Sequencer.cc revision 9245:e215ee9db617
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55    return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59    : RubyPort(p), deadlockCheckEvent(this)
60{
61    m_store_waiting_on_load_cycles = 0;
62    m_store_waiting_on_store_cycles = 0;
63    m_load_waiting_on_store_cycles = 0;
64    m_load_waiting_on_load_cycles = 0;
65
66    m_outstanding_count = 0;
67
68    m_instCache_ptr = p->icache;
69    m_dataCache_ptr = p->dcache;
70    m_max_outstanding_requests = p->max_outstanding_requests;
71    m_deadlock_threshold = p->deadlock_threshold;
72
73    assert(m_max_outstanding_requests > 0);
74    assert(m_deadlock_threshold > 0);
75    assert(m_instCache_ptr != NULL);
76    assert(m_dataCache_ptr != NULL);
77
78    m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88    assert(getState() != SimObject::Draining);
89
90    // Check for deadlock of any of the requests
91    Time current_time = g_system_ptr->getTime();
92
93    // Check across all outstanding requests
94    int total_outstanding = 0;
95
96    RequestTable::iterator read = m_readRequestTable.begin();
97    RequestTable::iterator read_end = m_readRequestTable.end();
98    for (; read != read_end; ++read) {
99        SequencerRequest* request = read->second;
100        if (current_time - request->issue_time < m_deadlock_threshold)
101            continue;
102
103        panic("Possible Deadlock detected. Aborting!\n"
104             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
105             "current time: %u issue_time: %d difference: %d\n", m_version,
106             Address(request->pkt->getAddr()), m_readRequestTable.size(),
107             current_time, request->issue_time,
108             current_time - request->issue_time);
109    }
110
111    RequestTable::iterator write = m_writeRequestTable.begin();
112    RequestTable::iterator write_end = m_writeRequestTable.end();
113    for (; write != write_end; ++write) {
114        SequencerRequest* request = write->second;
115        if (current_time - request->issue_time < m_deadlock_threshold)
116            continue;
117
118        panic("Possible Deadlock detected. Aborting!\n"
119             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
120             "current time: %u issue_time: %d difference: %d\n", m_version,
121             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
122             current_time, request->issue_time,
123             current_time - request->issue_time);
124    }
125
126    total_outstanding += m_writeRequestTable.size();
127    total_outstanding += m_readRequestTable.size();
128
129    assert(m_outstanding_count == total_outstanding);
130
131    if (m_outstanding_count > 0) {
132        // If there are still outstanding requests, keep checking
133        schedule(deadlockCheckEvent,
134            g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
135    }
136}
137
138void
139Sequencer::printStats(ostream & out) const
140{
141    out << "Sequencer: " << m_name << endl
142        << "  store_waiting_on_load_cycles: "
143        << m_store_waiting_on_load_cycles << endl
144        << "  store_waiting_on_store_cycles: "
145        << m_store_waiting_on_store_cycles << endl
146        << "  load_waiting_on_load_cycles: "
147        << m_load_waiting_on_load_cycles << endl
148        << "  load_waiting_on_store_cycles: "
149        << m_load_waiting_on_store_cycles << endl;
150}
151
152void
153Sequencer::printProgress(ostream& out) const
154{
155#if 0
156    int total_demand = 0;
157    out << "Sequencer Stats Version " << m_version << endl;
158    out << "Current time = " << g_system_ptr->getTime() << endl;
159    out << "---------------" << endl;
160    out << "outstanding requests" << endl;
161
162    out << "proc " << m_Read
163        << " version Requests = " << m_readRequestTable.size() << endl;
164
165    // print the request table
166    RequestTable::iterator read = m_readRequestTable.begin();
167    RequestTable::iterator read_end = m_readRequestTable.end();
168    for (; read != read_end; ++read) {
169        SequencerRequest* request = read->second;
170        out << "\tRequest[ " << i << " ] = " << request->type
171            << " Address " << rkeys[i]
172            << " Posted " << request->issue_time
173            << " PF " << PrefetchBit_No << endl;
174        total_demand++;
175    }
176
177    out << "proc " << m_version
178        << " Write Requests = " << m_writeRequestTable.size << endl;
179
180    // print the request table
181    RequestTable::iterator write = m_writeRequestTable.begin();
182    RequestTable::iterator write_end = m_writeRequestTable.end();
183    for (; write != write_end; ++write) {
184        SequencerRequest* request = write->second;
185        out << "\tRequest[ " << i << " ] = " << request.getType()
186            << " Address " << wkeys[i]
187            << " Posted " << request.getTime()
188            << " PF " << request.getPrefetch() << endl;
189        if (request.getPrefetch() == PrefetchBit_No) {
190            total_demand++;
191        }
192    }
193
194    out << endl;
195
196    out << "Total Number Outstanding: " << m_outstanding_count << endl
197        << "Total Number Demand     : " << total_demand << endl
198        << "Total Number Prefetches : " << m_outstanding_count - total_demand
199        << endl << endl << endl;
200#endif
201}
202
203// Insert the request on the correct request table.  Return true if
204// the entry was already present.
