eventq.hh revision 10360:919c02740209
1/*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 *          Nathan Binkert
32 */
33
34/* @file
35 * EventQueue interfaces
36 */
37
38#ifndef __SIM_EVENTQ_HH__
39#define __SIM_EVENTQ_HH__
40
41#include <algorithm>
42#include <cassert>
43#include <climits>
44#include <iosfwd>
45#include <mutex>
46#include <string>
47
48#include "base/flags.hh"
49#include "base/misc.hh"
50#include "base/types.hh"
51#include "debug/Event.hh"
52#include "sim/serialize.hh"
53
54class EventQueue;       // forward declaration
55class BaseGlobalEvent;
56
57//! Simulation Quantum for multiple eventq simulation.
58//! The quantum value is the period length after which the queues
59//! synchronize themselves with each other. This means that any
60//! event to scheduled on Queue A which is generated by an event on
61//! Queue B should be at least simQuantum ticks away in future.
62extern Tick simQuantum;
63
64//! Current number of allocated main event queues.
65extern uint32_t numMainEventQueues;
66
67//! Array for main event queues.
68extern std::vector<EventQueue *> mainEventQueue;
69
70#ifndef SWIG
71//! The current event queue for the running thread. Access to this queue
72//! does not require any locking from the thread.
73
74extern __thread EventQueue *_curEventQueue;
75
76#endif
77
78//! Current mode of execution: parallel / serial
79extern bool inParallelMode;
80
81//! Function for returning eventq queue for the provided
82//! index. The function allocates a new queue in case one
83//! does not exist for the index, provided that the index
84//! is with in bounds.
85EventQueue *getEventQueue(uint32_t index);
86
87inline EventQueue *curEventQueue() { return _curEventQueue; }
88inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
89
90/**
91 * Common base class for Event and GlobalEvent, so they can share flag
92 * and priority definitions and accessor functions.  This class should
93 * not be used directly.
94 */
95class EventBase
96{
97  protected:
98    typedef unsigned short FlagsType;
99    typedef ::Flags<FlagsType> Flags;
100
101    static const FlagsType PublicRead    = 0x003f; // public readable flags
102    static const FlagsType PublicWrite   = 0x001d; // public writable flags
103    static const FlagsType Squashed      = 0x0001; // has been squashed
104    static const FlagsType Scheduled     = 0x0002; // has been scheduled
105    static const FlagsType AutoDelete    = 0x0004; // delete after dispatch
106    static const FlagsType AutoSerialize = 0x0008; // must be serialized
107    static const FlagsType IsExitEvent   = 0x0010; // special exit event
108    static const FlagsType IsMainQueue   = 0x0020; // on main event queue
109    static const FlagsType Initialized   = 0x7a40; // somewhat random bits
110    static const FlagsType InitMask      = 0xffc0; // mask for init bits
111
112  public:
113    typedef int8_t Priority;
114
115    /// Event priorities, to provide tie-breakers for events scheduled
116    /// at the same cycle.  Most events are scheduled at the default
117    /// priority; these values are used to control events that need to
118    /// be ordered within a cycle.
119
120    /// Minimum priority
121    static const Priority Minimum_Pri =          SCHAR_MIN;
122
123    /// If we enable tracing on a particular cycle, do that as the
124    /// very first thing so we don't miss any of the events on
125    /// that cycle (even if we enter the debugger).
126    static const Priority Debug_Enable_Pri =          -101;
127
128    /// Breakpoints should happen before anything else (except
129    /// enabling trace output), so we don't miss any action when
130    /// debugging.
131    static const Priority Debug_Break_Pri =           -100;
132
133    /// CPU switches schedule the new CPU's tick event for the
134    /// same cycle (after unscheduling the old CPU's tick event).
135    /// The switch needs to come before any tick events to make
136    /// sure we don't tick both CPUs in the same cycle.
137    static const Priority CPU_Switch_Pri =             -31;
138
139    /// For some reason "delayed" inter-cluster writebacks are
140    /// scheduled before regular writebacks (which have default
141    /// priority).  Steve?
142    static const Priority Delayed_Writeback_Pri =       -1;
143
144    /// Default is zero for historical reasons.
145    static const Priority Default_Pri =                  0;
146
147    /// DVFS update event leads to stats dump therefore given a lower priority
148    /// to ensure all relevant states have been updated
149    static const Priority DVFS_Update_Pri =             31;
150
151    /// Serailization needs to occur before tick events also, so
152    /// that a serialize/unserialize is identical to an on-line
153    /// CPU switch.
