serialize.hh revision 10905:a6ca6831e775
1/*
2 * Copyright (c) 2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Nathan Binkert
41 *          Erik Hallnor
42 *          Steve Reinhardt
43 *          Andreas Sandberg
44 */
45
46/* @file
47 * Serialization Interface Declarations
48 */
49
50#ifndef __SERIALIZE_HH__
51#define __SERIALIZE_HH__
52
53
54#include <iostream>
55#include <list>
56#include <map>
57#include <stack>
58#include <vector>
59
60#include "base/bitunion.hh"
61#include "base/types.hh"
62
63class IniFile;
64class Serializable;
65class CheckpointIn;
66class SimObject;
67class EventQueue;
68
69typedef std::ostream CheckpointOut;
70
71
72/** The current version of the checkpoint format.
73 * This should be incremented by 1 and only 1 for every new version, where a new
74 * version is defined as a checkpoint created before this version won't work on
75 * the current version until the checkpoint format is updated. Adding a new
76 * SimObject shouldn't cause the version number to increase, only changes to
77 * existing objects such as serializing/unserializing more state, changing sizes
78 * of serialized arrays, etc. */
79static const uint64_t gem5CheckpointVersion = 0x000000000000000e;
80
81template <class T>
82void paramOut(CheckpointOut &cp, const std::string &name, const T &param);
83
84template <typename DataType, typename BitUnion>
85void paramOut(CheckpointOut &cp, const std::string &name,
86              const BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
87{
88    paramOut(cp, name, p.__data);
89}
90
91template <class T>
92void paramIn(CheckpointIn &cp, const std::string &name, T &param);
93
94template <typename DataType, typename BitUnion>
95void paramIn(CheckpointIn &cp, const std::string &name,
96             BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
97{
98    paramIn(cp, name, p.__data);
99}
100
101template <class T>
102bool optParamIn(CheckpointIn &cp, const std::string &name, T &param);
103
104template <typename DataType, typename BitUnion>
105bool optParamIn(CheckpointIn &cp, const std::string &name,
106                BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
107{
108    return optParamIn(cp, name, p.__data);
109}
110
111template <class T>
112void arrayParamOut(CheckpointOut &cp, const std::string &name,
113                   const T *param, unsigned size);
114
115template <class T>
116void arrayParamOut(CheckpointOut &cp, const std::string &name,
117                   const std::vector<T> &param);
118
119template <class T>
120void arrayParamOut(CheckpointOut &cp, const std::string &name,
121                   const std::list<T> &param);
122
123template <class T>
124void arrayParamIn(CheckpointIn &cp, const std::string &name,
125                  T *param, unsigned size);
126
127template <class T>
128void arrayParamIn(CheckpointIn &cp, const std::string &name,
129                  std::vector<T> &param);
130
131template <class T>
132void arrayParamIn(CheckpointIn &cp, const std::string &name,
133                  std::list<T> &param);
134
135void
136objParamIn(CheckpointIn &cp, const std::string &name, SimObject * &param);
137
138template <typename T>
139void fromInt(T &t, int i)
140{
141    t = (T)i;
142}
143
144template <typename T>
145void fromSimObject(T &t, SimObject *s)
146{
147    t = dynamic_cast<T>(s);
148}
149
150//
151// These macros are streamlined to use in serialize/unserialize
152// functions.  It's assumed that serialize() has a parameter 'os' for
153// the ostream, and unserialize() has parameters 'cp' and 'section'.
