eventq.hh revision 12270:3d6437eb362d
1/*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 *          Nathan Binkert
32 */
33
34/* @file
35 * EventQueue interfaces
36 */
37
38#ifndef __SIM_EVENTQ_HH__
39#define __SIM_EVENTQ_HH__
40
41#include <algorithm>
42#include <cassert>
43#include <climits>
44#include <iosfwd>
45#include <memory>
46#include <mutex>
47#include <string>
48
49#include "base/flags.hh"
50#include "base/types.hh"
51#include "debug/Event.hh"
52#include "sim/serialize.hh"
53
54class EventQueue;       // forward declaration
55class BaseGlobalEvent;
56
57//! Simulation Quantum for multiple eventq simulation.
58//! The quantum value is the period length after which the queues
59//! synchronize themselves with each other. This means that any
60//! event to scheduled on Queue A which is generated by an event on
61//! Queue B should be at least simQuantum ticks away in future.
62extern Tick simQuantum;
63
64//! Current number of allocated main event queues.
65extern uint32_t numMainEventQueues;
66
67//! Array for main event queues.
68extern std::vector<EventQueue *> mainEventQueue;
69
70//! The current event queue for the running thread. Access to this queue
71//! does not require any locking from the thread.
72
73extern __thread EventQueue *_curEventQueue;
74
75//! Current mode of execution: parallel / serial
76extern bool inParallelMode;
77
78//! Function for returning eventq queue for the provided
79//! index. The function allocates a new queue in case one
80//! does not exist for the index, provided that the index
81//! is with in bounds.
82EventQueue *getEventQueue(uint32_t index);
83
84inline EventQueue *curEventQueue() { return _curEventQueue; }
85inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
86
87/**
88 * Common base class for Event and GlobalEvent, so they can share flag
89 * and priority definitions and accessor functions.  This class should
90 * not be used directly.
91 */
92class EventBase
93{
94  protected:
95    typedef unsigned short FlagsType;
96    typedef ::Flags<FlagsType> Flags;
97
98    static const FlagsType PublicRead    = 0x003f; // public readable flags
99    static const FlagsType PublicWrite   = 0x001d; // public writable flags
100    static const FlagsType Squashed      = 0x0001; // has been squashed
101    static const FlagsType Scheduled     = 0x0002; // has been scheduled
102    static const FlagsType Managed       = 0x0004; // Use life cycle manager
103    static const FlagsType AutoDelete    = Managed; // delete after dispatch
104    /**
105     * This used to be AutoSerialize. This value can't be reused
106     * without changing the checkpoint version since the flag field
107     * gets serialized.
108     */
109    static const FlagsType Reserved0     = 0x0008;
110    static const FlagsType IsExitEvent   = 0x0010; // special exit event
111    static const FlagsType IsMainQueue   = 0x0020; // on main event queue
112    static const FlagsType Initialized   = 0x7a40; // somewhat random bits
113    static const FlagsType InitMask      = 0xffc0; // mask for init bits
114
115  public:
116    typedef int8_t Priority;
117
118    /// Event priorities, to provide tie-breakers for events scheduled
119    /// at the same cycle.  Most events are scheduled at the default
120    /// priority; these values are used to control events that need to
121    /// be ordered within a cycle.
122
123    /// Minimum priority
124    static const Priority Minimum_Pri =          SCHAR_MIN;
125
126    /// If we enable tracing on a particular cycle, do that as the
127    /// very first thing so we don't miss any of the events on
128    /// that cycle (even if we enter the debugger).
129    static const Priority Debug_Enable_Pri =          -101;
130
131    /// Breakpoints should happen before anything else (except
132    /// enabling trace output), so we don't miss any action when
133    /// debugging.
134    static const Priority Debug_Break_Pri =           -100;
135
136    /// CPU switches schedule the new CPU's tick event for the
137    /// same cycle (after unscheduling the old CPU's tick event).
138    /// The switch needs to come before any tick events to make
139    /// sure we don't tick both CPUs in the same cycle.
140    static const Priority CPU_Switch_Pri =             -31;
141
142    /// For some reason "delayed" inter-cluster writebacks are
143    /// scheduled before regular writebacks (which have default
144    /// priority).  Steve?
