eventq.hh revision 13440:17adf0ea4d36
1/*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 *          Nathan Binkert
32 */
33
34/* @file
35 * EventQueue interfaces
36 */
37
38#ifndef __SIM_EVENTQ_HH__
39#define __SIM_EVENTQ_HH__
40
41#include <algorithm>
42#include <cassert>
43#include <climits>
44#include <functional>
45#include <iosfwd>
46#include <memory>
47#include <mutex>
48#include <string>
49
50#include "base/flags.hh"
51#include "base/types.hh"
52#include "debug/Event.hh"
53#include "sim/serialize.hh"
54
55class EventQueue;       // forward declaration
56class BaseGlobalEvent;
57
58//! Simulation Quantum for multiple eventq simulation.
59//! The quantum value is the period length after which the queues
60//! synchronize themselves with each other. This means that any
61//! event to scheduled on Queue A which is generated by an event on
62//! Queue B should be at least simQuantum ticks away in future.
63extern Tick simQuantum;
64
65//! Current number of allocated main event queues.
66extern uint32_t numMainEventQueues;
67
68//! Array for main event queues.
69extern std::vector<EventQueue *> mainEventQueue;
70
71//! The current event queue for the running thread. Access to this queue
72//! does not require any locking from the thread.
73
74extern __thread EventQueue *_curEventQueue;
75
76//! Current mode of execution: parallel / serial
77extern bool inParallelMode;
78
79//! Function for returning eventq queue for the provided
80//! index. The function allocates a new queue in case one
81//! does not exist for the index, provided that the index
82//! is with in bounds.
83EventQueue *getEventQueue(uint32_t index);
84
85inline EventQueue *curEventQueue() { return _curEventQueue; }
86inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
87
88/**
89 * Common base class for Event and GlobalEvent, so they can share flag
90 * and priority definitions and accessor functions.  This class should
91 * not be used directly.
92 */
93class EventBase
94{
95  protected:
96    typedef unsigned short FlagsType;
97    typedef ::Flags<FlagsType> Flags;
98
99    static const FlagsType PublicRead    = 0x003f; // public readable flags
100    static const FlagsType PublicWrite   = 0x001d; // public writable flags
101    static const FlagsType Squashed      = 0x0001; // has been squashed
102    static const FlagsType Scheduled     = 0x0002; // has been scheduled
103    static const FlagsType Managed       = 0x0004; // Use life cycle manager
104    static const FlagsType AutoDelete    = Managed; // delete after dispatch
105    /**
106     * This used to be AutoSerialize. This value can't be reused
107     * without changing the checkpoint version since the flag field
108     * gets serialized.
109     */
110    static const FlagsType Reserved0     = 0x0008;
111    static const FlagsType IsExitEvent   = 0x0010; // special exit event
112    static const FlagsType IsMainQueue   = 0x0020; // on main event queue
113    static const FlagsType Initialized   = 0x7a40; // somewhat random bits
114    static const FlagsType InitMask      = 0xffc0; // mask for init bits
115
116  public:
117    typedef int8_t Priority;
118
119    /// Event priorities, to provide tie-breakers for events scheduled
120    /// at the same cycle.  Most events are scheduled at the default
121    /// priority; these values are used to control events that need to
122    /// be ordered within a cycle.
123
124    /// Minimum priority
125    static const Priority Minimum_Pri =          SCHAR_MIN;
126
127    /// If we enable tracing on a particular cycle, do that as the
128    /// very first thing so we don't miss any of the events on
129    /// that cycle (even if we enter the debugger).
130    static const Priority Debug_Enable_Pri =          -101;
131
132    /// Breakpoints should happen before anything else (except
133    /// enabling trace output), so we don't miss any action when
134    /// debugging.
135    static const Priority Debug_Break_Pri =           -100;
136
137    /// CPU switches schedule the new CPU's tick event for the
138    /// same cycle (after unscheduling the old CPU's tick event).
139    /// The switch needs to come before any tick events to make
140    /// sure we don't tick both CPUs in the same cycle.
141    static const Priority CPU_Switch_Pri =             -31;
142
143    /// For some reason "delayed" inter-cluster writebacks are
144    /// scheduled before regular writebacks (which have default
145    /// priority).  Steve?
