Sequencer.cc revision 9104:27d56b644e78
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/CacheMemory.hh"
47#include "mem/ruby/system/Sequencer.hh"
48#include "mem/ruby/system/System.hh"
49#include "mem/packet.hh"
50#include "params/RubySequencer.hh"
51
52using namespace std;
53
54Sequencer *
55RubySequencerParams::create()
56{
57    return new Sequencer(this);
58}
59
60Sequencer::Sequencer(const Params *p)
61    : RubyPort(p), deadlockCheckEvent(this)
62{
63    m_store_waiting_on_load_cycles = 0;
64    m_store_waiting_on_store_cycles = 0;
65    m_load_waiting_on_store_cycles = 0;
66    m_load_waiting_on_load_cycles = 0;
67
68    m_outstanding_count = 0;
69
70    m_instCache_ptr = p->icache;
71    m_dataCache_ptr = p->dcache;
72    m_max_outstanding_requests = p->max_outstanding_requests;
73    m_deadlock_threshold = p->deadlock_threshold;
74
75    assert(m_max_outstanding_requests > 0);
76    assert(m_deadlock_threshold > 0);
77    assert(m_instCache_ptr != NULL);
78    assert(m_dataCache_ptr != NULL);
79
80    m_usingNetworkTester = p->using_network_tester;
81}
82
83Sequencer::~Sequencer()
84{
85}
86
87void
88Sequencer::wakeup()
89{
90    // Check for deadlock of any of the requests
91    Time current_time = g_eventQueue_ptr->getTime();
92
93    // Check across all outstanding requests
94    int total_outstanding = 0;
95
96    RequestTable::iterator read = m_readRequestTable.begin();
97    RequestTable::iterator read_end = m_readRequestTable.end();
98    for (; read != read_end; ++read) {
99        SequencerRequest* request = read->second;
100        if (current_time - request->issue_time < m_deadlock_threshold)
101            continue;
102
103        panic("Possible Deadlock detected. Aborting!\n"
104             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
105             "current time: %u issue_time: %d difference: %d\n", m_version,
106             Address(request->pkt->getAddr()), m_readRequestTable.size(),
107             current_time, request->issue_time,
108             current_time - request->issue_time);
109    }
110
111    RequestTable::iterator write = m_writeRequestTable.begin();
112    RequestTable::iterator write_end = m_writeRequestTable.end();
113    for (; write != write_end; ++write) {
114        SequencerRequest* request = write->second;
115        if (current_time - request->issue_time < m_deadlock_threshold)
116            continue;
117
118        panic("Possible Deadlock detected. Aborting!\n"
119             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
120             "current time: %u issue_time: %d difference: %d\n", m_version,
121             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
122             current_time, request->issue_time,
123             current_time - request->issue_time);
124    }
125
126    total_outstanding += m_writeRequestTable.size();
127    total_outstanding += m_readRequestTable.size();
128
129    assert(m_outstanding_count == total_outstanding);
130
131    if (m_outstanding_count > 0) {
132        // If there are still outstanding requests, keep checking
133        schedule(deadlockCheckEvent,
134                 m_deadlock_threshold * g_eventQueue_ptr->getClock() +
135                 curTick());
136    }
137}
138
139void
140Sequencer::printStats(ostream & out) const
141{
142    out << "Sequencer: " << m_name << endl
143        << "  store_waiting_on_load_cycles: "
144        << m_store_waiting_on_load_cycles << endl
145        << "  store_waiting_on_store_cycles: "
146        << m_store_waiting_on_store_cycles << endl
147        << "  load_waiting_on_load_cycles: "
148        << m_load_waiting_on_load_cycles << endl
149        << "  load_waiting_on_store_cycles: "
150        << m_load_waiting_on_store_cycles << endl;
151}
152
153void
154Sequencer::printProgress(ostream& out) const
155{
156#if 0
157    int total_demand = 0;
158    out << "Sequencer Stats Version " << m_version << endl;
159    out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
160    out << "---------------" << endl;
161    out << "outstanding requests" << endl;
162
