FuncCallExprAST.py revision 9106
1# Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
2# Copyright (c) 2009 The Hewlett-Packard Development Company
3# All rights reserved.
4#
5# Redistribution and use in source and binary forms, with or without
6# modification, are permitted provided that the following conditions are
7# met: redistributions of source code must retain the above copyright
8# notice, this list of conditions and the following disclaimer;
9# redistributions in binary form must reproduce the above copyright
10# notice, this list of conditions and the following disclaimer in the
11# documentation and/or other materials provided with the distribution;
12# neither the name of the copyright holders nor the names of its
13# contributors may be used to endorse or promote products derived from
14# this software without specific prior written permission.
15#
16# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28from slicc.ast.ExprAST import ExprAST
29from slicc.symbols import Func, Type
30
31class FuncCallExprAST(ExprAST):
32    def __init__(self, slicc, proc_name, exprs):
33        super(FuncCallExprAST, self).__init__(slicc)
34        self.proc_name = proc_name
35        self.exprs = exprs
36
37    def __repr__(self):
38        return "[FuncCallExpr: %s %s]" % (self.proc_name, self.exprs)
39
40    def generate(self, code):
41        machine = self.state_machine
42
43        if self.proc_name == "DPRINTF":
44            # Code for inserting the location of the DPRINTF()
45            # statement in the .sm file in the statement it self.
46            # 'self.exprs[0].location' represents the location.
47            # 'format' represents the second argument of the
48            # original DPRINTF() call. It is left unmodified.
49            # str_list is used for concatenating the argument
50            # list following the format specifier. A DPRINTF()
51            # call may or may not contain any arguments following
52            # the format specifier. These two cases need to be
53            # handled differently. Hence the check whether or not
54            # the str_list is empty.
55
56            format = "%s" % (self.exprs[1].inline())
57            format_length = len(format)
58            str_list = []
59
60            for i in range(2, len(self.exprs)):
61                str_list.append("%s" % self.exprs[i].inline())
62
63            if len(str_list) == 0:
64                code('DPRINTF(RubySlicc, "$0: $1")',
65                     self.exprs[0].location, format[2:format_length-2])
66            else:
67                code('DPRINTF(RubySlicc, "$0: $1", $2)',
68                     self.exprs[0].location, format[2:format_length-2],
69                     ', '.join(str_list))
70
71            return self.symtab.find("void", Type)
72
73        # hack for adding comments to profileTransition
74        if self.proc_name == "APPEND_TRANSITION_COMMENT":
75            # FIXME - check for number of parameters
76            code("APPEND_TRANSITION_COMMENT($0)", self.exprs[0].inline())
77            return self.symtab.find("void", Type)
78
79        # Look up the function in the symbol table
80        func = self.symtab.find(self.proc_name, Func)
81
82        # Check the types and get the code for the parameters
83        if func is None:
84            self.error("Unrecognized function name: '%s'", self.proc_name)
85
86        if len(self.exprs) != len(func.param_types):
87            self.error("Wrong number of arguments passed to function : '%s'" +\
88                       " Expected %d, got %d", self.proc_name,
89                       len(func.param_types), len(self.exprs))
90
91        cvec = []
92        type_vec = []
93        for expr,expected_type in zip(self.exprs, func.param_types):
94            # Check the types of the parameter
95            actual_type,param_code = expr.inline(True)
96            if str(actual_type) != str(expected_type):
97                expr.error("Type mismatch: expected: %s actual: %s" % \
98                           (expected_type, actual_type))
99            cvec.append(param_code)
100            type_vec.append(expected_type)
101
102        # OK, the semantics of "trigger" here is that, ports in the
103        # machine have different priorities. We always check the first
104        # port for doable transitions. If nothing/stalled, we pick one
105        # from the next port.
106        #
107        # One thing we have to be careful as the SLICC protocol
108        # writter is : If a port have two or more transitions can be
109        # picked from in one cycle, they must be independent.
110        # Otherwise, if transition A and B mean to be executed in
111        # sequential, and A get stalled, transition B can be issued
112        # erroneously. In practice, in most case, there is only one
113        # transition should be executed in one cycle for a given
114        # port. So as most of current protocols.
