsignals = 0; 1877 rup->ru_nvcsw = 0; 1878 rup->ru_nivcsw = 0; 1879 1880 switch (who) { 1881 case OS::TGT_RUSAGE_SELF: 1882 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec); 1883 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec); 1884 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec); 1885 break; 1886 1887 case OS::TGT_RUSAGE_CHILDREN: 1888 // do nothing. We have no child processes, so they take no time. 1889 break; 1890 1891 default: 1892 // don't really handle THREAD or CHILDREN, but just warn and 1893 // plow ahead 1894 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.", 1895 who); 1896 } 1897 1898 rup.copyOut(tc->getMemProxy()); 1899 1900 return 0; 1901} 1902 1903/// Target times() function. 1904template <class OS> 1905SyscallReturn 1906timesFunc(SyscallDesc *desc, int callnum, Process *process, 1907 ThreadContext *tc) 1908{ 1909 int index = 0; 1910 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index)); 1911 1912 // Fill in the time structure (in clocks) 1913 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s; 1914 bufp->tms_utime = clocks; 1915 bufp->tms_stime = 0; 1916 bufp->tms_cutime = 0; 1917 bufp->tms_cstime = 0; 1918 1919 // Convert to host endianness 1920 bufp->tms_utime = TheISA::htog(bufp->tms_utime); 1921 1922 // Write back 1923 bufp.copyOut(tc->getMemProxy()); 1924 1925 // Return clock ticks since system boot 1926 return clocks; 1927} 1928 1929/// Target time() function. 1930template <class OS> 1931SyscallReturn 1932timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc) 1933{ 1934 typename OS::time_t sec, usec; 1935 getElapsedTimeMicro(sec, usec); 1936 sec += seconds_since_epoch; 1937 1938 int index = 0; 1939 Addr taddr = (Addr)process->getSyscallArg(tc, index); 1940 if (taddr != 0) { 1941 typename OS::time_t t = sec; 1942 t = TheISA::htog(t); 1943 SETranslatingPortProxy &p = tc->getMemProxy(); 1944 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t)); 1945 } 1946 return sec; 1947} 1948 1949template <class OS> 1950SyscallReturn 1951tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc) 1952{ 1953 int index = 0; 1954 int tgid = process->getSyscallArg(tc, index); 1955 int tid = process->getSyscallArg(tc, index); 1956 int sig = process->getSyscallArg(tc, index); 1957 1958 /** 1959 * This system call is intended to allow killing a specific thread 1960 * within an arbitrary thread group if sanctioned with permission checks. 1961 * It's usually true that threads share the termination signal as pointed 1962 * out by the pthread_kill man page and this seems to be the intended 1963 * usage. Due to this being an emulated environment, assume the following: 1964 * Threads are allowed to call tgkill because the EUID for all threads 1965 * should be the same. There is no signal handling mechanism for kernel 1966 * registration of signal handlers since signals are poorly supported in 1967 * emulation mode. Since signal handlers cannot be registered, all 1968 * threads within in a thread group must share the termination signal. 1969 * We never exhaust PIDs so there's no chance of finding the wrong one 1970 * due to PID rollover. 1971 */ 1972 1973 System *sys = tc->getSystemPtr(); 1974 Process *tgt_proc = nullptr; 1975 for (int i = 0; i < sys->numContexts(); i++) { 1976 Process *temp = sys->threadContexts[i]->getProcessPtr(); 1977 if (temp->pid() == tid) { 1978 tgt_proc = temp; 1979 break; 1980 } 1981 } 1982 1983 if (sig != 0 || sig != OS::TGT_SIGABRT) 1984 return -EINVAL; 1985 1986 if (tgt_proc == nullptr) 1987 return -ESRCH; 1988 1989 if (tgid != -1 && tgt_proc->tgid() != tgid) 1990 return -ESRCH; 1991 1992 if (sig == OS::TGT_SIGABRT) 1993 exitGroupFunc(desc, 252, process, tc); 1994 1995 return 0; 1996} 1997 1998 1999#endif // __SIM_SYSCALL_EMUL_HH__ 2000