Sequencer.cc revision 9011:52574306c576
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "mem/protocol/PrefetchBit.hh"
40#include "mem/protocol/RubyAccessMode.hh"
41#include "mem/ruby/buffers/MessageBuffer.hh"
42#include "mem/ruby/common/Global.hh"
43#include "mem/ruby/profiler/Profiler.hh"
44#include "mem/ruby/slicc_interface/RubyRequest.hh"
45#include "mem/ruby/system/CacheMemory.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49#include "params/RubySequencer.hh"
50
51using namespace std;
52
53Sequencer *
54RubySequencerParams::create()
55{
56    return new Sequencer(this);
57}
58
59Sequencer::Sequencer(const Params *p)
60    : RubyPort(p), deadlockCheckEvent(this)
61{
62    m_store_waiting_on_load_cycles = 0;
63    m_store_waiting_on_store_cycles = 0;
64    m_load_waiting_on_store_cycles = 0;
65    m_load_waiting_on_load_cycles = 0;
66
67    m_outstanding_count = 0;
68
69    m_instCache_ptr = p->icache;
70    m_dataCache_ptr = p->dcache;
71    m_max_outstanding_requests = p->max_outstanding_requests;
72    m_deadlock_threshold = p->deadlock_threshold;
73
74    assert(m_max_outstanding_requests > 0);
75    assert(m_deadlock_threshold > 0);
76    assert(m_instCache_ptr != NULL);
77    assert(m_dataCache_ptr != NULL);
78
79    m_usingNetworkTester = p->using_network_tester;
80}
81
82Sequencer::~Sequencer()
83{
84}
85
86void
87Sequencer::wakeup()
88{
89    // Check for deadlock of any of the requests
90    Time current_time = g_eventQueue_ptr->getTime();
91
92    // Check across all outstanding requests
93    int total_outstanding = 0;
94
95    RequestTable::iterator read = m_readRequestTable.begin();
96    RequestTable::iterator read_end = m_readRequestTable.end();
97    for (; read != read_end; ++read) {
98        SequencerRequest* request = read->second;
99        if (current_time - request->issue_time < m_deadlock_threshold)
100            continue;
101
102        panic("Possible Deadlock detected. Aborting!\n"
103             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
104             "current time: %u issue_time: %d difference: %d\n", m_version,
105             Address(request->pkt->getAddr()), m_readRequestTable.size(),
106             current_time, request->issue_time,
107             current_time - request->issue_time);
108    }
109
110    RequestTable::iterator write = m_writeRequestTable.begin();
111    RequestTable::iterator write_end = m_writeRequestTable.end();
112    for (; write != write_end; ++write) {
113        SequencerRequest* request = write->second;
114        if (current_time - request->issue_time < m_deadlock_threshold)
115            continue;
116
117        panic("Possible Deadlock detected. Aborting!\n"
118             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
119             "current time: %u issue_time: %d difference: %d\n", m_version,
120             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
121             current_time, request->issue_time,
122             current_time - request->issue_time);
123    }
124
125    total_outstanding += m_writeRequestTable.size();
126    total_outstanding += m_readRequestTable.size();
127
128    assert(m_outstanding_count == total_outstanding);
129
130    if (m_outstanding_count > 0) {
131        // If there are still outstanding requests, keep checking
132        schedule(deadlockCheckEvent,
133                 m_deadlock_threshold * g_eventQueue_ptr->getClock() +
134                 curTick());
135    }
136}
137
138void
139Sequencer::printStats(ostream & out) const
140{
141    out << "Sequencer: " << m_name << endl
142        << "  store_waiting_on_load_cycles: "
143        << m_store_waiting_on_load_cycles << endl
144        << "  store_waiting_on_store_cycles: "
145        << m_store_waiting_on_store_cycles << endl
146        << "  load_waiting_on_load_cycles: "
147        << m_load_waiting_on_load_cycles << endl
148        << "  load_waiting_on_store_cycles: "
149        << m_load_waiting_on_store_cycles << endl;
150}
151
152void
153Sequencer::printProgress(ostream& out) const
154{
155#if 0
156    int total_demand = 0;
157    out << "Sequencer Stats Version " << m_version << endl;
158    out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