145    static const Priority Delayed_Writeback_Pri =       -1;
146
147    /// Default is zero for historical reasons.
148    static const Priority Default_Pri =                  0;
149
150    /// DVFS update event leads to stats dump therefore given a lower priority
151    /// to ensure all relevant states have been updated
152    static const Priority DVFS_Update_Pri =             31;
153
154    /// Serailization needs to occur before tick events also, so
155    /// that a serialize/unserialize is identical to an on-line
156    /// CPU switch.
157    static const Priority Serialize_Pri =               32;
158
159    /// CPU ticks must come after other associated CPU events
160    /// (such as writebacks).
161    static const Priority CPU_Tick_Pri =                50;
162
163    /// Statistics events (dump, reset, etc.) come after
164    /// everything else, but before exit.
165    static const Priority Stat_Event_Pri =              90;
166
167    /// Progress events come at the end.
168    static const Priority Progress_Event_Pri =          95;
169
170    /// If we want to exit on this cycle, it's the very last thing
171    /// we do.
172    static const Priority Sim_Exit_Pri =               100;
173
174    /// Maximum priority
175    static const Priority Maximum_Pri =          SCHAR_MAX;
176};
177
178/*
179 * An item on an event queue.  The action caused by a given
180 * event is specified by deriving a subclass and overriding the
181 * process() member function.
182 *
183 * Caution, the order of members is chosen to maximize data packing.
184 */
185class Event : public EventBase, public Serializable
186{
187    friend class EventQueue;
188
189  private:
190    // The event queue is now a linked list of linked lists.  The
191    // 'nextBin' pointer is to find the bin, where a bin is defined as
192    // when+priority.  All events in the same bin will be stored in a
193    // second linked list (a stack) maintained by the 'nextInBin'
194    // pointer.  The list will be accessed in LIFO order.  The end
195    // result is that the insert/removal in 'nextBin' is
196    // linear/constant, and the lookup/removal in 'nextInBin' is
197    // constant/constant.  Hopefully this is a significant improvement
198    // over the current fully linear insertion.
199    Event *nextBin;
200    Event *nextInBin;
201
202    static Event *insertBefore(Event *event, Event *curr);
203    static Event *removeItem(Event *event, Event *last);
204
205    Tick _when;         //!< timestamp when event should be processed
206    Priority _priority; //!< event priority
207    Flags flags;
208
209#ifndef NDEBUG
210    /// Global counter to generate unique IDs for Event instances
211    static Counter instanceCounter;
212
213    /// This event's unique ID.  We can also use pointer values for
214    /// this but they're not consistent across runs making debugging
215    /// more difficult.  Thus we use a global counter value when
216    /// debugging.
217    Counter instance;
218
219    /// queue to which this event belongs (though it may or may not be
220    /// scheduled on this queue yet)
221    EventQueue *queue;
222#endif
223
224#ifdef EVENTQ_DEBUG
225    Tick whenCreated;   //!< time created
226    Tick whenScheduled; //!< time scheduled
227#endif
228
229    void
230    setWhen(Tick when, EventQueue *q)
231    {
232        _when = when;
233#ifndef NDEBUG
234        queue = q;
235#endif
236#ifdef EVENTQ_DEBUG
237        whenScheduled = curTick();
238#endif
239    }
240
241    bool
242    initialized() const
243    {
244        return (flags & InitMask) == Initialized;
245    }
246
247  protected:
248    /// Accessor for flags.
249    Flags
250    getFlags() const
251    {
252        return flags & PublicRead;
253    }
254
255    bool
256    isFlagSet(Flags _flags) const
257    {
258        assert(_flags.noneSet(~PublicRead));
259        return flags.isSet(_flags);
260    }
261
262    /// Accessor for flags.