146    static const Priority Delayed_Writeback_Pri =       -1;
147
148    /// Default is zero for historical reasons.
149    static const Priority Default_Pri =                  0;
150
151    /// DVFS update event leads to stats dump therefore given a lower priority
152    /// to ensure all relevant states have been updated
153    static const Priority DVFS_Update_Pri =             31;
154
155    /// Serailization needs to occur before tick events also, so
156    /// that a serialize/unserialize is identical to an on-line
157    /// CPU switch.
158    static const Priority Serialize_Pri =               32;
159
160    /// CPU ticks must come after other associated CPU events
161    /// (such as writebacks).
162    static const Priority CPU_Tick_Pri =                50;
163
164    /// Statistics events (dump, reset, etc.) come after
165    /// everything else, but before exit.
166    static const Priority Stat_Event_Pri =              90;
167
168    /// Progress events come at the end.
169    static const Priority Progress_Event_Pri =          95;
170
171    /// If we want to exit on this cycle, it's the very last thing
172    /// we do.
173    static const Priority Sim_Exit_Pri =               100;
174
175    /// Maximum priority
176    static const Priority Maximum_Pri =          SCHAR_MAX;
177};
178
179/*
180 * An item on an event queue.  The action caused by a given
181 * event is specified by deriving a subclass and overriding the
182 * process() member function.
183 *
184 * Caution, the order of members is chosen to maximize data packing.
185 */
186class Event : public EventBase, public Serializable
187{
188    friend class EventQueue;
189
190  private:
191    // The event queue is now a linked list of linked lists.  The
192    // 'nextBin' pointer is to find the bin, where a bin is defined as
193    // when+priority.  All events in the same bin will be stored in a
194    // second linked list (a stack) maintained by the 'nextInBin'
195    // pointer.  The list will be accessed in LIFO order.  The end
196    // result is that the insert/removal in 'nextBin' is
197    // linear/constant, and the lookup/removal in 'nextInBin' is
198    // constant/constant.  Hopefully this is a significant improvement
199    // over the current fully linear insertion.
200    Event *nextBin;
201    Event *nextInBin;
202
203    static Event *insertBefore(Event *event, Event *curr);
204    static Event *removeItem(Event *event, Event *last);
205
206    Tick _when;         //!< timestamp when event should be processed
207    Priority _priority; //!< event priority
208    Flags flags;
209
210#ifndef NDEBUG
211    /// Global counter to generate unique IDs for Event instances
212    static Counter instanceCounter;
213
214    /// This event's unique ID.  We can also use pointer values for
215    /// this but they're not consistent across runs making debugging
216    /// more difficult.  Thus we use a global counter value when
217    /// debugging.
218    Counter instance;
219
220    /// queue to which this event belongs (though it may or may not be
221    /// scheduled on this queue yet)
222    EventQueue *queue;
223#endif
224
225#ifdef EVENTQ_DEBUG
226    Tick whenCreated;   //!< time created
227    Tick whenScheduled; //!< time scheduled
228#endif
229
230    void
231    setWhen(Tick when, EventQueue *q)
232    {
233        _when = when;
234#ifndef NDEBUG
235        queue = q;
236#endif
237#ifdef EVENTQ_DEBUG
238        whenScheduled = curTick();
239#endif
240    }
241
242    bool
243    initialized() const
244    {
245        return (flags & InitMask) == Initialized;
246    }
247
248  protected:
249    /// Accessor for flags.
250    Flags
251    getFlags() const
252    {
253        return flags & PublicRead;
254    }
255
256    bool
257    isFlagSet(Flags _flags) const
258    {
259        assert(_flags.noneSet(~PublicRead));
260        return flags.isSet(_flags);
261    }
262
263    /// Accessor for flags.