159    out << "---------------" << endl;
160    out << "outstanding requests" << endl;
161
162    out << "proc " << m_Read
163        << " version Requests = " << m_readRequestTable.size() << endl;
164
165    // print the request table
166    RequestTable::iterator read = m_readRequestTable.begin();
167    RequestTable::iterator read_end = m_readRequestTable.end();
168    for (; read != read_end; ++read) {
169        SequencerRequest* request = read->second;
170        out << "\tRequest[ " << i << " ] = " << request->type
171            << " Address " << rkeys[i]
172            << " Posted " << request->issue_time
173            << " PF " << PrefetchBit_No << endl;
174        total_demand++;
175    }
176
177    out << "proc " << m_version
178        << " Write Requests = " << m_writeRequestTable.size << endl;
179
180    // print the request table
181    RequestTable::iterator write = m_writeRequestTable.begin();
182    RequestTable::iterator write_end = m_writeRequestTable.end();
183    for (; write != write_end; ++write) {
184        SequencerRequest* request = write->second;
185        out << "\tRequest[ " << i << " ] = " << request.getType()
186            << " Address " << wkeys[i]
187            << " Posted " << request.getTime()
188            << " PF " << request.getPrefetch() << endl;
189        if (request.getPrefetch() == PrefetchBit_No) {
190            total_demand++;
191        }
192    }
193
194    out << endl;
195
196    out << "Total Number Outstanding: " << m_outstanding_count << endl
197        << "Total Number Demand     : " << total_demand << endl
198        << "Total Number Prefetches : " << m_outstanding_count - total_demand
199        << endl << endl << endl;
200#endif
201}
202
203void
204Sequencer::printConfig(ostream& out) const
205{
206    out << "Seqeuncer config: " << m_name << endl
207        << "  controller: " << m_controller->getName() << endl
208        << "  version: " << m_version << endl
209        << "  max_outstanding_requests: " << m_max_outstanding_requests << endl
210        << "  deadlock_threshold: " << m_deadlock_threshold << endl;
211}
212
213// Insert the request on the correct request table.  Return true if
214// the entry was already present.
215RequestStatus
216Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
217{
218    assert(m_outstanding_count ==
219        (m_writeRequestTable.size() + m_readRequestTable.size()));
220
221    // See if we should schedule a deadlock check
222    if (deadlockCheckEvent.scheduled() == false) {
223        schedule(deadlockCheckEvent,
224                 m_deadlock_threshold * g_eventQueue_ptr->getClock()
225                 + curTick());
226    }
227
228    Address line_addr(pkt->getAddr());
229    line_addr.makeLineAddress();
230    if ((request_type == RubyRequestType_ST) ||
231        (request_type == RubyRequestType_RMW_Read) ||
232        (request_type == RubyRequestType_RMW_Write) ||
233        (request_type == RubyRequestType_Load_Linked) ||
234        (request_type == RubyRequestType_Store_Conditional) ||
235        (request_type == RubyRequestType_Locked_RMW_Read) ||
236        (request_type == RubyRequestType_Locked_RMW_Write) ||
237        (request_type == RubyRequestType_FLUSH)) {
238
239        // Check if there is any outstanding read request for the same
240        // cache line.
241        if (m_readRequestTable.count(line_addr) > 0) {
242            m_store_waiting_on_load_cycles++;
243            return RequestStatus_Aliased;
244        }
245
246        pair<RequestTable::iterator, bool> r =
247            m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
248        if (r.second) {
249            RequestTable::iterator i = r.first;
250            i->second = new SequencerRequest(pkt, request_type,
251                                             g_eventQueue_ptr->getTime());
252            m_outstanding_count++;
253        } else {
254          // There is an outstanding write request for the cache line
255          m_store_waiting_on_store_cycles++;
256          return RequestStatus_Aliased;
257        }
258    } else {
259        // Check if there is any outstanding write request for the same
260        // cache line.
