eventq.hh revision 11015:f35e317d2e1e
1/*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 *          Nathan Binkert
32 */
33
34/* @file
35 * EventQueue interfaces
36 */
37
38#ifndef __SIM_EVENTQ_HH__
39#define __SIM_EVENTQ_HH__
40
41#include <algorithm>
42#include <cassert>
43#include <climits>
44#include <iosfwd>
45#include <memory>
46#include <mutex>
47#include <string>
48
49#include "base/flags.hh"
50#include "base/misc.hh"
51#include "base/types.hh"
52#include "debug/Event.hh"
53#include "sim/serialize.hh"
54
55class EventQueue;       // forward declaration
56class BaseGlobalEvent;
57
58//! Simulation Quantum for multiple eventq simulation.
59//! The quantum value is the period length after which the queues
60//! synchronize themselves with each other. This means that any
61//! event to scheduled on Queue A which is generated by an event on
62//! Queue B should be at least simQuantum ticks away in future.
63extern Tick simQuantum;
64
65//! Current number of allocated main event queues.
66extern uint32_t numMainEventQueues;
67
68//! Array for main event queues.
69extern std::vector<EventQueue *> mainEventQueue;
70
71#ifndef SWIG
72//! The current event queue for the running thread. Access to this queue
73//! does not require any locking from the thread.
74
75extern __thread EventQueue *_curEventQueue;
76
77#endif
78
79//! Current mode of execution: parallel / serial
80extern bool inParallelMode;
81
82//! Function for returning eventq queue for the provided
83//! index. The function allocates a new queue in case one
84//! does not exist for the index, provided that the index
85//! is with in bounds.
86EventQueue *getEventQueue(uint32_t index);
87
88inline EventQueue *curEventQueue() { return _curEventQueue; }
89inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
90
91/**
92 * Common base class for Event and GlobalEvent, so they can share flag
93 * and priority definitions and accessor functions.  This class should
94 * not be used directly.
95 */
96class EventBase
97{
98  protected:
99    typedef unsigned short FlagsType;
100    typedef ::Flags<FlagsType> Flags;
101
102    static const FlagsType PublicRead    = 0x003f; // public readable flags
103    static const FlagsType PublicWrite   = 0x001d; // public writable flags
104    static const FlagsType Squashed      = 0x0001; // has been squashed
105    static const FlagsType Scheduled     = 0x0002; // has been scheduled
106    static const FlagsType AutoDelete    = 0x0004; // delete after dispatch
107    static const FlagsType AutoSerialize = 0x0008; // must be serialized
108    static const FlagsType IsExitEvent   = 0x0010; // special exit event
109    static const FlagsType IsMainQueue   = 0x0020; // on main event queue
110    static const FlagsType Initialized   = 0x7a40; // somewhat random bits
111    static const FlagsType InitMask      = 0xffc0; // mask for init bits
112
113  public:
114    typedef int8_t Priority;
115
116    /// Event priorities, to provide tie-breakers for events scheduled
117    /// at the same cycle.  Most events are scheduled at the default
118    /// priority; these values are used to control events that need to
119    /// be ordered within a cycle.
120
121    /// Minimum priority
122    static const Priority Minimum_Pri =          SCHAR_MIN;
123
124    /// If we enable tracing on a particular cycle, do that as the
125    /// very first thing so we don't miss any of the events on
126    /// that cycle (even if we enter the debugger).
127    static const Priority Debug_Enable_Pri =          -101;
128
129    /// Breakpoints should happen before anything else (except
130    /// enabling trace output), so we don't miss any action when
131    /// debugging.
132    static const Priority Debug_Break_Pri =           -100;
133
134    /// CPU switches schedule the new CPU's tick event for the
135    /// same cycle (after unscheduling the old CPU's tick event).
136    /// The switch needs to come before any tick events to make
137    /// sure we don't tick both CPUs in the same cycle.
138    static const Priority CPU_Switch_Pri =             -31;
139
140    /// For some reason "delayed" inter-cluster writebacks are
141    /// scheduled before regular writebacks (which have default
142    /// priority).  Steve?
143    static const Priority Delayed_Writeback_Pri =       -1;
144
145    /// Default is zero for historical reasons.
146    static const Priority Default_Pri =                  0;
147
148    /// DVFS update event leads to stats dump therefore given a lower priority
149    /// to ensure all relevant states have been updated
150    static const Priority DVFS_Update_Pri =             31;
151
152    /// Serailization needs to occur before tick events also, so
153    /// that a serialize/unserialize is identical to an on-line
154    /// CPU switch.