154    static const Priority Serialize_Pri =               32;
155
156    /// CPU ticks must come after other associated CPU events
157    /// (such as writebacks).
158    static const Priority CPU_Tick_Pri =                50;
159
160    /// Statistics events (dump, reset, etc.) come after
161    /// everything else, but before exit.
162    static const Priority Stat_Event_Pri =              90;
163
164    /// Progress events come at the end.
165    static const Priority Progress_Event_Pri =          95;
166
167    /// If we want to exit on this cycle, it's the very last thing
168    /// we do.
169    static const Priority Sim_Exit_Pri =               100;
170
171    /// Maximum priority
172    static const Priority Maximum_Pri =          SCHAR_MAX;
173};
174
175/*
176 * An item on an event queue.  The action caused by a given
177 * event is specified by deriving a subclass and overriding the
178 * process() member function.
179 *
180 * Caution, the order of members is chosen to maximize data packing.
181 */
182class Event : public EventBase, public Serializable
183{
184    friend class EventQueue;
185
186  private:
187    // The event queue is now a linked list of linked lists.  The
188    // 'nextBin' pointer is to find the bin, where a bin is defined as
189    // when+priority.  All events in the same bin will be stored in a
190    // second linked list (a stack) maintained by the 'nextInBin'
191    // pointer.  The list will be accessed in LIFO order.  The end
192    // result is that the insert/removal in 'nextBin' is
193    // linear/constant, and the lookup/removal in 'nextInBin' is
194    // constant/constant.  Hopefully this is a significant improvement
195    // over the current fully linear insertion.
196    Event *nextBin;
197    Event *nextInBin;
198
199    static Event *insertBefore(Event *event, Event *curr);
200    static Event *removeItem(Event *event, Event *last);
201
202    Tick _when;         //!< timestamp when event should be processed
203    Priority _priority; //!< event priority
204    Flags flags;
205
206#ifndef NDEBUG
207    /// Global counter to generate unique IDs for Event instances
208    static Counter instanceCounter;
209
210    /// This event's unique ID.  We can also use pointer values for
211    /// this but they're not consistent across runs making debugging
212    /// more difficult.  Thus we use a global counter value when
213    /// debugging.
214    Counter instance;
215
216    /// queue to which this event belongs (though it may or may not be
217    /// scheduled on this queue yet)
218    EventQueue *queue;
219#endif
220
221#ifdef EVENTQ_DEBUG
222    Tick whenCreated;   //!< time created
223    Tick whenScheduled; //!< time scheduled
224#endif
225
226    void
227    setWhen(Tick when, EventQueue *q)
228    {
229        _when = when;
230#ifndef NDEBUG
231        queue = q;
232#endif
233#ifdef EVENTQ_DEBUG
234        whenScheduled = curTick();
235#endif
236    }
237
238    bool
239    initialized() const
240    {
241        return this && (flags & InitMask) == Initialized;
242    }
243
244  protected:
245    /// Accessor for flags.
246    Flags
247    getFlags() const
248    {
249        return flags & PublicRead;
250    }
251
252    bool
253    isFlagSet(Flags _flags) const
254    {
255        assert(_flags.noneSet(~PublicRead));
256        return flags.isSet(_flags);
257    }
258
259    /// Accessor for flags.
260    void
261    setFlags(Flags _flags)
262    {
263        assert(_flags.noneSet(~PublicWrite));
264        flags.set(_flags);
265    }
266
267    void
268    clearFlags(Flags _flags)
269    {
270        assert(_flags.noneSet(~PublicWrite));
271        flags.clear(_flags);
272    }
273
274    void
275    clearFlags()
276    {
277        flags.clear(PublicWrite);
278    }
279
280    // This function isn't really useful if TRACING_ON is not defined
281    virtual void trace(const char *action);     //!< trace event activity
282
283  public:
284
285    /*
286     * Event constructor
287     * @param queue that the event gets scheduled on
288     */
289    Event(Priority p = Default_Pri, Flags f = 0)
290        : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
291          flags(Initialized | f)
292    {
293        assert(f.noneSet(~PublicWrite));
294#ifndef NDEBUG
295        instance = ++instanceCounter;
296        queue = NULL;
297#endif
298#ifdef EVENTQ_DEBUG
299        whenCreated = curTick();
300        whenScheduled = 0;
301#endif
302    }
303
304    virtual ~Event();
305    virtual const std::string name() const;
306
307    /// Return a C string describing the event.  This string should
308    /// *not* be dynamically allocated; just a const char array
309    /// describing the event class.