154#define SERIALIZE_SCALAR(scalar)        paramOut(cp, #scalar, scalar)
155
156#define UNSERIALIZE_SCALAR(scalar)      paramIn(cp, #scalar, scalar)
157#define UNSERIALIZE_OPT_SCALAR(scalar)      optParamIn(cp, #scalar, scalar)
158
159// ENUMs are like SCALARs, but we cast them to ints on the way out
160#define SERIALIZE_ENUM(scalar)          paramOut(cp, #scalar, (int)scalar)
161
162#define UNSERIALIZE_ENUM(scalar)                \
163 do {                                           \
164    int tmp;                                    \
165    paramIn(cp, #scalar, tmp);                  \
166    fromInt(scalar, tmp);                       \
167  } while (0)
168
169#define SERIALIZE_ARRAY(member, size)           \
170        arrayParamOut(cp, #member, member, size)
171
172#define UNSERIALIZE_ARRAY(member, size)         \
173        arrayParamIn(cp, #member, member, size)
174
175#define SERIALIZE_CONTAINER(member)             \
176        arrayParamOut(cp, #member, member)
177
178#define UNSERIALIZE_CONTAINER(member)           \
179        arrayParamIn(cp, #member, member)
180
181#define SERIALIZE_OBJPTR(objptr)        paramOut(cp, #objptr, (objptr)->name())
182
183#define UNSERIALIZE_OBJPTR(objptr)                      \
184  do {                                                  \
185    SimObject *sptr;                                    \
186    objParamIn(cp, #objptr, sptr);                      \
187    fromSimObject(objptr, sptr);                        \
188  } while (0)
189
190/**
191 * Basic support for object serialization.
192 *
193 * Objects that support serialization should derive from this
194 * class. Such objects can largely be divided into two categories: 1)
195 * True SimObjects (deriving from SimObject), and 2) child objects
196 * (non-SimObjects).
197 *
198 * SimObjects are serialized automatically into their own sections
199 * automatically by the SimObject base class (see
200 * SimObject::serializeAll().
201 *
202 * SimObjects can contain other serializable objects that are not
203 * SimObjects. Much like normal serialized members are not serialized
204 * automatically, these objects will not be serialized automatically
205 * and it is expected that the objects owning such serializable
206 * objects call the required serialization/unserialization methods on
207 * child objects. The preferred method to serialize a child object is
208 * to call serializeSection() on the child, which serializes the
209 * object into a new subsection in the current section. Another option
210 * is to call serialize() directly, which serializes the object into
211 * the current section. The latter is not recommended as it can lead
212 * to naming clashes between objects.
213 *
214 * @note Many objects that support serialization need to be put in a
215 * consistent state when serialization takes place. We refer to the
216 * action of forcing an object into a consistent state as
217 * 'draining'. Objects that need draining inherit from Drainable. See
218 * Drainable for more information.
219 */
220class Serializable
221{
222  protected:
223    /**
224     * Scoped checkpoint section helper class
225     *
226     * This helper class creates a section within a checkpoint without
227     * the need for a separate serializeable object. It is mainly used
228     * within the Serializable class when serializing or unserializing
229     * section (see serializeSection() and unserializeSection()). It
230     * can also be used to maintain backwards compatibility in
231     * existing code that serializes structs that are not inheriting
232     * from Serializable into subsections.
233     *
234     * When the class is instantiated, it appends a name to the active
235     * path in a checkpoint. The old path is later restored when the
236     * instance is destroyed. For example, serializeSection() could be
237     * implemented by instantiating a ScopedCheckpointSection and then
238     * calling serialize() on an object.
239     */
240    class ScopedCheckpointSection {
241      public:
242        template<class CP>
243        ScopedCheckpointSection(CP &cp, const char *name) {
244            pushName(name);
245            nameOut(cp);
246        }
247
248        template<class CP>
249        ScopedCheckpointSection(CP &cp, const std::string &name) {
250            pushName(name.c_str());
251            nameOut(cp);
252        }
253
254        ~ScopedCheckpointSection();
255
256        ScopedCheckpointSection() = delete;
257        ScopedCheckpointSection(const ScopedCheckpointSection &) = delete;
258        ScopedCheckpointSection &operator=(
259            const ScopedCheckpointSection &) = delete;
260        ScopedCheckpointSection &operator=(
261            ScopedCheckpointSection &&) = delete;
262
263      private:
264        void pushName(const char *name);
265        void nameOut(CheckpointOut &cp);
266        void nameOut(CheckpointIn &cp) {};
267    };
268
269  public:
270    Serializable();
271    virtual ~Serializable();
272
273    /**
274     * Serialize an object
275     *
276     * Output an object's state into the current checkpoint section.