155    static const Priority Serialize_Pri =               32;
156
157    /// CPU ticks must come after other associated CPU events
158    /// (such as writebacks).
159    static const Priority CPU_Tick_Pri =                50;
160
161    /// Statistics events (dump, reset, etc.) come after
162    /// everything else, but before exit.
163    static const Priority Stat_Event_Pri =              90;
164
165    /// Progress events come at the end.
166    static const Priority Progress_Event_Pri =          95;
167
168    /// If we want to exit on this cycle, it's the very last thing
169    /// we do.
170    static const Priority Sim_Exit_Pri =               100;
171
172    /// Maximum priority
173    static const Priority Maximum_Pri =          SCHAR_MAX;
174};
175
176/*
177 * An item on an event queue.  The action caused by a given
178 * event is specified by deriving a subclass and overriding the
179 * process() member function.
180 *
181 * Caution, the order of members is chosen to maximize data packing.
182 */
183class Event : public EventBase, public Serializable
184{
185    friend class EventQueue;
186
187  private:
188    // The event queue is now a linked list of linked lists.  The
189    // 'nextBin' pointer is to find the bin, where a bin is defined as
190    // when+priority.  All events in the same bin will be stored in a
191    // second linked list (a stack) maintained by the 'nextInBin'
192    // pointer.  The list will be accessed in LIFO order.  The end
193    // result is that the insert/removal in 'nextBin' is
194    // linear/constant, and the lookup/removal in 'nextInBin' is
195    // constant/constant.  Hopefully this is a significant improvement
196    // over the current fully linear insertion.
197    Event *nextBin;
198    Event *nextInBin;
199
200    static Event *insertBefore(Event *event, Event *curr);
201    static Event *removeItem(Event *event, Event *last);
202
203    Tick _when;         //!< timestamp when event should be processed
204    Priority _priority; //!< event priority
205    Flags flags;
206
207#ifndef NDEBUG
208    /// Global counter to generate unique IDs for Event instances
209    static Counter instanceCounter;
210
211    /// This event's unique ID.  We can also use pointer values for
212    /// this but they're not consistent across runs making debugging
213    /// more difficult.  Thus we use a global counter value when
214    /// debugging.
215    Counter instance;
216
217    /// queue to which this event belongs (though it may or may not be
218    /// scheduled on this queue yet)
219    EventQueue *queue;
220#endif
221
222#ifdef EVENTQ_DEBUG
223    Tick whenCreated;   //!< time created
224    Tick whenScheduled; //!< time scheduled
225#endif
226
227    void
228    setWhen(Tick when, EventQueue *q)
229    {
230        _when = when;
231#ifndef NDEBUG
232        queue = q;
233#endif
234#ifdef EVENTQ_DEBUG
235        whenScheduled = curTick();
236#endif
237    }
238
239    bool
240    initialized() const
241    {
242        return (flags & InitMask) == Initialized;
243    }
244
245  protected:
246    /// Accessor for flags.
247    Flags
248    getFlags() const
249    {
250        return flags & PublicRead;
251    }
252
253    bool
254    isFlagSet(Flags _flags) const
255    {
256        assert(_flags.noneSet(~PublicRead));
257        return flags.isSet(_flags);
258    }
259
260    /// Accessor for flags.
261    void
262    setFlags(Flags _flags)
263    {
264        assert(_flags.noneSet(~PublicWrite));
265        flags.set(_flags);
266    }
267
268    void
269    clearFlags(Flags _flags)
270    {
271        assert(_flags.noneSet(~PublicWrite));
272        flags.clear(_flags);
273    }
274
275    void
276    clearFlags()
277    {
278        flags.clear(PublicWrite);
279    }
280
281    // This function isn't really useful if TRACING_ON is not defined
282    virtual void trace(const char *action);     //!< trace event activity
283
284  public:
285
286    /*
287     * Event constructor
288     * @param queue that the event gets scheduled on
289     */
290    Event(Priority p = Default_Pri, Flags f = 0)
291        : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
292          flags(Initialized | f)
293    {
294        assert(f.noneSet(~PublicWrite));
295#ifndef NDEBUG
296        instance = ++instanceCounter;
297        queue = NULL;
298#endif
299#ifdef EVENTQ_DEBUG
300        whenCreated = curTick();
301        whenScheduled = 0;
302#endif
303    }
304
305    virtual ~Event();
306    virtual const std::string name() const;
307
308    /// Return a C string describing the event.  This string should
309    /// *not* be dynamically allocated; just a const char array
310    /// describing the event class.