263    void
264    setFlags(Flags _flags)
265    {
266        assert(_flags.noneSet(~PublicWrite));
267        flags.set(_flags);
268    }
269
270    void
271    clearFlags(Flags _flags)
272    {
273        assert(_flags.noneSet(~PublicWrite));
274        flags.clear(_flags);
275    }
276
277    void
278    clearFlags()
279    {
280        flags.clear(PublicWrite);
281    }
282
283    // This function isn't really useful if TRACING_ON is not defined
284    virtual void trace(const char *action);     //!< trace event activity
285
286  protected: /* Memory management */
287    /**
288     * @{
289     * Memory management hooks for events that have the Managed flag set
290     *
291     * Events can use automatic memory management by setting the
292     * Managed flag. The default implementation automatically deletes
293     * events once they have been removed from the event queue. This
294     * typically happens when events are descheduled or have been
295     * triggered and not rescheduled.
296     *
297     * The methods below may be overridden by events that need custom
298     * memory management. For example, events exported to Python need
299     * to impement reference counting to ensure that the Python
300     * implementation of the event is kept alive while it lives in the
301     * event queue.
302     *
303     * @note Memory managers are responsible for implementing
304     * reference counting (by overriding both acquireImpl() and
305     * releaseImpl()) or checking if an event is no longer scheduled
306     * in releaseImpl() before deallocating it.
307     */
308
309    /**
310     * Managed event scheduled and being held in the event queue.
311     */
312    void acquire()
313    {
314        if (flags.isSet(Event::Managed))
315            acquireImpl();
316    }
317
318    /**
319     * Managed event removed from the event queue.
320     */
321    void release() {
322        if (flags.isSet(Event::Managed))
323            releaseImpl();
324    }
325
326    virtual void acquireImpl() {}
327
328    virtual void releaseImpl() {
329        if (!scheduled())
330            delete this;
331    }
332
333    /** @} */
334
335  public:
336
337    /*
338     * Event constructor
339     * @param queue that the event gets scheduled on
340     */
341    Event(Priority p = Default_Pri, Flags f = 0)
342        : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
343          flags(Initialized | f)
344    {
345        assert(f.noneSet(~PublicWrite));
346#ifndef NDEBUG
347        instance = ++instanceCounter;
348        queue = NULL;
349#endif
350#ifdef EVENTQ_DEBUG
351        whenCreated = curTick();
352        whenScheduled = 0;
353#endif
354    }
355
356    virtual ~Event();
357    virtual const std::string name() const;
358
359    /// Return a C string describing the event.  This string should
360    /// *not* be dynamically allocated; just a const char array
361    /// describing the event class.
362    virtual const char *description() const;
363
364    /// Dump the current event data
365    void dump() const;
366
367  public:
368    /*
369     * This member function is invoked when the event is processed
370     * (occurs).  There is no default implementation; each subclass
371     * must provide its own implementation.  The event is not
372     * automatically deleted after it is processed (to allow for
373     * statically allocated event objects).
374     *
375     * If the AutoDestroy flag is set, the object is deleted once it
376     * is processed.
377     */
378    virtual void process() = 0;
379
380    /// Determine if the current event is scheduled
381    bool scheduled() const { return flags.isSet(Scheduled); }
382
383    /// Squash the current event
384    void squash() { flags.set(Squashed); }
385
386    /// Check whether the event is squashed
387    bool squashed() const { return flags.isSet(Squashed); }
388
389    /// See if this is a SimExitEvent (without resorting to RTTI)
390    bool isExitEvent() const { return flags.isSet(IsExitEvent); }
391
392    /// Check whether this event will auto-delete
393    bool isManaged() const { return flags.isSet(Managed); }
394    bool isAutoDelete() const { return isManaged(); }
395
396    /// Get the time that the event is scheduled
397    Tick when() const { return _when; }
398
399    /// Get the event priority
400    Priority priority() const { return _priority; }
401
402    //! If this is part of a GlobalEvent, return the pointer to the
403    //! Global Event.  By default, there is no GlobalEvent, so return
404    //! NULL.  (Overridden in GlobalEvent::BarrierEvent.)