163    out << "proc " << m_Read
164        << " version Requests = " << m_readRequestTable.size() << endl;
165
166    // print the request table
167    RequestTable::iterator read = m_readRequestTable.begin();
168    RequestTable::iterator read_end = m_readRequestTable.end();
169    for (; read != read_end; ++read) {
170        SequencerRequest* request = read->second;
171        out << "\tRequest[ " << i << " ] = " << request->type
172            << " Address " << rkeys[i]
173            << " Posted " << request->issue_time
174            << " PF " << PrefetchBit_No << endl;
175        total_demand++;
176    }
177
178    out << "proc " << m_version
179        << " Write Requests = " << m_writeRequestTable.size << endl;
180
181    // print the request table
182    RequestTable::iterator write = m_writeRequestTable.begin();
183    RequestTable::iterator write_end = m_writeRequestTable.end();
184    for (; write != write_end; ++write) {
185        SequencerRequest* request = write->second;
186        out << "\tRequest[ " << i << " ] = " << request.getType()
187            << " Address " << wkeys[i]
188            << " Posted " << request.getTime()
189            << " PF " << request.getPrefetch() << endl;
190        if (request.getPrefetch() == PrefetchBit_No) {
191            total_demand++;
192        }
193    }
194
195    out << endl;
196
197    out << "Total Number Outstanding: " << m_outstanding_count << endl
198        << "Total Number Demand     : " << total_demand << endl
199        << "Total Number Prefetches : " << m_outstanding_count - total_demand
200        << endl << endl << endl;
201#endif
202}
203
204void
205Sequencer::printConfig(ostream& out) const
206{
207    out << "Seqeuncer config: " << m_name << endl
208        << "  controller: " << m_controller->getName() << endl
209        << "  version: " << m_version << endl
210        << "  max_outstanding_requests: " << m_max_outstanding_requests << endl
211        << "  deadlock_threshold: " << m_deadlock_threshold << endl;
212}
213
214// Insert the request on the correct request table.  Return true if
215// the entry was already present.
216RequestStatus
217Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
218{
219    assert(m_outstanding_count ==
220        (m_writeRequestTable.size() + m_readRequestTable.size()));
221
222    // See if we should schedule a deadlock check
223    if (deadlockCheckEvent.scheduled() == false) {
224        schedule(deadlockCheckEvent,
225                 m_deadlock_threshold * g_eventQueue_ptr->getClock()
226                 + curTick());
227    }
228
229    Address line_addr(pkt->getAddr());
230    line_addr.makeLineAddress();
231    if ((request_type == RubyRequestType_ST) ||
232        (request_type == RubyRequestType_RMW_Read) ||
233        (request_type == RubyRequestType_RMW_Write) ||
234        (request_type == RubyRequestType_Load_Linked) ||
235        (request_type == RubyRequestType_Store_Conditional) ||
236        (request_type == RubyRequestType_Locked_RMW_Read) ||
237        (request_type == RubyRequestType_Locked_RMW_Write) ||
238        (request_type == RubyRequestType_FLUSH)) {
239
240        // Check if there is any outstanding read request for the same
241        // cache line.
242        if (m_readRequestTable.count(line_addr) > 0) {
243            m_store_waiting_on_load_cycles++;
244            return RequestStatus_Aliased;
245        }
246
247        pair<RequestTable::iterator, bool> r =
248            m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
249        if (r.second) {
250            RequestTable::iterator i = r.first;
251            i->second = new SequencerRequest(pkt, request_type,
252                                             g_eventQueue_ptr->getTime());
253            m_outstanding_count++;
254        } else {
255          // There is an outstanding write request for the cache line
256          m_store_waiting_on_store_cycles++;
257          return RequestStatus_Aliased;
258        }
259    } else {
260        // Check if there is any outstanding write request for the same
261        // cache line.