261        if (m_writeRequestTable.count(line_addr) > 0) {
262            m_load_waiting_on_store_cycles++;
263            return RequestStatus_Aliased;
264        }
265
266        pair<RequestTable::iterator, bool> r =
267            m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
268
269        if (r.second) {
270            RequestTable::iterator i = r.first;
271            i->second = new SequencerRequest(pkt, request_type,
272                                             g_eventQueue_ptr->getTime());
273            m_outstanding_count++;
274        } else {
275            // There is an outstanding read request for the cache line
276            m_load_waiting_on_load_cycles++;
277            return RequestStatus_Aliased;
278        }
279    }
280
281    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
282    assert(m_outstanding_count ==
283        (m_writeRequestTable.size() + m_readRequestTable.size()));
284
285    return RequestStatus_Ready;
286}
287
288void
289Sequencer::markRemoved()
290{
291    m_outstanding_count--;
292    assert(m_outstanding_count ==
293           m_writeRequestTable.size() + m_readRequestTable.size());
294}
295
296void
297Sequencer::removeRequest(SequencerRequest* srequest)
298{
299    assert(m_outstanding_count ==
300           m_writeRequestTable.size() + m_readRequestTable.size());
301
302    Address line_addr(srequest->pkt->getAddr());
303    line_addr.makeLineAddress();
304    if ((srequest->m_type == RubyRequestType_ST) ||
305        (srequest->m_type == RubyRequestType_RMW_Read) ||
306        (srequest->m_type == RubyRequestType_RMW_Write) ||
307        (srequest->m_type == RubyRequestType_Load_Linked) ||
308        (srequest->m_type == RubyRequestType_Store_Conditional) ||
309        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
310        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
311        m_writeRequestTable.erase(line_addr);
312    } else {
313        m_readRequestTable.erase(line_addr);
314    }
315
316    markRemoved();
317}
318
319bool
320Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
321{
322    //
323    // The success flag indicates whether the LLSC operation was successful.
324    // LL ops will always succeed, but SC may fail if the cache line is no
325    // longer locked.
326    //
327    bool success = true;
328    if (request->m_type == RubyRequestType_Store_Conditional) {
329        if (!m_dataCache_ptr->isLocked(address, m_version)) {
330            //
331            // For failed SC requests, indicate the failure to the cpu by
332            // setting the extra data to zero.
333            //
334            request->pkt->req->setExtraData(0);
335            success = false;
336        } else {
337            //
338            // For successful SC requests, indicate the success to the cpu by
339            // setting the extra data to one.
340            //
341            request->pkt->req->setExtraData(1);
342        }
343        //
344        // Independent of success, all SC operations must clear the lock
345        //
346        m_dataCache_ptr->clearLocked(address);
347    } else if (request->m_type == RubyRequestType_Load_Linked) {
348        //
349        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
350        // previously locked cache lines?