264    void
265    setFlags(Flags _flags)
266    {
267        assert(_flags.noneSet(~PublicWrite));
268        flags.set(_flags);
269    }
270
271    void
272    clearFlags(Flags _flags)
273    {
274        assert(_flags.noneSet(~PublicWrite));
275        flags.clear(_flags);
276    }
277
278    void
279    clearFlags()
280    {
281        flags.clear(PublicWrite);
282    }
283
284    // This function isn't really useful if TRACING_ON is not defined
285    virtual void trace(const char *action);     //!< trace event activity
286
287  protected: /* Memory management */
288    /**
289     * @{
290     * Memory management hooks for events that have the Managed flag set
291     *
292     * Events can use automatic memory management by setting the
293     * Managed flag. The default implementation automatically deletes
294     * events once they have been removed from the event queue. This
295     * typically happens when events are descheduled or have been
296     * triggered and not rescheduled.
297     *
298     * The methods below may be overridden by events that need custom
299     * memory management. For example, events exported to Python need
300     * to impement reference counting to ensure that the Python
301     * implementation of the event is kept alive while it lives in the
302     * event queue.
303     *
304     * @note Memory managers are responsible for implementing
305     * reference counting (by overriding both acquireImpl() and
306     * releaseImpl()) or checking if an event is no longer scheduled
307     * in releaseImpl() before deallocating it.
308     */
309
310    /**
311     * Managed event scheduled and being held in the event queue.
312     */
313    void acquire()
314    {
315        if (flags.isSet(Event::Managed))
316            acquireImpl();
317    }
318
319    /**
320     * Managed event removed from the event queue.
321     */
322    void release() {
323        if (flags.isSet(Event::Managed))
324            releaseImpl();
325    }
326
327    virtual void acquireImpl() {}
328
329    virtual void releaseImpl() {
330        if (!scheduled())
331            delete this;
332    }
333
334    /** @} */
335
336  public:
337
338    /*
339     * Event constructor
340     * @param queue that the event gets scheduled on
341     */
342    Event(Priority p = Default_Pri, Flags f = 0)
343        : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
344          flags(Initialized | f)
345    {
346        assert(f.noneSet(~PublicWrite));
347#ifndef NDEBUG
348        instance = ++instanceCounter;
349        queue = NULL;
350#endif
351#ifdef EVENTQ_DEBUG
352        whenCreated = curTick();
353        whenScheduled = 0;
354#endif
355    }
356
357    virtual ~Event();
358    virtual const std::string name() const;
359
360    /// Return a C string describing the event.  This string should
361    /// *not* be dynamically allocated; just a const char array
362    /// describing the event class.
363    virtual const char *description() const;
364
365    /// Dump the current event data
366    void dump() const;
367
368  public:
369    /*
370     * This member function is invoked when the event is processed
371     * (occurs).  There is no default implementation; each subclass
372     * must provide its own implementation.  The event is not
373     * automatically deleted after it is processed (to allow for
374     * statically allocated event objects).
375     *
376     * If the AutoDestroy flag is set, the object is deleted once it
377     * is processed.
378     */
379    virtual void process() = 0;
380
381    /// Determine if the current event is scheduled
382    bool scheduled() const { return flags.isSet(Scheduled); }
383
384    /// Squash the current event
385    void squash() { flags.set(Squashed); }
386
387    /// Check whether the event is squashed
388    bool squashed() const { return flags.isSet(Squashed); }
389
390    /// See if this is a SimExitEvent (without resorting to RTTI)
391    bool isExitEvent() const { return flags.isSet(IsExitEvent); }
392
393    /// Check whether this event will auto-delete
394    bool isManaged() const { return flags.isSet(Managed); }
395    bool isAutoDelete() const { return isManaged(); }
396
397    /// Get the time that the event is scheduled
398    Tick when() const { return _when; }
399
400    /// Get the event priority
401    Priority priority() const { return _priority; }
402
403    //! If this is part of a GlobalEvent, return the pointer to the
404    //! Global Event.  By default, there is no GlobalEvent, so return
405    //! NULL.  (Overridden in GlobalEvent::BarrierEvent.)