262        if (m_writeRequestTable.count(line_addr) > 0) {
263            m_load_waiting_on_store_cycles++;
264            return RequestStatus_Aliased;
265        }
266
267        pair<RequestTable::iterator, bool> r =
268            m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
269
270        if (r.second) {
271            RequestTable::iterator i = r.first;
272            i->second = new SequencerRequest(pkt, request_type,
273                                             g_eventQueue_ptr->getTime());
274            m_outstanding_count++;
275        } else {
276            // There is an outstanding read request for the cache line
277            m_load_waiting_on_load_cycles++;
278            return RequestStatus_Aliased;
279        }
280    }
281
282    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
283    assert(m_outstanding_count ==
284        (m_writeRequestTable.size() + m_readRequestTable.size()));
285
286    return RequestStatus_Ready;
287}
288
289void
290Sequencer::markRemoved()
291{
292    m_outstanding_count--;
293    assert(m_outstanding_count ==
294           m_writeRequestTable.size() + m_readRequestTable.size());
295}
296
297void
298Sequencer::removeRequest(SequencerRequest* srequest)
299{
300    assert(m_outstanding_count ==
301           m_writeRequestTable.size() + m_readRequestTable.size());
302
303    Address line_addr(srequest->pkt->getAddr());
304    line_addr.makeLineAddress();
305    if ((srequest->m_type == RubyRequestType_ST) ||
306        (srequest->m_type == RubyRequestType_RMW_Read) ||
307        (srequest->m_type == RubyRequestType_RMW_Write) ||
308        (srequest->m_type == RubyRequestType_Load_Linked) ||
309        (srequest->m_type == RubyRequestType_Store_Conditional) ||
310        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
311        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
312        m_writeRequestTable.erase(line_addr);
313    } else {
314        m_readRequestTable.erase(line_addr);
315    }
316
317    markRemoved();
318}
319
320bool
321Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
322{
323    //
324    // The success flag indicates whether the LLSC operation was successful.
325    // LL ops will always succeed, but SC may fail if the cache line is no
326    // longer locked.
327    //
328    bool success = true;
329    if (request->m_type == RubyRequestType_Store_Conditional) {
330        if (!m_dataCache_ptr->isLocked(address, m_version)) {
331            //
332            // For failed SC requests, indicate the failure to the cpu by
333            // setting the extra data to zero.
334            //
335            request->pkt->req->setExtraData(0);
336            success = false;
337        } else {
338            //
339            // For successful SC requests, indicate the success to the cpu by
340            // setting the extra data to one.
341            //
342            request->pkt->req->setExtraData(1);
343        }
344        //
345        // Independent of success, all SC operations must clear the lock
346        //
347        m_dataCache_ptr->clearLocked(address);
348    } else if (request->m_type == RubyRequestType_Load_Linked) {
349        //
350        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
351        // previously locked cache lines?
352        //
353        m_dataCache_ptr->setLocked(address, m_version);
354    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
355               (m_dataCache_ptr->isLocked(address, m_version))) {
356        //
357        // Normal writes should clear the locked address
358        //
359        m_dataCache_ptr->clearLocked(address);
360    }
361    return success;
362}
363
364void
365Sequencer::writeCallback(const Address& address, DataBlock& data)
366{
367    writeCallback(address, GenericMachineType_NULL, data);
368}
369
370void
371Sequencer::writeCallback(const Address& address,
372                         GenericMachineType mach,
373                         DataBlock& data)
374{
375    writeCallback(address, mach, data, 0, 0, 0);
376}
377
378void
379Sequencer::writeCallback(const Address& address,
380                         GenericMachineType mach,
381                         DataBlock& data,
382                         Time initialRequestTime,
383                         Time forwardRequestTime,
384                         Time firstResponseTime)
385{
386    assert(address == line_address(address));
387    assert(m_writeRequestTable.count(line_address(address)));
388
389    RequestTable::iterator i = m_writeRequestTable.find(address);
390    assert(i != m_writeRequestTable.end());
391    SequencerRequest* request = i->second;
392
393    m_writeRequestTable.erase(i);
394    markRemoved();
395
396    assert((request->m_type == RubyRequestType_ST) ||
397           (request->m_type == RubyRequestType_ATOMIC) ||
398           (request->m_type == RubyRequestType_RMW_Read) ||
399           (request->m_type == RubyRequestType_RMW_Write) ||
400           (request->m_type == RubyRequestType_Load_Linked) ||
401           (request->m_type == RubyRequestType_Store_Conditional) ||
402           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
403           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
404           (request->m_type == RubyRequestType_FLUSH));
405
406
407    //
408    // For Alpha, properly handle LL, SC, and write requests with respect to
409    // locked cache blocks.