351        //
352        m_dataCache_ptr->setLocked(address, m_version);
353    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
354               (m_dataCache_ptr->isLocked(address, m_version))) {
355        //
356        // Normal writes should clear the locked address
357        //
358        m_dataCache_ptr->clearLocked(address);
359    }
360    return success;
361}
362
363void
364Sequencer::writeCallback(const Address& address, DataBlock& data)
365{
366    writeCallback(address, GenericMachineType_NULL, data);
367}
368
369void
370Sequencer::writeCallback(const Address& address,
371                         GenericMachineType mach,
372                         DataBlock& data)
373{
374    writeCallback(address, mach, data, 0, 0, 0);
375}
376
377void
378Sequencer::writeCallback(const Address& address,
379                         GenericMachineType mach,
380                         DataBlock& data,
381                         Time initialRequestTime,
382                         Time forwardRequestTime,
383                         Time firstResponseTime)
384{
385    assert(address == line_address(address));
386    assert(m_writeRequestTable.count(line_address(address)));
387
388    RequestTable::iterator i = m_writeRequestTable.find(address);
389    assert(i != m_writeRequestTable.end());
390    SequencerRequest* request = i->second;
391
392    m_writeRequestTable.erase(i);
393    markRemoved();
394
395    assert((request->m_type == RubyRequestType_ST) ||
396           (request->m_type == RubyRequestType_ATOMIC) ||
397           (request->m_type == RubyRequestType_RMW_Read) ||
398           (request->m_type == RubyRequestType_RMW_Write) ||
399           (request->m_type == RubyRequestType_Load_Linked) ||
400           (request->m_type == RubyRequestType_Store_Conditional) ||
401           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
402           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
403           (request->m_type == RubyRequestType_FLUSH));
404
405
406    //
407    // For Alpha, properly handle LL, SC, and write requests with respect to
408    // locked cache blocks.
409    //
410    // Not valid for Network_test protocl
411    //
412    bool success = true;
413    if(!m_usingNetworkTester)
414        success = handleLlsc(address, request);
415
416    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
417        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
418    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
419        m_controller->unblock(address);
420    }
421
422    hitCallback(request, mach, data, success,
423                initialRequestTime, forwardRequestTime, firstResponseTime);
424}
425
426void
427Sequencer::readCallback(const Address& address, DataBlock& data)
428{
429    readCallback(address, GenericMachineType_NULL, data);
430}
431
432void
433Sequencer::readCallback(const Address& address,
434                        GenericMachineType mach,
435                        DataBlock& data)
436{
437    readCallback(address, mach, data, 0, 0, 0);
438}
439
440void
441Sequencer::readCallback(const Address& address,
442                        GenericMachineType mach,
443                        DataBlock& data,
444                        Time initialRequestTime,
445                        Time forwardRequestTime,
446                        Time firstResponseTime)
447{
448    assert(address == line_address(address));
449    assert(m_readRequestTable.count(line_address(address)));
450
451    RequestTable::iterator i = m_readRequestTable.find(address);
452    assert(i != m_readRequestTable.end());
453    SequencerRequest* request = i->second;
454
455    m_readRequestTable.erase(i);
456    markRemoved();
457
458    assert((request->m_type == RubyRequestType_LD) ||
459           (request->m_type == RubyRequestType_IFETCH));
460
461    hitCallback(request, mach, data, true,
462                initialRequestTime, forwardRequestTime, firstResponseTime);
463}
464
465void
466Sequencer::hitCallback(SequencerRequest* srequest,
467                       GenericMachineType mach,
468                       DataBlock& data,
469                       bool success,
470                       Time initialRequestTime,
471                       Time forwardRequestTime,
472                       Time firstResponseTime)
473{
474    PacketPtr pkt = srequest->pkt;
475    Address request_address(pkt->getAddr());
476    Address request_line_address(pkt->getAddr());
477    request_line_address.makeLineAddress();
478    RubyRequestType type = srequest->m_type;
479    Time issued_time = srequest->issue_time;
480
481    // Set this cache entry to the most recently used
482    if (type == RubyRequestType_IFETCH) {
483        m_instCache_ptr->setMRU(request_line_address);
484    } else {
485        m_dataCache_ptr->setMRU(request_line_address);
486    }
487
488    assert(g_eventQueue_ptr->getTime() >= issued_time);
489    Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
490