310    virtual const char *description() const;
311
312    /// Dump the current event data
313    void dump() const;
314
315  public:
316    /*
317     * This member function is invoked when the event is processed
318     * (occurs).  There is no default implementation; each subclass
319     * must provide its own implementation.  The event is not
320     * automatically deleted after it is processed (to allow for
321     * statically allocated event objects).
322     *
323     * If the AutoDestroy flag is set, the object is deleted once it
324     * is processed.
325     */
326    virtual void process() = 0;
327
328    /// Determine if the current event is scheduled
329    bool scheduled() const { return flags.isSet(Scheduled); }
330
331    /// Squash the current event
332    void squash() { flags.set(Squashed); }
333
334    /// Check whether the event is squashed
335    bool squashed() const { return flags.isSet(Squashed); }
336
337    /// See if this is a SimExitEvent (without resorting to RTTI)
338    bool isExitEvent() const { return flags.isSet(IsExitEvent); }
339
340    /// Get the time that the event is scheduled
341    Tick when() const { return _when; }
342
343    /// Get the event priority
344    Priority priority() const { return _priority; }
345
346    //! If this is part of a GlobalEvent, return the pointer to the
347    //! Global Event.  By default, there is no GlobalEvent, so return
348    //! NULL.  (Overridden in GlobalEvent::BarrierEvent.)
349    virtual BaseGlobalEvent *globalEvent() { return NULL; }
350
351#ifndef SWIG
352    virtual void serialize(std::ostream &os);
353    virtual void unserialize(Checkpoint *cp, const std::string &section);
354
355    //! This function is required to support restoring from checkpoints
356    //! when running with multiple queues. Since we still have not thrashed
357    //! out all the details on checkpointing, this function is most likely
358    //! to be revisited in future.
359    virtual void unserialize(Checkpoint *cp, const std::string &section,
360                     EventQueue *eventq);
361#endif
362};
363
364#ifndef SWIG
365inline bool
366operator<(const Event &l, const Event &r)
367{
368    return l.when() < r.when() ||
369        (l.when() == r.when() && l.priority() < r.priority());
370}
371
372inline bool
373operator>(const Event &l, const Event &r)
374{
375    return l.when() > r.when() ||
376        (l.when() == r.when() && l.priority() > r.priority());
377}
378
379inline bool
380operator<=(const Event &l, const Event &r)
381{
382    return l.when() < r.when() ||
383        (l.when() == r.when() && l.priority() <= r.priority());
384}
385inline bool
386operator>=(const Event &l, const Event &r)
387{
388    return l.when() > r.when() ||
389        (l.when() == r.when() && l.priority() >= r.priority());
390}
391
392inline bool
393operator==(const Event &l, const Event &r)
394{
395    return l.when() == r.when() && l.priority() == r.priority();
396}
397
398inline bool
399operator!=(const Event &l, const Event &r)
400{
401    return l.when() != r.when() || l.priority() != r.priority();
402}
403#endif
404
405/**
406 * Queue of events sorted in time order
407 *
408 * Events are scheduled (inserted into the event queue) using the
409 * schedule() method. This method either inserts a <i>synchronous</i>
410 * or <i>asynchronous</i> event.
411 *
412 * Synchronous events are scheduled using schedule() method with the
413 * argument 'global' set to false (default). This should only be done
414 * from a thread holding the event queue lock
415 * (EventQueue::service_mutex). The lock is always held when an event
416 * handler is called, it can therefore always insert events into its
417 * own event queue unless it voluntarily releases the lock.
418 *
419 * Events can be scheduled across thread (and event queue borders) by
420 * either scheduling asynchronous events or taking the target event
421 * queue's lock. However, the lock should <i>never</i> be taken
422 * directly since this is likely to cause deadlocks. Instead, code
423 * that needs to schedule events in other event queues should
424 * temporarily release its own queue and lock the new queue. This
425 * prevents deadlocks since a single thread never owns more than one
426 * event queue lock. This functionality is provided by the
427 * ScopedMigration helper class. Note that temporarily migrating
428 * between event queues can make the simulation non-deterministic, it
429 * should therefore be limited to cases where that can be tolerated
430 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
431 *
432 * Asynchronous events can also be scheduled using the normal
433 * schedule() method with the 'global' parameter set to true. Unlike
434 * the previous queue migration strategy, this strategy is fully
435 * deterministic. This causes the event to be inserted in a separate
436 * queue of asynchronous events (async_queue), which is merged main
437 * event queue at the end of each simulation quantum (by calling the
438 * handleAsyncInsertions() method). Note that this implies that such
439 * events must happen at least one simulation quantum into the future,
440 * otherwise they risk being scheduled in the past by
441 * handleAsyncInsertions().