410    //
411    // Not valid for Network_test protocl
412    //
413    bool success = true;
414    if(!m_usingNetworkTester)
415        success = handleLlsc(address, request);
416
417    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
418        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
419    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
420        m_controller->unblock(address);
421    }
422
423    hitCallback(request, mach, data, success,
424                initialRequestTime, forwardRequestTime, firstResponseTime);
425}
426
427void
428Sequencer::readCallback(const Address& address, DataBlock& data)
429{
430    readCallback(address, GenericMachineType_NULL, data);
431}
432
433void
434Sequencer::readCallback(const Address& address,
435                        GenericMachineType mach,
436                        DataBlock& data)
437{
438    readCallback(address, mach, data, 0, 0, 0);
439}
440
441void
442Sequencer::readCallback(const Address& address,
443                        GenericMachineType mach,
444                        DataBlock& data,
445                        Time initialRequestTime,
446                        Time forwardRequestTime,
447                        Time firstResponseTime)
448{
449    assert(address == line_address(address));
450    assert(m_readRequestTable.count(line_address(address)));
451
452    RequestTable::iterator i = m_readRequestTable.find(address);
453    assert(i != m_readRequestTable.end());
454    SequencerRequest* request = i->second;
455
456    m_readRequestTable.erase(i);
457    markRemoved();
458
459    assert((request->m_type == RubyRequestType_LD) ||
460           (request->m_type == RubyRequestType_IFETCH));
461
462    hitCallback(request, mach, data, true,
463                initialRequestTime, forwardRequestTime, firstResponseTime);
464}
465
466void
467Sequencer::hitCallback(SequencerRequest* srequest,
468                       GenericMachineType mach,
469                       DataBlock& data,
470                       bool success,
471                       Time initialRequestTime,
472                       Time forwardRequestTime,
473                       Time firstResponseTime)
474{
475    PacketPtr pkt = srequest->pkt;
476    Address request_address(pkt->getAddr());
477    Address request_line_address(pkt->getAddr());
478    request_line_address.makeLineAddress();
479    RubyRequestType type = srequest->m_type;
480    Time issued_time = srequest->issue_time;
481
482    // Set this cache entry to the most recently used
483    if (type == RubyRequestType_IFETCH) {
484        m_instCache_ptr->setMRU(request_line_address);
485    } else {
486        m_dataCache_ptr->setMRU(request_line_address);
487    }
488
489    assert(g_eventQueue_ptr->getTime() >= issued_time);
490    Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
491
492    // Profile the miss latency for all non-zero demand misses
493    if (miss_latency != 0) {
494        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
495
496        if (mach == GenericMachineType_L1Cache_wCC) {
497            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
498                                                   initialRequestTime,
499                                                   forwardRequestTime,
500                                                   firstResponseTime,
501                                                   g_eventQueue_ptr->getTime());
502        }
503
504        if (mach == GenericMachineType_Directory) {
505            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
506                                                   initialRequestTime,
507                                                   forwardRequestTime,
508                                                   firstResponseTime,
509                                                   g_eventQueue_ptr->getTime());
510        }
511