205RequestStatus
206Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
207{
208    assert(m_outstanding_count ==
209        (m_writeRequestTable.size() + m_readRequestTable.size()));
210
211    // See if we should schedule a deadlock check
212    if (!deadlockCheckEvent.scheduled() && getState() != SimObject::Draining) {
213        schedule(deadlockCheckEvent,
214            g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
215    }
216
217    Address line_addr(pkt->getAddr());
218    line_addr.makeLineAddress();
219    // Create a default entry, mapping the address to NULL, the cast is
220    // there to make gcc 4.4 happy
221    RequestTable::value_type default_entry(line_addr,
222                                           (SequencerRequest*) NULL);
223
224    if ((request_type == RubyRequestType_ST) ||
225        (request_type == RubyRequestType_RMW_Read) ||
226        (request_type == RubyRequestType_RMW_Write) ||
227        (request_type == RubyRequestType_Load_Linked) ||
228        (request_type == RubyRequestType_Store_Conditional) ||
229        (request_type == RubyRequestType_Locked_RMW_Read) ||
230        (request_type == RubyRequestType_Locked_RMW_Write) ||
231        (request_type == RubyRequestType_FLUSH)) {
232
233        // Check if there is any outstanding read request for the same
234        // cache line.
235        if (m_readRequestTable.count(line_addr) > 0) {
236            m_store_waiting_on_load_cycles++;
237            return RequestStatus_Aliased;
238        }
239
240        pair<RequestTable::iterator, bool> r =
241            m_writeRequestTable.insert(default_entry);
242        if (r.second) {
243            RequestTable::iterator i = r.first;
244            i->second = new SequencerRequest(pkt, request_type,
245                                             g_system_ptr->getTime());
246            m_outstanding_count++;
247        } else {
248          // There is an outstanding write request for the cache line
249          m_store_waiting_on_store_cycles++;
250          return RequestStatus_Aliased;
251        }
252    } else {
253        // Check if there is any outstanding write request for the same
254        // cache line.
255        if (m_writeRequestTable.count(line_addr) > 0) {
256            m_load_waiting_on_store_cycles++;
257            return RequestStatus_Aliased;
258        }
259
260        pair<RequestTable::iterator, bool> r =
261            m_readRequestTable.insert(default_entry);
262
263        if (r.second) {
264            RequestTable::iterator i = r.first;
265            i->second = new SequencerRequest(pkt, request_type,
266                                             g_system_ptr->getTime());
267            m_outstanding_count++;
268        } else {
269            // There is an outstanding read request for the cache line
270            m_load_waiting_on_load_cycles++;
271            return RequestStatus_Aliased;
272        }
273    }
274
275    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
276    assert(m_outstanding_count ==
277        (m_writeRequestTable.size() + m_readRequestTable.size()));
278
279    return RequestStatus_Ready;
280}
281
282void
283Sequencer::markRemoved()
284{
285    m_outstanding_count--;
286    assert(m_outstanding_count ==
287           m_writeRequestTable.size() + m_readRequestTable.size());
288}
289
290void
291Sequencer::removeRequest(SequencerRequest* srequest)
292{
293    assert(m_outstanding_count ==
294           m_writeRequestTable.size() + m_readRequestTable.size());
295
296    Address line_addr(srequest->pkt->getAddr());
297    line_addr.makeLineAddress();
298    if ((srequest->m_type == RubyRequestType_ST) ||
299        (srequest->m_type == RubyRequestType_RMW_Read) ||
300        (srequest->m_type == RubyRequestType_RMW_Write) ||
301        (srequest->m_type == RubyRequestType_Load_Linked) ||
302        (srequest->m_type == RubyRequestType_Store_Conditional) ||
303        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
304        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
305        m_writeRequestTable.erase(line_addr);
306    } else {
307        m_readRequestTable.erase(line_addr);
308    }
309
310    markRemoved();
311}
312
313bool
314Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
315{
316    //
317    // The success flag indicates whether the LLSC operation was successful.
318    // LL ops will always succeed, but SC may fail if the cache line is no
319    // longer locked.