442 */
443class EventQueue : public Serializable
444{
445  private:
446    std::string objName;
447    Event *head;
448    Tick _curTick;
449
450    //! Mutex to protect async queue.
451    std::mutex *async_queue_mutex;
452
453    //! List of events added by other threads to this event queue.
454    std::list<Event*> async_queue;
455
456    /**
457     * Lock protecting event handling.
458     *
459     * This lock is always taken when servicing events. It is assumed
460     * that the thread scheduling new events (not asynchronous events
461     * though) have taken this lock. This is normally done by
462     * serviceOne() since new events are typically scheduled as a
463     * response to an earlier event.
464     *
465     * This lock is intended to be used to temporarily steal an event
466     * queue to support inter-thread communication when some
467     * deterministic timing can be sacrificed for speed. For example,
468     * the KVM CPU can use this support to access devices running in a
469     * different thread.
470     *
471     * @see EventQueue::ScopedMigration.
472     * @see EventQueue::ScopedRelease
473     * @see EventQueue::lock()
474     * @see EventQueue::unlock()
475     */
476    std::mutex service_mutex;
477
478    //! Insert / remove event from the queue. Should only be called
479    //! by thread operating this queue.
480    void insert(Event *event);
481    void remove(Event *event);
482
483    //! Function for adding events to the async queue. The added events
484    //! are added to main event queue later. Threads, other than the
485    //! owning thread, should call this function instead of insert().
486    void asyncInsert(Event *event);
487
488    EventQueue(const EventQueue &);
489
490  public:
491#ifndef SWIG
492    /**
493     * Temporarily migrate execution to a different event queue.
494     *
495     * An instance of this class temporarily migrates execution to a
496     * different event queue by releasing the current queue, locking
497     * the new queue, and updating curEventQueue(). This can, for
498     * example, be useful when performing IO across thread event
499     * queues when timing is not crucial (e.g., during fast
500     * forwarding).
501     */
502    class ScopedMigration
503    {
504      public:
505        ScopedMigration(EventQueue *_new_eq)
506            :  new_eq(*_new_eq), old_eq(*curEventQueue())
507        {
508            old_eq.unlock();
509            new_eq.lock();
510            curEventQueue(&new_eq);
511        }
512
513        ~ScopedMigration()
514        {
515            new_eq.unlock();
516            old_eq.lock();
517            curEventQueue(&old_eq);
518        }
519
520      private:
521        EventQueue &new_eq;
522        EventQueue &old_eq;
523    };
524
525    /**
526     * Temporarily release the event queue service lock.
527     *
528     * There are cases where it is desirable to temporarily release
529     * the event queue lock to prevent deadlocks. For example, when
530     * waiting on the global barrier, we need to release the lock to
531     * prevent deadlocks from happening when another thread tries to
532     * temporarily take over the event queue waiting on the barrier.
533     */
534    class ScopedRelease
535    {
536      public:
537        ScopedRelease(EventQueue *_eq)
538            :  eq(*_eq)
539        {
540            eq.unlock();
541        }
542
543        ~ScopedRelease()
544        {
545            eq.lock();
546        }
547
548      private:
549        EventQueue &eq;
550    };
551#endif
552
553    EventQueue(const std::string &n);
554
555    virtual const std::string name() const { return objName; }
556    void name(const std::string &st) { objName = st; }
557
558    //! Schedule the given event on this queue. Safe to call from any
559    //! thread.
560    void schedule(Event *event, Tick when, bool global = false);
561
562    //! Deschedule the specified event. Should be called only from the
563    //! owning thread.
564    void deschedule(Event *event);
565
566    //! Reschedule the specified event. Should be called only from
567    //! the owning thread.