277     *
278     * @param cp Checkpoint state
279     */
280    virtual void serialize(CheckpointOut &cp) const = 0;
281
282    /**
283     * Unserialize an object
284     *
285     * Read an object's state from the current checkpoint section.
286     *
287     * @param cp Checkpoint state
288     */
289    virtual void unserialize(CheckpointIn &cp) = 0;
290
291    /**
292     * Serialize an object into a new section
293     *
294     * This method creates a new section in a checkpoint and calls
295     * serialize() to serialize the current object into that
296     * section. The name of the section is appended to the current
297     * checkpoint path.
298     *
299     * @param cp Checkpoint state
300     * @param name Name to append to the active path
301     */
302    void serializeSection(CheckpointOut &cp, const char *name) const;
303
304    void serializeSection(CheckpointOut &cp, const std::string &name) const {
305        serializeSection(cp, name.c_str());
306    }
307
308    /**
309     * Unserialize an a child object
310     *
311     * This method loads a child object from a checkpoint. The object
312     * name is appended to the active path to form a fully qualified
313     * section name and unserialize() is called.
314     *
315     * @param cp Checkpoint state
316     * @param name Name to append to the active path
317     */
318    void unserializeSection(CheckpointIn &cp, const char *name);
319
320    void unserializeSection(CheckpointIn &cp, const std::string &name) {
321        unserializeSection(cp, name.c_str());
322    }
323
324    /**
325     * @{
326     * @name Legacy interface
327     *
328     * Interface for objects that insist on changing their state when
329     * serializing. Such state change should be done in drain(),
330     * memWriteback(), or memInvalidate() and not in the serialization
331     * method. In general, if state changes occur in serialize, it
332     * complicates testing since it breaks assumptions about draining
333     * and serialization. It potentially also makes components more
334     * fragile since they there are no ordering guarantees when
335     * serializing SimObjects.
336     *
337     * @warn This interface is considered deprecated and should never
338     * be used.
339     */
340
341    virtual void serializeOld(CheckpointOut &cp) {
342        serialize(cp);
343    }
344    void serializeSectionOld(CheckpointOut &cp, const char *name);
345    void serializeSectionOld(CheckpointOut &cp, const std::string &name) {
346        serializeSectionOld(cp, name.c_str());
347    }
348    /** @} */
349
350    /** Get the fully-qualified name of the active section */
351    static const std::string &currentSection();
352
353    static Serializable *create(CheckpointIn &cp, const std::string &section);
354
355    static int ckptCount;
356    static int ckptMaxCount;
357    static int ckptPrevCount;
358    static void serializeAll(const std::string &cpt_dir);
359    static void unserializeGlobals(CheckpointIn &cp);
360
361  private:
362    static std::stack<std::string> path;
363};
364
365void debug_serialize(const std::string &cpt_dir);
366
367//
368// A SerializableBuilder serves as an evaluation context for a set of
369// parameters that describe a specific instance of a Serializable.  This
370// evaluation context corresponds to a section in the .ini file (as
371// with the base ParamContext) plus an optional node in the
372// configuration hierarchy (the configNode member) for resolving
373// Serializable references.  SerializableBuilder is an abstract superclass;
374// derived classes specialize the class for particular subclasses of
375// Serializable (e.g., BaseCache).
376//
377// For typical usage, see the definition of
378// SerializableClass::createObject().