406    virtual BaseGlobalEvent *globalEvent() { return NULL; }
407
408    void serialize(CheckpointOut &cp) const override;
409    void unserialize(CheckpointIn &cp) override;
410};
411
412inline bool
413operator<(const Event &l, const Event &r)
414{
415    return l.when() < r.when() ||
416        (l.when() == r.when() && l.priority() < r.priority());
417}
418
419inline bool
420operator>(const Event &l, const Event &r)
421{
422    return l.when() > r.when() ||
423        (l.when() == r.when() && l.priority() > r.priority());
424}
425
426inline bool
427operator<=(const Event &l, const Event &r)
428{
429    return l.when() < r.when() ||
430        (l.when() == r.when() && l.priority() <= r.priority());
431}
432inline bool
433operator>=(const Event &l, const Event &r)
434{
435    return l.when() > r.when() ||
436        (l.when() == r.when() && l.priority() >= r.priority());
437}
438
439inline bool
440operator==(const Event &l, const Event &r)
441{
442    return l.when() == r.when() && l.priority() == r.priority();
443}
444
445inline bool
446operator!=(const Event &l, const Event &r)
447{
448    return l.when() != r.when() || l.priority() != r.priority();
449}
450
451/**
452 * Queue of events sorted in time order
453 *
454 * Events are scheduled (inserted into the event queue) using the
455 * schedule() method. This method either inserts a <i>synchronous</i>
456 * or <i>asynchronous</i> event.
457 *
458 * Synchronous events are scheduled using schedule() method with the
459 * argument 'global' set to false (default). This should only be done
460 * from a thread holding the event queue lock
461 * (EventQueue::service_mutex). The lock is always held when an event
462 * handler is called, it can therefore always insert events into its
463 * own event queue unless it voluntarily releases the lock.
464 *
465 * Events can be scheduled across thread (and event queue borders) by
466 * either scheduling asynchronous events or taking the target event
467 * queue's lock. However, the lock should <i>never</i> be taken
468 * directly since this is likely to cause deadlocks. Instead, code
469 * that needs to schedule events in other event queues should
470 * temporarily release its own queue and lock the new queue. This
471 * prevents deadlocks since a single thread never owns more than one
472 * event queue lock. This functionality is provided by the
473 * ScopedMigration helper class. Note that temporarily migrating
474 * between event queues can make the simulation non-deterministic, it
475 * should therefore be limited to cases where that can be tolerated
476 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
477 *
478 * Asynchronous events can also be scheduled using the normal
479 * schedule() method with the 'global' parameter set to true. Unlike
480 * the previous queue migration strategy, this strategy is fully
481 * deterministic. This causes the event to be inserted in a separate
482 * queue of asynchronous events (async_queue), which is merged main
483 * event queue at the end of each simulation quantum (by calling the
484 * handleAsyncInsertions() method). Note that this implies that such
485 * events must happen at least one simulation quantum into the future,
486 * otherwise they risk being scheduled in the past by
487 * handleAsyncInsertions().
488 */
489class EventQueue
490{
491  private:
492    std::string objName;
493    Event *head;
494    Tick _curTick;
495
496    //! Mutex to protect async queue.
497    std::mutex async_queue_mutex;
498
499    //! List of events added by other threads to this event queue.
500    std::list<Event*> async_queue;
501
502    /**
503     * Lock protecting event handling.
504     *
505     * This lock is always taken when servicing events. It is assumed
506     * that the thread scheduling new events (not asynchronous events
507     * though) have taken this lock. This is normally done by
508     * serviceOne() since new events are typically scheduled as a
509     * response to an earlier event.
510     *
511     * This lock is intended to be used to temporarily steal an event
512     * queue to support inter-thread communication when some
513     * deterministic timing can be sacrificed for speed. For example,
514     * the KVM CPU can use this support to access devices running in a
515     * different thread.
516     *
517     * @see EventQueue::ScopedMigration.
518     * @see EventQueue::ScopedRelease
519     * @see EventQueue::lock()
520     * @see EventQueue::unlock()
521     */
522    std::mutex service_mutex;
523
524    //! Insert / remove event from the queue. Should only be called
525    //! by thread operating this queue.
526    void insert(Event *event);
527    void remove(Event *event);
528
529    //! Function for adding events to the async queue. The added events
530    //! are added to main event queue later. Threads, other than the
531    //! owning thread, should call this function instead of insert().