311    virtual const char *description() const;
312
313    /// Dump the current event data
314    void dump() const;
315
316  public:
317    /*
318     * This member function is invoked when the event is processed
319     * (occurs).  There is no default implementation; each subclass
320     * must provide its own implementation.  The event is not
321     * automatically deleted after it is processed (to allow for
322     * statically allocated event objects).
323     *
324     * If the AutoDestroy flag is set, the object is deleted once it
325     * is processed.
326     */
327    virtual void process() = 0;
328
329    /// Determine if the current event is scheduled
330    bool scheduled() const { return flags.isSet(Scheduled); }
331
332    /// Squash the current event
333    void squash() { flags.set(Squashed); }
334
335    /// Check whether the event is squashed
336    bool squashed() const { return flags.isSet(Squashed); }
337
338    /// See if this is a SimExitEvent (without resorting to RTTI)
339    bool isExitEvent() const { return flags.isSet(IsExitEvent); }
340
341    /// Check whether this event will auto-delete
342    bool isAutoDelete() const { return flags.isSet(AutoDelete); }
343
344    /// Get the time that the event is scheduled
345    Tick when() const { return _when; }
346
347    /// Get the event priority
348    Priority priority() const { return _priority; }
349
350    //! If this is part of a GlobalEvent, return the pointer to the
351    //! Global Event.  By default, there is no GlobalEvent, so return
352    //! NULL.  (Overridden in GlobalEvent::BarrierEvent.)
353    virtual BaseGlobalEvent *globalEvent() { return NULL; }
354
355#ifndef SWIG
356    void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
357    void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
358#endif
359};
360
361#ifndef SWIG
362inline bool
363operator<(const Event &l, const Event &r)
364{
365    return l.when() < r.when() ||
366        (l.when() == r.when() && l.priority() < r.priority());
367}
368
369inline bool
370operator>(const Event &l, const Event &r)
371{
372    return l.when() > r.when() ||
373        (l.when() == r.when() && l.priority() > r.priority());
374}
375
376inline bool
377operator<=(const Event &l, const Event &r)
378{
379    return l.when() < r.when() ||
380        (l.when() == r.when() && l.priority() <= r.priority());
381}
382inline bool
383operator>=(const Event &l, const Event &r)
384{
385    return l.when() > r.when() ||
386        (l.when() == r.when() && l.priority() >= r.priority());
387}
388
389inline bool
390operator==(const Event &l, const Event &r)
391{
392    return l.when() == r.when() && l.priority() == r.priority();
393}
394
395inline bool
396operator!=(const Event &l, const Event &r)
397{
398    return l.when() != r.when() || l.priority() != r.priority();
399}
400#endif
401
402/**
403 * Queue of events sorted in time order
404 *
405 * Events are scheduled (inserted into the event queue) using the
406 * schedule() method. This method either inserts a <i>synchronous</i>
407 * or <i>asynchronous</i> event.
408 *
409 * Synchronous events are scheduled using schedule() method with the
410 * argument 'global' set to false (default). This should only be done
411 * from a thread holding the event queue lock
412 * (EventQueue::service_mutex). The lock is always held when an event
413 * handler is called, it can therefore always insert events into its
414 * own event queue unless it voluntarily releases the lock.
415 *
416 * Events can be scheduled across thread (and event queue borders) by
417 * either scheduling asynchronous events or taking the target event
418 * queue's lock. However, the lock should <i>never</i> be taken
419 * directly since this is likely to cause deadlocks. Instead, code
420 * that needs to schedule events in other event queues should
421 * temporarily release its own queue and lock the new queue. This
422 * prevents deadlocks since a single thread never owns more than one
423 * event queue lock. This functionality is provided by the
424 * ScopedMigration helper class. Note that temporarily migrating
425 * between event queues can make the simulation non-deterministic, it
426 * should therefore be limited to cases where that can be tolerated
427 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
428 *
429 * Asynchronous events can also be scheduled using the normal
430 * schedule() method with the 'global' parameter set to true. Unlike
431 * the previous queue migration strategy, this strategy is fully
432 * deterministic. This causes the event to be inserted in a separate
433 * queue of asynchronous events (async_queue), which is merged main
434 * event queue at the end of each simulation quantum (by calling the
435 * handleAsyncInsertions() method). Note that this implies that such
436 * events must happen at least one simulation quantum into the future,
437 * otherwise they risk being scheduled in the past by
438 * handleAsyncInsertions().
439 */
440class EventQueue : public Serializable
441{
442  private:
443    std::string objName;
444    Event *head;
445    Tick _curTick;
446
447    //! Mutex to protect async queue.
448    std::mutex async_queue_mutex;
449
450    //! List of events added by other threads to this event queue.