405    virtual BaseGlobalEvent *globalEvent() { return NULL; }
406
407    void serialize(CheckpointOut &cp) const override;
408    void unserialize(CheckpointIn &cp) override;
409};
410
411inline bool
412operator<(const Event &l, const Event &r)
413{
414    return l.when() < r.when() ||
415        (l.when() == r.when() && l.priority() < r.priority());
416}
417
418inline bool
419operator>(const Event &l, const Event &r)
420{
421    return l.when() > r.when() ||
422        (l.when() == r.when() && l.priority() > r.priority());
423}
424
425inline bool
426operator<=(const Event &l, const Event &r)
427{
428    return l.when() < r.when() ||
429        (l.when() == r.when() && l.priority() <= r.priority());
430}
431inline bool
432operator>=(const Event &l, const Event &r)
433{
434    return l.when() > r.when() ||
435        (l.when() == r.when() && l.priority() >= r.priority());
436}
437
438inline bool
439operator==(const Event &l, const Event &r)
440{
441    return l.when() == r.when() && l.priority() == r.priority();
442}
443
444inline bool
445operator!=(const Event &l, const Event &r)
446{
447    return l.when() != r.when() || l.priority() != r.priority();
448}
449
450/**
451 * Queue of events sorted in time order
452 *
453 * Events are scheduled (inserted into the event queue) using the
454 * schedule() method. This method either inserts a <i>synchronous</i>
455 * or <i>asynchronous</i> event.
456 *
457 * Synchronous events are scheduled using schedule() method with the
458 * argument 'global' set to false (default). This should only be done
459 * from a thread holding the event queue lock
460 * (EventQueue::service_mutex). The lock is always held when an event
461 * handler is called, it can therefore always insert events into its
462 * own event queue unless it voluntarily releases the lock.
463 *
464 * Events can be scheduled across thread (and event queue borders) by
465 * either scheduling asynchronous events or taking the target event
466 * queue's lock. However, the lock should <i>never</i> be taken
467 * directly since this is likely to cause deadlocks. Instead, code
468 * that needs to schedule events in other event queues should
469 * temporarily release its own queue and lock the new queue. This
470 * prevents deadlocks since a single thread never owns more than one
471 * event queue lock. This functionality is provided by the
472 * ScopedMigration helper class. Note that temporarily migrating
473 * between event queues can make the simulation non-deterministic, it
474 * should therefore be limited to cases where that can be tolerated
475 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
476 *
477 * Asynchronous events can also be scheduled using the normal
478 * schedule() method with the 'global' parameter set to true. Unlike
479 * the previous queue migration strategy, this strategy is fully
480 * deterministic. This causes the event to be inserted in a separate
481 * queue of asynchronous events (async_queue), which is merged main
482 * event queue at the end of each simulation quantum (by calling the
483 * handleAsyncInsertions() method). Note that this implies that such
484 * events must happen at least one simulation quantum into the future,
485 * otherwise they risk being scheduled in the past by
486 * handleAsyncInsertions().
487 */
488class EventQueue
489{
490  private:
491    std::string objName;
492    Event *head;
493    Tick _curTick;
494
495    //! Mutex to protect async queue.
496    std::mutex async_queue_mutex;
497
498    //! List of events added by other threads to this event queue.
499    std::list<Event*> async_queue;
500
501    /**
502     * Lock protecting event handling.
503     *
504     * This lock is always taken when servicing events. It is assumed
505     * that the thread scheduling new events (not asynchronous events
506     * though) have taken this lock. This is normally done by
507     * serviceOne() since new events are typically scheduled as a
508     * response to an earlier event.
509     *
510     * This lock is intended to be used to temporarily steal an event
511     * queue to support inter-thread communication when some
512     * deterministic timing can be sacrificed for speed. For example,
513     * the KVM CPU can use this support to access devices running in a
514     * different thread.
515     *
516     * @see EventQueue::ScopedMigration.
517     * @see EventQueue::ScopedRelease
518     * @see EventQueue::lock()
519     * @see EventQueue::unlock()
520     */
521    std::mutex service_mutex;
522
523    //! Insert / remove event from the queue. Should only be called
524    //! by thread operating this queue.
525    void insert(Event *event);
526    void remove(Event *event);
527
528    //! Function for adding events to the async queue. The added events
529    //! are added to main event queue later. Threads, other than the
530    //! owning thread, should call this function instead of insert().