568    void reschedule(Event *event, Tick when, bool always = false);
569
570    Tick nextTick() const { return head->when(); }
571    void setCurTick(Tick newVal) { _curTick = newVal; }
572    Tick getCurTick() { return _curTick; }
573
574    Event *serviceOne();
575
576    // process all events up to the given timestamp.  we inline a
577    // quick test to see if there are any events to process; if so,
578    // call the internal out-of-line version to process them all.
579    void
580    serviceEvents(Tick when)
581    {
582        while (!empty()) {
583            if (nextTick() > when)
584                break;
585
586            /**
587             * @todo this assert is a good bug catcher.  I need to
588             * make it true again.
589             */
590            //assert(head->when() >= when && "event scheduled in the past");
591            serviceOne();
592        }
593
594        setCurTick(when);
595    }
596
597    // return true if no events are queued
598    bool empty() const { return head == NULL; }
599
600    void dump() const;
601
602    bool debugVerify() const;
603
604    //! Function for moving events from the async_queue to the main queue.
605    void handleAsyncInsertions();
606
607    /**
608     *  function for replacing the head of the event queue, so that a
609     *  different set of events can run without disturbing events that have
610     *  already been scheduled. Already scheduled events can be processed
611     *  by replacing the original head back.
612     *  USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
613     *  NOT RECOMMENDED FOR USE.
614     */
615    Event* replaceHead(Event* s);
616
617    /**@{*/
618    /**
619     * Provide an interface for locking/unlocking the event queue.
620     *
621     * @warn Do NOT use these methods directly unless you really know
622     * what you are doing. Incorrect use can easily lead to simulator
623     * deadlocks.
624     *
625     * @see EventQueue::ScopedMigration.
626     * @see EventQueue::ScopedRelease
627     * @see EventQueue
628     */
629    void lock() { service_mutex.lock(); }
630    void unlock() { service_mutex.unlock(); }
631    /**@}*/
632
633#ifndef SWIG
634    virtual void serialize(std::ostream &os);
635    virtual void unserialize(Checkpoint *cp, const std::string &section);
636#endif
637};
638
639void dumpMainQueue();
640
641#ifndef SWIG
642class EventManager
643{
644  protected:
645    /** A pointer to this object's event queue */
646    EventQueue *eventq;
647
648  public:
649    EventManager(EventManager &em) : eventq(em.eventq) {}
650    EventManager(EventManager *em) : eventq(em->eventq) {}
651    EventManager(EventQueue *eq) : eventq(eq) {}
652
653    EventQueue *
654    eventQueue() const
655    {
656        return eventq;
657    }
658
659    void
660    schedule(Event &event, Tick when)
661    {
662        eventq->schedule(&event, when);
663    }
664
665    void
666    deschedule(Event &event)
667    {
668        eventq->deschedule(&event);
669    }
670
671    void
672    reschedule(Event &event, Tick when, bool always = false)
673    {
674        eventq->reschedule(&event, when, always);
675    }
676
677    void
678    schedule(Event *event, Tick when)
679    {
680        eventq->schedule(event, when);
681    }
682
683    void
684    deschedule(Event *event)
685    {
686        eventq->deschedule(event);
687    }
688
689    void
690    reschedule(Event *event, Tick when, bool always = false)
691    {
692        eventq->reschedule(event, when, always);
693    }
694
695    void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
696};
697
698template <class T, void (T::* F)()>
699void
700DelayFunction(EventQueue *eventq, Tick when, T *object)
701{
702    class DelayEvent : public Event
703    {
704      private:
705        T *object;
706
707      public:
708        DelayEvent(T *o)
709            : Event(Default_Pri, AutoDelete), object(o)
710        { }
711        void process() { (object->*F)(); }
712        const char *description() const { return "delay"; }
713    };
714
715    eventq->schedule(new DelayEvent(object), when);
716}
717
718template <class T, void (T::* F)()>
719class EventWrapper : public Event
720{
721  private:
722    T *object;
723
724  public:
725    EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
726        : Event(p), object(obj)
727    {
728        if (del)
729            setFlags(AutoDelete);
730    }
731
732    EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
733        : Event(p), object(&obj)
734    {
735        if (del)
736            setFlags(AutoDelete);
737    }
738
739    void process() { (object->*F)(); }
740
741    const std::string
742    name() const
743    {
744        return object->name() + ".wrapped_event";
745    }
746
747    const char *description() const { return "EventWrapped"; }
748};
749#endif
750
751#endif // __SIM_EVENTQ_HH__
752