320    //
321    bool success = true;
322    if (request->m_type == RubyRequestType_Store_Conditional) {
323        if (!m_dataCache_ptr->isLocked(address, m_version)) {
324            //
325            // For failed SC requests, indicate the failure to the cpu by
326            // setting the extra data to zero.
327            //
328            request->pkt->req->setExtraData(0);
329            success = false;
330        } else {
331            //
332            // For successful SC requests, indicate the success to the cpu by
333            // setting the extra data to one.
334            //
335            request->pkt->req->setExtraData(1);
336        }
337        //
338        // Independent of success, all SC operations must clear the lock
339        //
340        m_dataCache_ptr->clearLocked(address);
341    } else if (request->m_type == RubyRequestType_Load_Linked) {
342        //
343        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
344        // previously locked cache lines?
345        //
346        m_dataCache_ptr->setLocked(address, m_version);
347    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
348               (m_dataCache_ptr->isLocked(address, m_version))) {
349        //
350        // Normal writes should clear the locked address
351        //
352        m_dataCache_ptr->clearLocked(address);
353    }
354    return success;
355}
356
357void
358Sequencer::writeCallback(const Address& address, DataBlock& data)
359{
360    writeCallback(address, GenericMachineType_NULL, data);
361}
362
363void
364Sequencer::writeCallback(const Address& address,
365                         GenericMachineType mach,
366                         DataBlock& data)
367{
368    writeCallback(address, mach, data, 0, 0, 0);
369}
370
371void
372Sequencer::writeCallback(const Address& address,
373                         GenericMachineType mach,
374                         DataBlock& data,
375                         Time initialRequestTime,
376                         Time forwardRequestTime,
377                         Time firstResponseTime)
378{
379    assert(address == line_address(address));
380    assert(m_writeRequestTable.count(line_address(address)));
381
382    RequestTable::iterator i = m_writeRequestTable.find(address);
383    assert(i != m_writeRequestTable.end());
384    SequencerRequest* request = i->second;
385
386    m_writeRequestTable.erase(i);
387    markRemoved();
388
389    assert((request->m_type == RubyRequestType_ST) ||
390           (request->m_type == RubyRequestType_ATOMIC) ||
391           (request->m_type == RubyRequestType_RMW_Read) ||
392           (request->m_type == RubyRequestType_RMW_Write) ||
393           (request->m_type == RubyRequestType_Load_Linked) ||
394           (request->m_type == RubyRequestType_Store_Conditional) ||
395           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
396           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
397           (request->m_type == RubyRequestType_FLUSH));
398
399
400    //
401    // For Alpha, properly handle LL, SC, and write requests with respect to
402    // locked cache blocks.
403    //
404    // Not valid for Network_test protocl
405    //
406    bool success = true;
407    if(!m_usingNetworkTester)
408        success = handleLlsc(address, request);
409
410    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
411        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
412    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
413        m_controller->unblock(address);
414    }
415
416    hitCallback(request, mach, data, success,
417                initialRequestTime, forwardRequestTime, firstResponseTime);
418}
419
420void
421Sequencer::readCallback(const Address& address, DataBlock& data)
422{
423    readCallback(address, GenericMachineType_NULL, data);
424}
425
426void
427Sequencer::readCallback(const Address& address,
428                        GenericMachineType mach,
429                        DataBlock& data)
430{
431    readCallback(address, mach, data, 0, 0, 0);
432}
433
434void
435Sequencer::readCallback(const Address& address,
436                        GenericMachineType mach,
437                        DataBlock& data,
438                        Time initialRequestTime,
439                        Time forwardRequestTime,
440                        Time firstResponseTime)
441{
442    assert(address == line_address(address));
443    assert(m_readRequestTable.count(line_address(address)));
444
445    RequestTable::iterator i = m_readRequestTable.find(address);
446    assert(i != m_readRequestTable.end());
447    SequencerRequest* request = i->second;
448
449    m_readRequestTable.erase(i);
450    markRemoved();
451
452    assert((request->m_type == RubyRequestType_LD) ||
453           (request->m_type == RubyRequestType_IFETCH));
454
455    hitCallback(request, mach, data, true,
456                initialRequestTime, forwardRequestTime, firstResponseTime);
457}
458
459void
460Sequencer::hitCallback(SequencerRequest* srequest,
461                       GenericMachineType mach,
462                       DataBlock& data,
463                       bool success,
464                       Time initialRequestTime,
465                       Time forwardRequestTime,
466                       Time firstResponseTime)
467{
468    PacketPtr pkt = srequest->pkt;
469    Address request_address(pkt->getAddr());
470    Address request_line_address(pkt->getAddr());
471    request_line_address.makeLineAddress();