532    void asyncInsert(Event *event);
533
534    EventQueue(const EventQueue &);
535
536  public:
537    /**
538     * Temporarily migrate execution to a different event queue.
539     *
540     * An instance of this class temporarily migrates execution to a
541     * different event queue by releasing the current queue, locking
542     * the new queue, and updating curEventQueue(). This can, for
543     * example, be useful when performing IO across thread event
544     * queues when timing is not crucial (e.g., during fast
545     * forwarding).
546     *
547     * ScopedMigration does nothing if both eqs are the same
548     */
549    class ScopedMigration
550    {
551      public:
552        ScopedMigration(EventQueue *_new_eq, bool _doMigrate = true)
553            :new_eq(*_new_eq), old_eq(*curEventQueue()),
554             doMigrate((&new_eq != &old_eq)&&_doMigrate)
555        {
556            if (doMigrate){
557                old_eq.unlock();
558                new_eq.lock();
559                curEventQueue(&new_eq);
560            }
561        }
562
563        ~ScopedMigration()
564        {
565            if (doMigrate){
566                new_eq.unlock();
567                old_eq.lock();
568                curEventQueue(&old_eq);
569            }
570        }
571
572      private:
573        EventQueue &new_eq;
574        EventQueue &old_eq;
575        bool doMigrate;
576    };
577
578    /**
579     * Temporarily release the event queue service lock.
580     *
581     * There are cases where it is desirable to temporarily release
582     * the event queue lock to prevent deadlocks. For example, when
583     * waiting on the global barrier, we need to release the lock to
584     * prevent deadlocks from happening when another thread tries to
585     * temporarily take over the event queue waiting on the barrier.
586     */
587    class ScopedRelease
588    {
589      public:
590        ScopedRelease(EventQueue *_eq)
591            :  eq(*_eq)
592        {
593            eq.unlock();
594        }
595
596        ~ScopedRelease()
597        {
598            eq.lock();
599        }
600
601      private:
602        EventQueue &eq;
603    };
604
605    EventQueue(const std::string &n);
606
607    virtual const std::string name() const { return objName; }
608    void name(const std::string &st) { objName = st; }
609
610    //! Schedule the given event on this queue. Safe to call from any
611    //! thread.
612    void schedule(Event *event, Tick when, bool global = false);
613
614    //! Deschedule the specified event. Should be called only from the
615    //! owning thread.
616    void deschedule(Event *event);
617
618    //! Reschedule the specified event. Should be called only from
619    //! the owning thread.
620    void reschedule(Event *event, Tick when, bool always = false);
621
622    Tick nextTick() const { return head->when(); }
623    void setCurTick(Tick newVal) { _curTick = newVal; }
624    Tick getCurTick() const { return _curTick; }
625    Event *getHead() const { return head; }
626
627    Event *serviceOne();
628
629    // process all events up to the given timestamp.  we inline a
630    // quick test to see if there are any events to process; if so,
631    // call the internal out-of-line version to process them all.
632    void
633    serviceEvents(Tick when)
634    {
635        while (!empty()) {
636            if (nextTick() > when)
637                break;
638
639            /**
640             * @todo this assert is a good bug catcher.  I need to
641             * make it true again.
642             */
643            //assert(head->when() >= when && "event scheduled in the past");
644            serviceOne();
645        }
646
647        setCurTick(when);
648    }
649
650    // return true if no events are queued
651    bool empty() const { return head == NULL; }
652
653    void dump() const;
654
655    bool debugVerify() const;
656
657    //! Function for moving events from the async_queue to the main queue.
658    void handleAsyncInsertions();
659
660    /**
661     *  Function to signal that the event loop should be woken up because
662     *  an event has been scheduled by an agent outside the gem5 event
663     *  loop(s) whose event insertion may not have been noticed by gem5.
664     *  This function isn't needed by the usual gem5 event loop but may
665     *  be necessary in derived EventQueues which host gem5 onto other
666     *  schedulers.
667     *
668     *  @param when Time of a delayed wakeup (if known). This parameter
669     *  can be used by an implementation to schedule a wakeup in the
670     *  future if it is sure it will remain active until then.
671     *  Or it can be ignored and the event queue can be woken up now.