491    // Profile the miss latency for all non-zero demand misses
492    if (miss_latency != 0) {
493        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
494
495        if (mach == GenericMachineType_L1Cache_wCC) {
496            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
497                                                   initialRequestTime,
498                                                   forwardRequestTime,
499                                                   firstResponseTime,
500                                                   g_eventQueue_ptr->getTime());
501        }
502
503        if (mach == GenericMachineType_Directory) {
504            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
505                                                   initialRequestTime,
506                                                   forwardRequestTime,
507                                                   firstResponseTime,
508                                                   g_eventQueue_ptr->getTime());
509        }
510
511        DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
512                 curTick(), m_version, "Seq",
513                 success ? "Done" : "SC_Failed", "", "",
514                 request_address, miss_latency);
515    }
516
517    // update the data
518    if (g_system_ptr->m_warmup_enabled) {
519        assert(pkt->getPtr<uint8_t>(false) != NULL);
520        data.setData(pkt->getPtr<uint8_t>(false),
521                     request_address.getOffset(), pkt->getSize());
522    } else if (pkt->getPtr<uint8_t>(true) != NULL) {
523        if ((type == RubyRequestType_LD) ||
524            (type == RubyRequestType_IFETCH) ||
525            (type == RubyRequestType_RMW_Read) ||
526            (type == RubyRequestType_Locked_RMW_Read) ||
527            (type == RubyRequestType_Load_Linked)) {
528            memcpy(pkt->getPtr<uint8_t>(true),
529                   data.getData(request_address.getOffset(), pkt->getSize()),
530                   pkt->getSize());
531        } else {
532            data.setData(pkt->getPtr<uint8_t>(true),
533                         request_address.getOffset(), pkt->getSize());
534        }
535    } else {
536        DPRINTF(MemoryAccess,
537                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
538                RubyRequestType_to_string(type));
539    }
540
541    // If using the RubyTester, update the RubyTester sender state's
542    // subBlock with the recieved data.  The tester will later access
543    // this state.
544    // Note: RubyPort will access it's sender state before the
545    // RubyTester.
546    if (m_usingRubyTester) {
547        RubyPort::SenderState *requestSenderState =
548            safe_cast<RubyPort::SenderState*>(pkt->senderState);
549        RubyTester::SenderState* testerSenderState =
550            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
551        testerSenderState->subBlock->mergeFrom(data);
552    }
553
554    delete srequest;
555
556    if (g_system_ptr->m_warmup_enabled) {
557        delete pkt;
558        g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
559    } else if (g_system_ptr->m_cooldown_enabled) {
560        delete pkt;
561        g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
562    } else {
563        ruby_hit_callback(pkt);
564    }
565}
566
567bool
568Sequencer::empty() const
569{
570    return m_writeRequestTable.empty() && m_readRequestTable.empty();
571}
572
573RequestStatus
574Sequencer::makeRequest(PacketPtr pkt)
575{
576    if (m_outstanding_count >= m_max_outstanding_requests) {
577        return RequestStatus_BufferFull;
578    }
579
580    RubyRequestType primary_type = RubyRequestType_NULL;
581    RubyRequestType secondary_type = RubyRequestType_NULL;
582
583    if (pkt->isLLSC()) {
584        //
585        // Alpha LL/SC instructions need to be handled carefully by the cache
586        // coherence protocol to ensure they follow the proper semantics. In
587        // particular, by identifying the operations as atomic, the protocol
588        // should understand that migratory sharing optimizations should not
589        // be performed (i.e. a load between the LL and SC should not steal
590        // away exclusive permission).
591        //
592        if (pkt->isWrite()) {
593            DPRINTF(RubySequencer, "Issuing SC\n");
594            primary_type = RubyRequestType_Store_Conditional;
595        } else {
596            DPRINTF(RubySequencer, "Issuing LL\n");
597            assert(pkt->isRead());
598            primary_type = RubyRequestType_Load_Linked;
599        }
600        secondary_type = RubyRequestType_ATOMIC;
601    } else if (pkt->req->isLocked()) {
602        //
603        // x86 locked instructions are translated to store cache coherence
604        // requests because these requests should always be treated as read
605        // exclusive operations and should leverage any migratory sharing
606        // optimization built into the protocol.