512        DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
513                 curTick(), m_version, "Seq",
514                 success ? "Done" : "SC_Failed", "", "",
515                 request_address, miss_latency);
516    }
517
518    // update the data
519    if (g_system_ptr->m_warmup_enabled) {
520        assert(pkt->getPtr<uint8_t>(false) != NULL);
521        data.setData(pkt->getPtr<uint8_t>(false),
522                     request_address.getOffset(), pkt->getSize());
523    } else if (pkt->getPtr<uint8_t>(true) != NULL) {
524        if ((type == RubyRequestType_LD) ||
525            (type == RubyRequestType_IFETCH) ||
526            (type == RubyRequestType_RMW_Read) ||
527            (type == RubyRequestType_Locked_RMW_Read) ||
528            (type == RubyRequestType_Load_Linked)) {
529            memcpy(pkt->getPtr<uint8_t>(true),
530                   data.getData(request_address.getOffset(), pkt->getSize()),
531                   pkt->getSize());
532        } else {
533            data.setData(pkt->getPtr<uint8_t>(true),
534                         request_address.getOffset(), pkt->getSize());
535        }
536    } else {
537        DPRINTF(MemoryAccess,
538                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
539                RubyRequestType_to_string(type));
540    }
541
542    // If using the RubyTester, update the RubyTester sender state's
543    // subBlock with the recieved data.  The tester will later access
544    // this state.
545    // Note: RubyPort will access it's sender state before the
546    // RubyTester.
547    if (m_usingRubyTester) {
548        RubyPort::SenderState *requestSenderState =
549            safe_cast<RubyPort::SenderState*>(pkt->senderState);
550        RubyTester::SenderState* testerSenderState =
551            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
552        testerSenderState->subBlock->mergeFrom(data);
553    }
554
555    delete srequest;
556
557    if (g_system_ptr->m_warmup_enabled) {
558        delete pkt;
559        g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
560    } else if (g_system_ptr->m_cooldown_enabled) {
561        delete pkt;
562        g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
563    } else {
564        ruby_hit_callback(pkt);
565    }
566}
567
568bool
569Sequencer::empty() const
570{
571    return m_writeRequestTable.empty() && m_readRequestTable.empty();
572}
573
574RequestStatus
575Sequencer::makeRequest(PacketPtr pkt)
576{
577    if (m_outstanding_count >= m_max_outstanding_requests) {
578        return RequestStatus_BufferFull;
579    }
580
581    RubyRequestType primary_type = RubyRequestType_NULL;
582    RubyRequestType secondary_type = RubyRequestType_NULL;
583
584    if (pkt->isLLSC()) {
585        //
586        // Alpha LL/SC instructions need to be handled carefully by the cache
587        // coherence protocol to ensure they follow the proper semantics. In
588        // particular, by identifying the operations as atomic, the protocol
589        // should understand that migratory sharing optimizations should not
590        // be performed (i.e. a load between the LL and SC should not steal
591        // away exclusive permission).
592        //
593        if (pkt->isWrite()) {
594            DPRINTF(RubySequencer, "Issuing SC\n");
595            primary_type = RubyRequestType_Store_Conditional;
596        } else {
597            DPRINTF(RubySequencer, "Issuing LL\n");
598            assert(pkt->isRead());
599            primary_type = RubyRequestType_Load_Linked;
600        }
601        secondary_type = RubyRequestType_ATOMIC;
602    } else if (pkt->req->isLocked()) {
603        //
604        // x86 locked instructions are translated to store cache coherence
605        // requests because these requests should always be treated as read
606        // exclusive operations and should leverage any migratory sharing
607        // optimization built into the protocol.