472    RubyRequestType type = srequest->m_type;
473    Time issued_time = srequest->issue_time;
474
475    // Set this cache entry to the most recently used
476    if (type == RubyRequestType_IFETCH) {
477        m_instCache_ptr->setMRU(request_line_address);
478    } else {
479        m_dataCache_ptr->setMRU(request_line_address);
480    }
481
482    assert(g_system_ptr->getTime() >= issued_time);
483    Time miss_latency = g_system_ptr->getTime() - issued_time;
484
485    // Profile the miss latency for all non-zero demand misses
486    if (miss_latency != 0) {
487        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
488
489        if (mach == GenericMachineType_L1Cache_wCC) {
490            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
491                                                   initialRequestTime,
492                                                   forwardRequestTime,
493                                                   firstResponseTime,
494                                                   g_system_ptr->getTime());
495        }
496
497        if (mach == GenericMachineType_Directory) {
498            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
499                                                   initialRequestTime,
500                                                   forwardRequestTime,
501                                                   firstResponseTime,
502                                                   g_system_ptr->getTime());
503        }
504
505        DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
506                 curTick(), m_version, "Seq",
507                 success ? "Done" : "SC_Failed", "", "",
508                 request_address, miss_latency);
509    }
510
511    // update the data
512    if (g_system_ptr->m_warmup_enabled) {
513        assert(pkt->getPtr<uint8_t>(false) != NULL);
514        data.setData(pkt->getPtr<uint8_t>(false),
515                     request_address.getOffset(), pkt->getSize());
516    } else if (pkt->getPtr<uint8_t>(true) != NULL) {
517        if ((type == RubyRequestType_LD) ||
518            (type == RubyRequestType_IFETCH) ||
519            (type == RubyRequestType_RMW_Read) ||
520            (type == RubyRequestType_Locked_RMW_Read) ||
521            (type == RubyRequestType_Load_Linked)) {
522            memcpy(pkt->getPtr<uint8_t>(true),
523                   data.getData(request_address.getOffset(), pkt->getSize()),
524                   pkt->getSize());
525        } else {
526            data.setData(pkt->getPtr<uint8_t>(true),
527                         request_address.getOffset(), pkt->getSize());
528        }
529    } else {
530        DPRINTF(MemoryAccess,
531                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
532                RubyRequestType_to_string(type));
533    }
534
535    // If using the RubyTester, update the RubyTester sender state's
536    // subBlock with the recieved data.  The tester will later access
537    // this state.
538    // Note: RubyPort will access it's sender state before the
539    // RubyTester.
540    if (m_usingRubyTester) {
541        RubyPort::SenderState *requestSenderState =
542            safe_cast<RubyPort::SenderState*>(pkt->senderState);
543        RubyTester::SenderState* testerSenderState =
544            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
545        testerSenderState->subBlock->mergeFrom(data);
546    }
547
548    delete srequest;
549
550    if (g_system_ptr->m_warmup_enabled) {
551        delete pkt;
552        g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
553    } else if (g_system_ptr->m_cooldown_enabled) {
554        delete pkt;
555        g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
556    } else {
557        ruby_hit_callback(pkt);
558    }
559}
560
561bool
562Sequencer::empty() const
563{
564    return m_writeRequestTable.empty() && m_readRequestTable.empty();
565}
566
567RequestStatus
568Sequencer::makeRequest(PacketPtr pkt)
569{
570    if (m_outstanding_count >= m_max_outstanding_requests) {
571        return RequestStatus_BufferFull;
572    }
573
574    RubyRequestType primary_type = RubyRequestType_NULL;
575    RubyRequestType secondary_type = RubyRequestType_NULL;
576
577    if (pkt->isLLSC()) {
578        //
579        // Alpha LL/SC instructions need to be handled carefully by the cache
580        // coherence protocol to ensure they follow the proper semantics. In
581        // particular, by identifying the operations as atomic, the protocol
582        // should understand that migratory sharing optimizations should not
583        // be performed (i.e. a load between the LL and SC should not steal
584        // away exclusive permission).
585        //
586        if (pkt->isWrite()) {
587            DPRINTF(RubySequencer, "Issuing SC\n");
588            primary_type = RubyRequestType_Store_Conditional;
589        } else {
590            DPRINTF(RubySequencer, "Issuing LL\n");
591            assert(pkt->isRead());
592            primary_type = RubyRequestType_Load_Linked;
593        }
594        secondary_type = RubyRequestType_ATOMIC;
595    } else if (pkt->req->isLocked()) {
596        //
597        // x86 locked instructions are translated to store cache coherence
598        // requests because these requests should always be treated as read
599        // exclusive operations and should leverage any migratory sharing
600        // optimization built into the protocol.