451    std::list<Event*> async_queue;
452
453    /**
454     * Lock protecting event handling.
455     *
456     * This lock is always taken when servicing events. It is assumed
457     * that the thread scheduling new events (not asynchronous events
458     * though) have taken this lock. This is normally done by
459     * serviceOne() since new events are typically scheduled as a
460     * response to an earlier event.
461     *
462     * This lock is intended to be used to temporarily steal an event
463     * queue to support inter-thread communication when some
464     * deterministic timing can be sacrificed for speed. For example,
465     * the KVM CPU can use this support to access devices running in a
466     * different thread.
467     *
468     * @see EventQueue::ScopedMigration.
469     * @see EventQueue::ScopedRelease
470     * @see EventQueue::lock()
471     * @see EventQueue::unlock()
472     */
473    std::mutex service_mutex;
474
475    //! Insert / remove event from the queue. Should only be called
476    //! by thread operating this queue.
477    void insert(Event *event);
478    void remove(Event *event);
479
480    //! Function for adding events to the async queue. The added events
481    //! are added to main event queue later. Threads, other than the
482    //! owning thread, should call this function instead of insert().
483    void asyncInsert(Event *event);
484
485    EventQueue(const EventQueue &);
486
487  public:
488#ifndef SWIG
489    /**
490     * Temporarily migrate execution to a different event queue.
491     *
492     * An instance of this class temporarily migrates execution to a
493     * different event queue by releasing the current queue, locking
494     * the new queue, and updating curEventQueue(). This can, for
495     * example, be useful when performing IO across thread event
496     * queues when timing is not crucial (e.g., during fast
497     * forwarding).
498     */
499    class ScopedMigration
500    {
501      public:
502        ScopedMigration(EventQueue *_new_eq)
503            :  new_eq(*_new_eq), old_eq(*curEventQueue())
504        {
505            old_eq.unlock();
506            new_eq.lock();
507            curEventQueue(&new_eq);
508        }
509
510        ~ScopedMigration()
511        {
512            new_eq.unlock();
513            old_eq.lock();
514            curEventQueue(&old_eq);
515        }
516
517      private:
518        EventQueue &new_eq;
519        EventQueue &old_eq;
520    };
521
522    /**
523     * Temporarily release the event queue service lock.
524     *
525     * There are cases where it is desirable to temporarily release
526     * the event queue lock to prevent deadlocks. For example, when
527     * waiting on the global barrier, we need to release the lock to
528     * prevent deadlocks from happening when another thread tries to
529     * temporarily take over the event queue waiting on the barrier.
530     */
531    class ScopedRelease
532    {
533      public:
534        ScopedRelease(EventQueue *_eq)
535            :  eq(*_eq)
536        {
537            eq.unlock();
538        }
539
540        ~ScopedRelease()
541        {
542            eq.lock();
543        }
544
545      private:
546        EventQueue &eq;
547    };
548#endif
549
550    EventQueue(const std::string &n);
551
552    virtual const std::string name() const { return objName; }
553    void name(const std::string &st) { objName = st; }
554
555    //! Schedule the given event on this queue. Safe to call from any
556    //! thread.
557    void schedule(Event *event, Tick when, bool global = false);
558
559    //! Deschedule the specified event. Should be called only from the
560    //! owning thread.
561    void deschedule(Event *event);
562
563    //! Reschedule the specified event. Should be called only from
564    //! the owning thread.
565    void reschedule(Event *event, Tick when, bool always = false);
566
567    Tick nextTick() const { return head->when(); }
568    void setCurTick(Tick newVal) { _curTick = newVal; }
569    Tick getCurTick() const { return _curTick; }
570    Event *getHead() const { return head; }
571
572    Event *serviceOne();
573
574    // process all events up to the given timestamp.  we inline a
575    // quick test to see if there are any events to process; if so,
576    // call the internal out-of-line version to process them all.
577    void
578    serviceEvents(Tick when)
579    {
580        while (!empty()) {
581            if (nextTick() > when)
582                break;
583
584            /**
585             * @todo this assert is a good bug catcher.  I need to
586             * make it true again.
587             */
588            //assert(head->when() >= when && "event scheduled in the past");
589            serviceOne();
590        }
591
592        setCurTick(when);
593    }
594
595    // return true if no events are queued
596    bool empty() const { return head == NULL; }
597
598    void dump() const;
599
600    bool debugVerify() const;
601
602    //! Function for moving events from the async_queue to the main queue.