608        //
609        if (pkt->isWrite()) {
610            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
611            primary_type = RubyRequestType_Locked_RMW_Write;
612        } else {
613            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
614            assert(pkt->isRead());
615            primary_type = RubyRequestType_Locked_RMW_Read;
616        }
617        secondary_type = RubyRequestType_ST;
618    } else {
619        if (pkt->isRead()) {
620            if (pkt->req->isInstFetch()) {
621                primary_type = secondary_type = RubyRequestType_IFETCH;
622            } else {
623#if THE_ISA == X86_ISA
624                uint32_t flags = pkt->req->getFlags();
625                bool storeCheck = flags &
626                        (TheISA::StoreCheck << TheISA::FlagShift);
627#else
628                bool storeCheck = false;
629#endif // X86_ISA
630                if (storeCheck) {
631                    primary_type = RubyRequestType_RMW_Read;
632                    secondary_type = RubyRequestType_ST;
633                } else {
634                    primary_type = secondary_type = RubyRequestType_LD;
635                }
636            }
637        } else if (pkt->isWrite()) {
638            //
639            // Note: M5 packets do not differentiate ST from RMW_Write
640            //
641            primary_type = secondary_type = RubyRequestType_ST;
642        } else if (pkt->isFlush()) {
643          primary_type = secondary_type = RubyRequestType_FLUSH;
644        } else {
645            panic("Unsupported ruby packet type\n");
646        }
647    }
648
649    RequestStatus status = insertRequest(pkt, primary_type);
650    if (status != RequestStatus_Ready)
651        return status;
652
653    issueRequest(pkt, secondary_type);
654
655    // TODO: issue hardware prefetches here
656    return RequestStatus_Issued;
657}
658
659void
660Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
661{
662    int proc_id = -1;
663    if (pkt != NULL && pkt->req->hasContextId()) {
664        proc_id = pkt->req->contextId();
665    }
666
667    // If valid, copy the pc to the ruby request
668    Addr pc = 0;
669    if (pkt->req->hasPC()) {
670        pc = pkt->req->getPC();
671    }
672
673    RubyRequest *msg = new RubyRequest(pkt->getAddr(),
674                                       pkt->getPtr<uint8_t>(true),
675                                       pkt->getSize(), pc, secondary_type,
676                                       RubyAccessMode_Supervisor, pkt,
677                                       PrefetchBit_No, proc_id);
678
679    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
680            curTick(), m_version, "Seq", "Begin", "", "",
681            msg->getPhysicalAddress(),
682            RubyRequestType_to_string(secondary_type));
683
684    Time latency = 0;  // initialzed to an null value
685
686    if (secondary_type == RubyRequestType_IFETCH)
687        latency = m_instCache_ptr->getLatency();
688    else
689        latency = m_dataCache_ptr->getLatency();
690
691    // Send the message to the cache controller
692    assert(latency > 0);
693
694    assert(m_mandatory_q_ptr != NULL);
695    m_mandatory_q_ptr->enqueue(msg, latency);
696}
697
698template <class KEY, class VALUE>
699std::ostream &
700operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
701{
702    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
703    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
704
705    out << "[";
706    for (; i != end; ++i)
707        out << " " << i->first << "=" << i->second;
708    out << " ]";
709
710    return out;
711}
712
713void
714Sequencer::print(ostream& out) const
715{
716    out << "[Sequencer: " << m_version
717        << ", outstanding requests: " << m_outstanding_count
718        << ", read request table: " << m_readRequestTable
719        << ", write request table: " << m_writeRequestTable
720        << "]";
721}
722
723// this can be called from setState whenever coherence permissions are
724// upgraded when invoked, coherence violations will be checked for the
725// given block
726void
727Sequencer::checkCoherence(const Address& addr)
728{
729#ifdef CHECK_COHERENCE
730    g_system_ptr->checkGlobalCoherenceInvariant(addr);
731#endif
732}
733
734void
735Sequencer::recordRequestType(SequencerRequestType requestType) {
736    DPRINTF(RubyStats, "Recorded statistic: %s\n",
737            SequencerRequestType_to_string(requestType));
738}
739
740
741void
742Sequencer::evictionCallback(const Address& address)
743{
744    ruby_eviction_callback(address);
745}
746