115
116        if self.proc_name == "trigger":
117            code('''
118{
119    Address addr = ${{cvec[1]}};
120''')
121            if machine.TBEType != None and machine.EntryType != None:
122                code('''
123    TransitionResult result = doTransition(${{cvec[0]}}, ${{cvec[2]}}, ${{cvec[3]}}, addr);
124''')
125            elif machine.TBEType != None:
126                code('''
127    TransitionResult result = doTransition(${{cvec[0]}}, ${{cvec[2]}}, addr);
128''')
129            elif machine.EntryType != None:
130                code('''
131    TransitionResult result = doTransition(${{cvec[0]}}, ${{cvec[2]}}, addr);
132''')
133            else:
134                code('''
135    TransitionResult result = doTransition(${{cvec[0]}}, addr);
136''')
137
138            code('''
139    if (result == TransitionResult_Valid) {
140        counter++;
141        continue; // Check the first port again
142    }
143
144    if (result == TransitionResult_ResourceStall) {
145        g_eventQueue_ptr->scheduleEvent(this, 1);
146
147        // Cannot do anything with this transition, go check next doable transition (mostly likely of next port)
148    }
149}
150''')
151        elif self.proc_name == "doubleTrigger":
152            # NOTE:  Use the doubleTrigger call with extreme caution
153            # the key to double trigger is the second event triggered
154            # cannot fail becuase the first event cannot be undone
155            assert len(cvec) == 4
156            code('''
157{
158    Address addr1 = ${{cvec[1]}};
159    TransitionResult result1 =
160        doTransition(${{cvec[0]}}, ${machine}_getState(addr1), addr1);
161
162    if (result1 == TransitionResult_Valid) {
163        //this second event cannont fail because the first event
164        // already took effect
165        Address addr2 = ${{cvec[3]}};
166        TransitionResult result2 = doTransition(${{cvec[2]}}, ${machine}_getState(addr2), addr2);
167
168        // ensure the event suceeded
169        assert(result2 == TransitionResult_Valid);
170
171        counter++;
172        continue; // Check the first port again
173    }
174
175    if (result1 == TransitionResult_ResourceStall) {
176        g_eventQueue_ptr->scheduleEvent(this, 1);
177        // Cannot do anything with this transition, go check next
178        // doable transition (mostly likely of next port)
179    }
180}
181''')
182        elif self.proc_name == "error":
183            code("$0", self.exprs[0].embedError(cvec[0]))
184        elif self.proc_name == "assert":
185            error = self.exprs[0].embedError('"assert failure"')
186            code('''
187#ifndef NDEBUG
188if (!(${{cvec[0]}})) {
189    $error
190}
191#endif
192''')
193
194        elif self.proc_name == "continueProcessing":
195            code("counter++;")
196            code("continue; // Check the first port again")
197
198        elif self.proc_name == "set_cache_entry":
199            code("set_cache_entry(m_cache_entry_ptr, %s);" %(cvec[0]));
200        elif self.proc_name == "unset_cache_entry":
201            code("unset_cache_entry(m_cache_entry_ptr);");
202        elif self.proc_name == "set_tbe":
203            code("set_tbe(m_tbe_ptr, %s);" %(cvec[0]));
204        elif self.proc_name == "unset_tbe":
205            code("unset_tbe(m_tbe_ptr);");
206
207        else:
208            # Normal function
209
210            # if the func is internal to the chip but not the machine
211            # then it can only be accessed through the chip pointer
212            internal = ""
213            if "external" not in func and not func.isInternalMachineFunc:
214                internal = "m_chip_ptr->"
215
216            params = ""
217            first_param = True
218
219            for (param_code, type) in zip(cvec, type_vec):
220                if first_param:
221                    params = str(param_code)
222                    first_param  = False
223                else:
224                    params += ', '
225                    params += str(param_code);
226
227            fix = code.nofix()
228            code('(${internal}${{func.c_ident}}($params))')
229            code.fix(fix)
230
231        return func.return_type
232