601        //
602        if (pkt->isWrite()) {
603            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
604            primary_type = RubyRequestType_Locked_RMW_Write;
605        } else {
606            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
607            assert(pkt->isRead());
608            primary_type = RubyRequestType_Locked_RMW_Read;
609        }
610        secondary_type = RubyRequestType_ST;
611    } else {
612        if (pkt->isRead()) {
613            if (pkt->req->isInstFetch()) {
614                primary_type = secondary_type = RubyRequestType_IFETCH;
615            } else {
616#if THE_ISA == X86_ISA
617                uint32_t flags = pkt->req->getFlags();
618                bool storeCheck = flags &
619                        (TheISA::StoreCheck << TheISA::FlagShift);
620#else
621                bool storeCheck = false;
622#endif // X86_ISA
623                if (storeCheck) {
624                    primary_type = RubyRequestType_RMW_Read;
625                    secondary_type = RubyRequestType_ST;
626                } else {
627                    primary_type = secondary_type = RubyRequestType_LD;
628                }
629            }
630        } else if (pkt->isWrite()) {
631            //
632            // Note: M5 packets do not differentiate ST from RMW_Write
633            //
634            primary_type = secondary_type = RubyRequestType_ST;
635        } else if (pkt->isFlush()) {
636          primary_type = secondary_type = RubyRequestType_FLUSH;
637        } else {
638            panic("Unsupported ruby packet type\n");
639        }
640    }
641
642    RequestStatus status = insertRequest(pkt, primary_type);
643    if (status != RequestStatus_Ready)
644        return status;
645
646    issueRequest(pkt, secondary_type);
647
648    // TODO: issue hardware prefetches here
649    return RequestStatus_Issued;
650}
651
652void
653Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
654{
655    assert(pkt != NULL);
656    int proc_id = -1;
657    if (pkt->req->hasContextId()) {
658        proc_id = pkt->req->contextId();
659    }
660
661    // If valid, copy the pc to the ruby request
662    Addr pc = 0;
663    if (pkt->req->hasPC()) {
664        pc = pkt->req->getPC();
665    }
666
667    RubyRequest *msg = new RubyRequest(pkt->getAddr(),
668                                       pkt->getPtr<uint8_t>(true),
669                                       pkt->getSize(), pc, secondary_type,
670                                       RubyAccessMode_Supervisor, pkt,
671                                       PrefetchBit_No, proc_id);
672
673    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
674            curTick(), m_version, "Seq", "Begin", "", "",
675            msg->getPhysicalAddress(),
676            RubyRequestType_to_string(secondary_type));
677
678    Time latency = 0;  // initialzed to an null value
679
680    if (secondary_type == RubyRequestType_IFETCH)
681        latency = m_instCache_ptr->getLatency();
682    else
683        latency = m_dataCache_ptr->getLatency();
684
685    // Send the message to the cache controller
686    assert(latency > 0);
687
688    assert(m_mandatory_q_ptr != NULL);
689    m_mandatory_q_ptr->enqueue(msg, latency);
690}
691
692template <class KEY, class VALUE>
693std::ostream &
694operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
695{
696    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
697    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
698
699    out << "[";
700    for (; i != end; ++i)
701        out << " " << i->first << "=" << i->second;
702    out << " ]";
703
704    return out;
705}
706
707void
708Sequencer::print(ostream& out) const
709{
710    out << "[Sequencer: " << m_version
711        << ", outstanding requests: " << m_outstanding_count
712        << ", read request table: " << m_readRequestTable
713        << ", write request table: " << m_writeRequestTable
714        << "]";
715}
716
717// this can be called from setState whenever coherence permissions are
718// upgraded when invoked, coherence violations will be checked for the
719// given block
720void
721Sequencer::checkCoherence(const Address& addr)
722{
723#ifdef CHECK_COHERENCE
724    g_system_ptr->checkGlobalCoherenceInvariant(addr);
725#endif
726}
727
728void
729Sequencer::recordRequestType(SequencerRequestType requestType) {
730    DPRINTF(RubyStats, "Recorded statistic: %s\n",
731            SequencerRequestType_to_string(requestType));
732}
733
734
735void
736Sequencer::evictionCallback(const Address& address)
737{
738    ruby_eviction_callback(address);
739}
740