672     */
673    virtual void wakeup(Tick when = (Tick)-1) { }
674
675    /**
676     *  function for replacing the head of the event queue, so that a
677     *  different set of events can run without disturbing events that have
678     *  already been scheduled. Already scheduled events can be processed
679     *  by replacing the original head back.
680     *  USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
681     *  NOT RECOMMENDED FOR USE.
682     */
683    Event* replaceHead(Event* s);
684
685    /**@{*/
686    /**
687     * Provide an interface for locking/unlocking the event queue.
688     *
689     * @warn Do NOT use these methods directly unless you really know
690     * what you are doing. Incorrect use can easily lead to simulator
691     * deadlocks.
692     *
693     * @see EventQueue::ScopedMigration.
694     * @see EventQueue::ScopedRelease
695     * @see EventQueue
696     */
697    void lock() { service_mutex.lock(); }
698    void unlock() { service_mutex.unlock(); }
699    /**@}*/
700
701    /**
702     * Reschedule an event after a checkpoint.
703     *
704     * Since events don't know which event queue they belong to,
705     * parent objects need to reschedule events themselves. This
706     * method conditionally schedules an event that has the Scheduled
707     * flag set. It should be called by parent objects after
708     * unserializing an object.
709     *
710     * @warn Only use this method after unserializing an Event.
711     */
712    void checkpointReschedule(Event *event);
713
714    virtual ~EventQueue()
715    {
716        while (!empty())
717            deschedule(getHead());
718    }
719};
720
721void dumpMainQueue();
722
723class EventManager
724{
725  protected:
726    /** A pointer to this object's event queue */
727    EventQueue *eventq;
728
729  public:
730    EventManager(EventManager &em) : eventq(em.eventq) {}
731    EventManager(EventManager *em) : eventq(em->eventq) {}
732    EventManager(EventQueue *eq) : eventq(eq) {}
733
734    EventQueue *
735    eventQueue() const
736    {
737        return eventq;
738    }
739
740    void
741    schedule(Event &event, Tick when)
742    {
743        eventq->schedule(&event, when);
744    }
745
746    void
747    deschedule(Event &event)
748    {
749        eventq->deschedule(&event);
750    }
751
752    void
753    reschedule(Event &event, Tick when, bool always = false)
754    {
755        eventq->reschedule(&event, when, always);
756    }
757
758    void
759    schedule(Event *event, Tick when)
760    {
761        eventq->schedule(event, when);
762    }
763
764    void
765    deschedule(Event *event)
766    {
767        eventq->deschedule(event);
768    }
769
770    void
771    reschedule(Event *event, Tick when, bool always = false)
772    {
773        eventq->reschedule(event, when, always);
774    }
775
776    void wakeupEventQueue(Tick when = (Tick)-1)
777    {
778        eventq->wakeup(when);
779    }
780
781    void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
782};
783
784template <class T, void (T::* F)()>
785class EventWrapper : public Event
786{
787  private:
788    T *object;
789
790  public:
791    EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
792        : Event(p), object(obj)
793    {
794        if (del)
795            setFlags(AutoDelete);
796    }
797
798    EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
799        : Event(p), object(&obj)
800    {
801        if (del)
802            setFlags(AutoDelete);
803    }
804
805    void process() { (object->*F)(); }
806
807    const std::string
808    name() const
809    {
810        return object->name() + ".wrapped_event";
811    }
812
813    const char *description() const { return "EventWrapped"; }
814};
815
816class EventFunctionWrapper : public Event
817{
818  private:
819      std::function<void(void)> callback;
820      std::string _name;
821
822  public:
823    EventFunctionWrapper(const std::function<void(void)> &callback,
824                         const std::string &name,
825                         bool del = false,
826                         Priority p = Default_Pri)
827        : Event(p), callback(callback), _name(name)
828    {
829        if (del)
830            setFlags(AutoDelete);
831    }
832
833    void process() { callback(); }
834
835    const std::string
836    name() const
837    {
838        return _name + ".wrapped_function_event";
839    }
840
841    const char *description() const { return "EventFunctionWrapped"; }
842};
843
844#endif // __SIM_EVENTQ_HH__
845