531    void asyncInsert(Event *event);
532
533    EventQueue(const EventQueue &);
534
535  public:
536    /**
537     * Temporarily migrate execution to a different event queue.
538     *
539     * An instance of this class temporarily migrates execution to a
540     * different event queue by releasing the current queue, locking
541     * the new queue, and updating curEventQueue(). This can, for
542     * example, be useful when performing IO across thread event
543     * queues when timing is not crucial (e.g., during fast
544     * forwarding).
545     *
546     * ScopedMigration does nothing if both eqs are the same
547     */
548    class ScopedMigration
549    {
550      public:
551        ScopedMigration(EventQueue *_new_eq, bool _doMigrate = true)
552            :new_eq(*_new_eq), old_eq(*curEventQueue()),
553             doMigrate((&new_eq != &old_eq)&&_doMigrate)
554        {
555            if (doMigrate){
556                old_eq.unlock();
557                new_eq.lock();
558                curEventQueue(&new_eq);
559            }
560        }
561
562        ~ScopedMigration()
563        {
564            if (doMigrate){
565                new_eq.unlock();
566                old_eq.lock();
567                curEventQueue(&old_eq);
568            }
569        }
570
571      private:
572        EventQueue &new_eq;
573        EventQueue &old_eq;
574        bool doMigrate;
575    };
576
577    /**
578     * Temporarily release the event queue service lock.
579     *
580     * There are cases where it is desirable to temporarily release
581     * the event queue lock to prevent deadlocks. For example, when
582     * waiting on the global barrier, we need to release the lock to
583     * prevent deadlocks from happening when another thread tries to
584     * temporarily take over the event queue waiting on the barrier.
585     */
586    class ScopedRelease
587    {
588      public:
589        ScopedRelease(EventQueue *_eq)
590            :  eq(*_eq)
591        {
592            eq.unlock();
593        }
594
595        ~ScopedRelease()
596        {
597            eq.lock();
598        }
599
600      private:
601        EventQueue &eq;
602    };
603
604    EventQueue(const std::string &n);
605
606    virtual const std::string name() const { return objName; }
607    void name(const std::string &st) { objName = st; }
608
609    //! Schedule the given event on this queue. Safe to call from any
610    //! thread.
611    void schedule(Event *event, Tick when, bool global = false);
612
613    //! Deschedule the specified event. Should be called only from the
614    //! owning thread.
615    void deschedule(Event *event);
616
617    //! Reschedule the specified event. Should be called only from
618    //! the owning thread.
619    void reschedule(Event *event, Tick when, bool always = false);
620
621    Tick nextTick() const { return head->when(); }
622    void setCurTick(Tick newVal) { _curTick = newVal; }
623    Tick getCurTick() const { return _curTick; }
624    Event *getHead() const { return head; }
625
626    Event *serviceOne();
627
628    // process all events up to the given timestamp.  we inline a
629    // quick test to see if there are any events to process; if so,
630    // call the internal out-of-line version to process them all.
631    void
632    serviceEvents(Tick when)
633    {
634        while (!empty()) {
635            if (nextTick() > when)
636                break;
637
638            /**
639             * @todo this assert is a good bug catcher.  I need to
640             * make it true again.
641             */
642            //assert(head->when() >= when && "event scheduled in the past");
643            serviceOne();
644        }
645
646        setCurTick(when);
647    }
648
649    // return true if no events are queued
650    bool empty() const { return head == NULL; }
651
652    void dump() const;
653
654    bool debugVerify() const;
655
656    //! Function for moving events from the async_queue to the main queue.
657    void handleAsyncInsertions();
658
659    /**
660     *  Function to signal that the event loop should be woken up because
661     *  an event has been scheduled by an agent outside the gem5 event
662     *  loop(s) whose event insertion may not have been noticed by gem5.
663     *  This function isn't needed by the usual gem5 event loop but may
664     *  be necessary in derived EventQueues which host gem5 onto other
665     *  schedulers.
666     *
667     *  @param when Time of a delayed wakeup (if known). This parameter
668     *  can be used by an implementation to schedule a wakeup in the
669     *  future if it is sure it will remain active until then.