379//
380class SerializableBuilder
381{
382  public:
383
384    SerializableBuilder() {}
385
386    virtual ~SerializableBuilder() {}
387
388    // Create the actual Serializable corresponding to the parameter
389    // values in this context.  This function is overridden in derived
390    // classes to call a specific constructor for a particular
391    // subclass of Serializable.
392    virtual Serializable *create() = 0;
393};
394
395//
396// An instance of SerializableClass corresponds to a class derived from
397// Serializable.  The SerializableClass instance serves to bind the string
398// name (found in the config file) to a function that creates an
399// instance of the appropriate derived class.
400//
401// This would be much cleaner in Smalltalk or Objective-C, where types
402// are first-class objects themselves.
403//
404class SerializableClass
405{
406  public:
407
408    // Type CreateFunc is a pointer to a function that creates a new
409    // simulation object builder based on a .ini-file parameter
410    // section (specified by the first string argument), a unique name
411    // for the object (specified by the second string argument), and
412    // an optional config hierarchy node (specified by the third
413    // argument).  A pointer to the new SerializableBuilder is returned.
414    typedef Serializable *(*CreateFunc)(CheckpointIn &cp,
415                                        const std::string &section);
416
417    static std::map<std::string,CreateFunc> *classMap;
418
419    // Constructor.  For example:
420    //
421    // SerializableClass baseCacheSerializableClass("BaseCacheSerializable",
422    //                         newBaseCacheSerializableBuilder);
423    //
424    SerializableClass(const std::string &className, CreateFunc createFunc);
425
426    // create Serializable given name of class and pointer to
427    // configuration hierarchy node
428    static Serializable *createObject(CheckpointIn &cp,
429                                      const std::string &section);
430};
431
432//
433// Macros to encapsulate the magic of declaring & defining
434// SerializableBuilder and SerializableClass objects
435//
436
437#define REGISTER_SERIALIZEABLE(CLASS_NAME, OBJ_CLASS)                      \
438SerializableClass the##OBJ_CLASS##Class(CLASS_NAME,                        \
439                                         OBJ_CLASS::createForUnserialize);
440
441// Base class to wrap object resolving functionality.  This can be
442// provided to Checkpoint to allow it to map object names onto
443// object C++ objects in which to unserialize
444class SimObjectResolver
445{
446  public:
447    virtual ~SimObjectResolver() { }
448
449    // Find a SimObject given a full path name
450    virtual SimObject *resolveSimObject(const std::string &name) = 0;
451};
452
453class CheckpointIn
454{
455  private:
456
457    IniFile *db;
458
459    SimObjectResolver &objNameResolver;
460
461  public:
462    CheckpointIn(const std::string &cpt_dir, SimObjectResolver &resolver);
463    ~CheckpointIn();
464
465    const std::string cptDir;
466
467    bool find(const std::string &section, const std::string &entry,
468              std::string &value);
469
470    bool findObj(const std::string &section, const std::string &entry,
471                 SimObject *&value);
472
473    bool sectionExists(const std::string &section);
474
475    // The following static functions have to do with checkpoint
476    // creation rather than restoration.  This class makes a handy
477    // namespace for them though.  Currently no Checkpoint object is
478    // created on serialization (only unserialization) so we track the
479    // directory name as a global.  It would be nice to change this
480    // someday
481
482  private:
483    // current directory we're serializing into.
484    static std::string currentDirectory;
485
486  public:
487    // Set the current directory.  This function takes care of
488    // inserting curTick() if there's a '%d' in the argument, and
489    // appends a '/' if necessary.  The final name is returned.
490    static std::string setDir(const std::string &base_name);
491
492    // Export current checkpoint directory name so other objects can
493    // derive filenames from it (e.g., memory).  The return value is
494    // guaranteed to end in '/' so filenames can be directly appended.
495    // This function is only valid while a checkpoint is being created.
496    static std::string dir();
497
498    // Filename for base checkpoint file within directory.
499    static const char *baseFilename;
500};
501
502#endif // __SERIALIZE_HH__
503