603    void handleAsyncInsertions();
604
605    /**
606     *  Function to signal that the event loop should be woken up because
607     *  an event has been scheduled by an agent outside the gem5 event
608     *  loop(s) whose event insertion may not have been noticed by gem5.
609     *  This function isn't needed by the usual gem5 event loop but may
610     *  be necessary in derived EventQueues which host gem5 onto other
611     *  schedulers.
612     *
613     *  @param when Time of a delayed wakeup (if known). This parameter
614     *  can be used by an implementation to schedule a wakeup in the
615     *  future if it is sure it will remain active until then.
616     *  Or it can be ignored and the event queue can be woken up now.
617     */
618    virtual void wakeup(Tick when = (Tick)-1) { }
619
620    /**
621     *  function for replacing the head of the event queue, so that a
622     *  different set of events can run without disturbing events that have
623     *  already been scheduled. Already scheduled events can be processed
624     *  by replacing the original head back.
625     *  USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
626     *  NOT RECOMMENDED FOR USE.
627     */
628    Event* replaceHead(Event* s);
629
630    /**@{*/
631    /**
632     * Provide an interface for locking/unlocking the event queue.
633     *
634     * @warn Do NOT use these methods directly unless you really know
635     * what you are doing. Incorrect use can easily lead to simulator
636     * deadlocks.
637     *
638     * @see EventQueue::ScopedMigration.
639     * @see EventQueue::ScopedRelease
640     * @see EventQueue
641     */
642    void lock() { service_mutex.lock(); }
643    void unlock() { service_mutex.unlock(); }
644    /**@}*/
645
646#ifndef SWIG
647    void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
648    void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
649#endif
650
651    /**
652     * Reschedule an event after a checkpoint.
653     *
654     * Since events don't know which event queue they belong to,
655     * parent objects need to reschedule events themselves. This
656     * method conditionally schedules an event that has the Scheduled
657     * flag set. It should be called by parent objects after
658     * unserializing an object.
659     *
660     * @warn Only use this method after unserializing an Event.
661     */
662    void checkpointReschedule(Event *event);
663
664    virtual ~EventQueue() { }
665};
666
667void dumpMainQueue();
668
669#ifndef SWIG
670class EventManager
671{
672  protected:
673    /** A pointer to this object's event queue */
674    EventQueue *eventq;
675
676  public:
677    EventManager(EventManager &em) : eventq(em.eventq) {}
678    EventManager(EventManager *em) : eventq(em->eventq) {}
679    EventManager(EventQueue *eq) : eventq(eq) {}
680
681    EventQueue *
682    eventQueue() const
683    {
684        return eventq;
685    }
686
687    void
688    schedule(Event &event, Tick when)
689    {
690        eventq->schedule(&event, when);
691    }
692
693    void
694    deschedule(Event &event)
695    {
696        eventq->deschedule(&event);
697    }
698
699    void
700    reschedule(Event &event, Tick when, bool always = false)
701    {
702        eventq->reschedule(&event, when, always);
703    }
704
705    void
706    schedule(Event *event, Tick when)
707    {
708        eventq->schedule(event, when);
709    }
710
711    void
712    deschedule(Event *event)
713    {
714        eventq->deschedule(event);
715    }
716
717    void
718    reschedule(Event *event, Tick when, bool always = false)
719    {
720        eventq->reschedule(event, when, always);
721    }
722
723    void wakeupEventQueue(Tick when = (Tick)-1)
724    {
725        eventq->wakeup(when);
726    }
727
728    void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
729};
730
731template <class T, void (T::* F)()>
732void
733DelayFunction(EventQueue *eventq, Tick when, T *object)
734{
735    class DelayEvent : public Event
736    {
737      private:
738        T *object;
739
740      public:
741        DelayEvent(T *o)
742            : Event(Default_Pri, AutoDelete), object(o)
743        { }
744        void process() { (object->*F)(); }
745        const char *description() const { return "delay"; }
746    };
747
748    eventq->schedule(new DelayEvent(object), when);
749}
750
751template <class T, void (T::* F)()>
752class EventWrapper : public Event
753{
754  private:
755    T *object;
756
757  public:
758    EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
759        : Event(p), object(obj)
760    {
761        if (del)
762            setFlags(AutoDelete);
763    }
764
765    EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
766        : Event(p), object(&obj)
767    {
768        if (del)
769            setFlags(AutoDelete);
770    }
771
772    void process() { (object->*F)(); }
773
774    const std::string
775    name() const
776    {
777        return object->name() + ".wrapped_event";
778    }
779
780    const char *description() const { return "EventWrapped"; }
781};
782#endif
783
784#endif // __SIM_EVENTQ_HH__
785