670     *  Or it can be ignored and the event queue can be woken up now.
671     */
672    virtual void wakeup(Tick when = (Tick)-1) { }
673
674    /**
675     *  function for replacing the head of the event queue, so that a
676     *  different set of events can run without disturbing events that have
677     *  already been scheduled. Already scheduled events can be processed
678     *  by replacing the original head back.
679     *  USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
680     *  NOT RECOMMENDED FOR USE.
681     */
682    Event* replaceHead(Event* s);
683
684    /**@{*/
685    /**
686     * Provide an interface for locking/unlocking the event queue.
687     *
688     * @warn Do NOT use these methods directly unless you really know
689     * what you are doing. Incorrect use can easily lead to simulator
690     * deadlocks.
691     *
692     * @see EventQueue::ScopedMigration.
693     * @see EventQueue::ScopedRelease
694     * @see EventQueue
695     */
696    void lock() { service_mutex.lock(); }
697    void unlock() { service_mutex.unlock(); }
698    /**@}*/
699
700    /**
701     * Reschedule an event after a checkpoint.
702     *
703     * Since events don't know which event queue they belong to,
704     * parent objects need to reschedule events themselves. This
705     * method conditionally schedules an event that has the Scheduled
706     * flag set. It should be called by parent objects after
707     * unserializing an object.
708     *
709     * @warn Only use this method after unserializing an Event.
710     */
711    void checkpointReschedule(Event *event);
712
713    virtual ~EventQueue() { }
714};
715
716void dumpMainQueue();
717
718class EventManager
719{
720  protected:
721    /** A pointer to this object's event queue */
722    EventQueue *eventq;
723
724  public:
725    EventManager(EventManager &em) : eventq(em.eventq) {}
726    EventManager(EventManager *em) : eventq(em->eventq) {}
727    EventManager(EventQueue *eq) : eventq(eq) {}
728
729    EventQueue *
730    eventQueue() const
731    {
732        return eventq;
733    }
734
735    void
736    schedule(Event &event, Tick when)
737    {
738        eventq->schedule(&event, when);
739    }
740
741    void
742    deschedule(Event &event)
743    {
744        eventq->deschedule(&event);
745    }
746
747    void
748    reschedule(Event &event, Tick when, bool always = false)
749    {
750        eventq->reschedule(&event, when, always);
751    }
752
753    void
754    schedule(Event *event, Tick when)
755    {
756        eventq->schedule(event, when);
757    }
758
759    void
760    deschedule(Event *event)
761    {
762        eventq->deschedule(event);
763    }
764
765    void
766    reschedule(Event *event, Tick when, bool always = false)
767    {
768        eventq->reschedule(event, when, always);
769    }
770
771    void wakeupEventQueue(Tick when = (Tick)-1)
772    {
773        eventq->wakeup(when);
774    }
775
776    void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
777};
778
779template <class T, void (T::* F)()>
780class EventWrapper : public Event
781{
782  private:
783    T *object;
784
785  public:
786    EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
787        : Event(p), object(obj)
788    {
789        if (del)
790            setFlags(AutoDelete);
791    }
792
793    EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
794        : Event(p), object(&obj)
795    {
796        if (del)
797            setFlags(AutoDelete);
798    }
799
800    void process() { (object->*F)(); }
801
802    const std::string
803    name() const
804    {
805        return object->name() + ".wrapped_event";
806    }
807
808    const char *description() const { return "EventWrapped"; }
809};
810
811class EventFunctionWrapper : public Event
812{
813  private:
814      std::function<void(void)> callback;
815      std::string _name;
816
817  public:
818    EventFunctionWrapper(const std::function<void(void)> &callback,
819                         const std::string &name,
820                         bool del = false,
821                         Priority p = Default_Pri)
822        : Event(p), callback(callback), _name(name)
823    {
824        if (del)
825            setFlags(AutoDelete);
826    }
827
828    void process() { callback(); }
829
830    const std::string
831    name() const
832    {
833        return _name + ".wrapped_function_event";
834    }
835
836    const char *description() const { return "EventFunctionWrapped"; }
837};
838
839#endif // __SIM_EVENTQ_HH__
840