607        //
608        if (pkt->isWrite()) {
609            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
610            primary_type = RubyRequestType_Locked_RMW_Write;
611        } else {
612            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
613            assert(pkt->isRead());
614            primary_type = RubyRequestType_Locked_RMW_Read;
615        }
616        secondary_type = RubyRequestType_ST;
617    } else {
618        if (pkt->isRead()) {
619            if (pkt->req->isInstFetch()) {
620                primary_type = secondary_type = RubyRequestType_IFETCH;
621            } else {
622#if THE_ISA == X86_ISA
623                uint32_t flags = pkt->req->getFlags();
624                bool storeCheck = flags &
625                        (TheISA::StoreCheck << TheISA::FlagShift);
626#else
627                bool storeCheck = false;
628#endif // X86_ISA
629                if (storeCheck) {
630                    primary_type = RubyRequestType_RMW_Read;
631                    secondary_type = RubyRequestType_ST;
632                } else {
633                    primary_type = secondary_type = RubyRequestType_LD;
634                }
635            }
636        } else if (pkt->isWrite()) {
637            //
638            // Note: M5 packets do not differentiate ST from RMW_Write
639            //
640            primary_type = secondary_type = RubyRequestType_ST;
641        } else if (pkt->isFlush()) {
642          primary_type = secondary_type = RubyRequestType_FLUSH;
643        } else {
644            panic("Unsupported ruby packet type\n");
645        }
646    }
647
648    RequestStatus status = insertRequest(pkt, primary_type);
649    if (status != RequestStatus_Ready)
650        return status;
651
652    issueRequest(pkt, secondary_type);
653
654    // TODO: issue hardware prefetches here
655    return RequestStatus_Issued;
656}
657
658void
659Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
660{
661    int proc_id = -1;
662    if (pkt != NULL && pkt->req->hasContextId()) {
663        proc_id = pkt->req->contextId();
664    }
665
666    // If valid, copy the pc to the ruby request
667    Addr pc = 0;
668    if (pkt->req->hasPC()) {
669        pc = pkt->req->getPC();
670    }
671
672    RubyRequest *msg = new RubyRequest(pkt->getAddr(),
673                                       pkt->getPtr<uint8_t>(true),
674                                       pkt->getSize(), pc, secondary_type,
675                                       RubyAccessMode_Supervisor, pkt,
676                                       PrefetchBit_No, proc_id);
677
678    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
679            curTick(), m_version, "Seq", "Begin", "", "",
680            msg->getPhysicalAddress(),
681            RubyRequestType_to_string(secondary_type));
682
683    Time latency = 0;  // initialzed to an null value
684
685    if (secondary_type == RubyRequestType_IFETCH)
686        latency = m_instCache_ptr->getLatency();
687    else
688        latency = m_dataCache_ptr->getLatency();
689
690    // Send the message to the cache controller
691    assert(latency > 0);
692
693    assert(m_mandatory_q_ptr != NULL);
694    m_mandatory_q_ptr->enqueue(msg, latency);
695}
696
697template <class KEY, class VALUE>
698std::ostream &
699operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
700{
701    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
702    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
703
704    out << "[";
705    for (; i != end; ++i)
706        out << " " << i->first << "=" << i->second;
707    out << " ]";
708
709    return out;
710}
711
712void
713Sequencer::print(ostream& out) const
714{
715    out << "[Sequencer: " << m_version
716        << ", outstanding requests: " << m_outstanding_count
717        << ", read request table: " << m_readRequestTable
718        << ", write request table: " << m_writeRequestTable
719        << "]";
720}
721
722// this can be called from setState whenever coherence permissions are
723// upgraded when invoked, coherence violations will be checked for the
724// given block
725void
726Sequencer::checkCoherence(const Address& addr)
727{
728#ifdef CHECK_COHERENCE
729    g_system_ptr->checkGlobalCoherenceInvariant(addr);
730#endif
731}
732
733void
734Sequencer::evictionCallback(const Address& address)
735{
736    ruby_eviction_callback(address);
737}
738